基于ANSYS的支架稳定性分析

基于ANSYS的支架稳定性分析
基于ANSYS的支架稳定性分析

基于ANSYS 的支架稳定性分析

摘要:

随着大跨度桥梁在我国西南大山大河地区的高速发展,超高的桥梁支架在工程建设中的应用也日益广泛,这种细长结构的稳定性问题与强度问题同样重要,有时甚至起控制作用,因此对此类支架进行稳定性分析是十分必要的。

本文利用有限元分析软件ANSYS 建立了扣件式钢管支架的计算模型,通过对比不同支撑搭设方式下支架的极限承载力,对扣件式支架结构体系中支撑的作用进行了分析。主要内容有:

1.在ANSYS 有限元软件中建立分析支架结构的合理模型,并验证模型的正确性。

2.利用所建立的有限元模型,分析此类支架结构体系的失稳形式和其中支撑的作用。

关键词:扣件支架,稳定性,有限元分析,力学模型

目录

第1章绪论

1.1 研究目的和意义

1.2 国内外研究现状及分

第2章ANSYS中的屈曲分

析2.1 屈曲分析的概念

2.2 特征值屈曲分析

2.3 非线性屈曲分析

第3章支架结构体系在ANSYS 软件中的实现3.1 ANSYS 中的单元模型

3.2 材料的本构关系

第4章扣件式钢管支架体系中支撑作用分析第5章结论和建议参考文献

第 1 章绪论

1.1研究目的和意义

一般地,可以把建筑物的生命周期分为三个阶段施工建造阶段、正常使用阶段和维修加固阶段。研究人员及设计工程师把大量的努力用在如何保障建筑物在正常使用阶段安全可靠的工作上。虽然施工建造阶段存在大量的未知不定性, 但在该方面的研究工作却相对较少。对于一般性建筑物来说, 建造时间一般为一到两年, 其使用寿命大致为五十年左右, 然而, 据统计。事故绝大多数发生在建筑施工阶段, 其中桥梁支架、模板架这些临时辅助施工设施的坍塌是事故发生的主要原因。可见,对施工过程中桥梁支架体系的研究是一项必要、迫切和重要的工作。

钢管支架大致可分为固定式组合支架、移动式支架和吊支架三大类, 其中固定式组合支架又包括钢管支架和框式支架两大类。本文主要介绍的扣件式钢管支架由钢管和扣件组成、具有加工简便、搬运方便、通用性强等特点, 已成为当前我国使用量最大、应用最普遍的一种支架,占支架使用总量的左右, 在今后较长时间内, 这种支架仍占主导地位。但是, 这种支架的安全保证性较差, 施工工效低, 不能满足高层建筑施工的发展需要。

在钢管支架不断完善和发展的同时, 桥梁支架以其施工简便快捷、整体性好等特点而得到广泛的应用于桥梁施工过程中, 但同时也伴随着一个日趋突出的问题一支架倒塌问题,近年来,一些地区多次发生施工过程中钢管支架倒塌的重大工程事故,造成人员和财产的巨大损失, 产生了恶劣的社会影响,因此,有必要对桥梁支架进行进一步的深入研究。

1.2国内外研究现状牛津大学编制了计算脚手架稳定特征值程序且有不少国家已在不同程度上规定了考虑材料进入弹塑性的方法, 同时也考虑了初始缺陷及风荷载的影响。日本曾对门式钢管脚手架结构进行了试验分析,并编制了安全技术规程。他们主要从单跨入手,对单层,2 层,3 层,5 层进行了试验分析,得到了基本的压屈形态及极限承载力,同时还给出了计算单榀门架压屈承载力的方法。

英国的Godley 比较了二维模型和三维模型对计算脚手架刚度的影响程度,指出节点半刚性的考虑对脚手架动力特性研究的重要性。后来,Godley 在计算脚手架系统时进行了二阶几何非线性分析并考虑使用节点非线性模型。美国的Weesner和Jones 对四种不同形式的高度为5 米的承重脚手架进行了极限承载力试验研究并与利用有限元软件ANSYS得到的脚手架特征值屈曲荷载和几何非线性分析结果加以分析对比,认为几何非线性分析得到的极限承载力

数值低于特征值屈曲荷载,但与试验数值相近。

1989 年,哈尔滨建筑工程学院徐崇宝教授等对双排扣件式钢管脚手架工作性能进行了理论分析和试验研究。

2007 年,北京交通大学硕士研究生王勇对超高扣件式钢管模板支架安全性进行了分析。

2007 年,浙江大学硕士研究生胡凯山对扣件式钢管模板支撑架结构力学性能进行了研究。

2009 年,天津大学和《建筑施工扣件式钢管脚手架安全技术规范》的编制组对扣件式钢管支架结构进行了一系列试验研究工作,给出了试验模型的极限承载力。

第 2 章ANSYS中的屈曲分析

2.1屈曲分析的概念

屈曲分析是一种用于确定结构开始变的不稳定时的临界荷载和屈曲模态形状

(结构发生屈曲响应时的特征形状)的技术。ANSYS提供了两种结构屈曲荷载和屈曲模态的分析方法:非线性屈曲分析和特征值(线性)屈曲分析,这两种方法通常得到不同的结果。非线性屈曲分析比线性屈曲分析更精确,故常用于对实际结构的设计或计算。该方法用一种逐渐增加载荷的非线性静力分析技术来求得使结构开始变得不稳定时的临界载荷(图2-1a )。应用非线性技术,模型中就可以包括诸如初始缺陷、塑性、间隙、大变形响应等特征。此外,使用偏离控制加载,还可以跟踪结构的后屈曲行为。特征值屈曲分析用于预测一个理想弹性结构的理论屈曲强度(分叉点)(图2-1b)。该方法相当于弹性屈曲分析方法。例如,一个柱体结构的特征值屈曲分析的结果,将与经典欧拉解相当。但是,初始缺陷和非线性使得很多实际结构都不是在其理论弹性屈曲强度处发生屈曲。因此,特征值屈曲分析经常得出非保守结果,通常不能用于实际的工程分析。

2.2 特征值屈曲分析

特征值屈曲按如下步骤进行分析: 1、建立模型; 2、获得静力解; 3、获得特 征值屈曲解; 4、展开解; 5、观察结果。

1)建立模型 定义作业名和分析标题,使用前处理器定义单元类型、单元实常数、材料 性质、模型几何实体。建模过程中应注意:只允许线性行为,如果定义了非线性 单元,则将按线性单元对待; 必须定义材料的弹性模量 EX 。材料性质可以是线性、 各向同性或各向异性,恒值或与温度相关。

2)获得静力解

该过程与一般静力分析过程一致, 但要注意: 必须激活预应力影响

[PSTRES], 因为该分析需要计算应力刚度矩阵;通常只要施加一个单位载荷就足够了。由屈 曲分析计算出的特征值,表示屈曲载荷系数。因此,若施加的是单位载荷,则该 特征值就表示实际的屈曲载荷。

3)获得特征值屈曲解

步骤为: 1.进入 ANSYS 求解器; 2.定义分析类型和分析选项; 3.定义荷载步 选项; 4.开始求解; 5.退出求解器。

4 )展开解

要观察屈曲模态,需对解进行展开。

2.3 非线性屈曲分析

非线性屈曲分析是在大变形效应开关打开的情况下 [NIGEOM ,ON]的一种静力分 析,该分析过程一直进行到结构的极限载荷或最大载荷。其它诸如塑性等非线性 也可以包括在分析中。

在进行非线性的屈曲分析时, 分析过程与一般的非线性分析过程相同。 采用一 系列子步以增量加载的方式施加一给定载荷直到求解发散。在很多情况

下,为了 有助于计算,应在模型上施加一初始缺陷(扰动) 。预先进行一个特征值分析有助 于非线性屈曲分析,特征值屈曲载荷是预期的线性屈曲载荷的上限,可以作为非 线性屈曲分析的给定载荷,特征矢量屈曲形状可以作为施加初始缺陷或扰动载荷 的根据。

空调支架ansys分析报告

实用标准文案 Ansys应用大作业 空调支架ansys分析 专业:机械电子工程 学号: 姓名:

空调支架ansys分析 在日常生活中,我们到处可以看到空调,由于场地的限制,空调经常要依靠支架悬挂在墙体外表面,由于空调质量大,而且经常外挂于高处,如果因为支架不够牢固而造成空调下落,有可能造成伤亡事故,所以我想拿空调的支架来进行ansys分析,分析它的受力变形状况。 (一)模型的简化 图1 图2 如图1为常见的空调支架实体,图2为我们简化后的模型。 (二)ansys模型的建立 设置单元类型为solid brick 8node 185 如图3 图3 45号钢的弹性模量为210GPa,泊松比为0.3,如图4我们设置材料的属性 图4

先用关键点1(0,0,0)2(0,0.155,0 )3(-0.540,0.155,0)4(-0.540,0.11,0)生成面,再扩展成厚度为0.005的体,接着用生成块命令生成3个块,4个体再进行相加,如图5所示 图5 (三)进行网格划分与静态分析 根据支架的尺寸,我们设置网格单元大小为0.005,如图6所示,然后进行网格划分,结果如图7所示 图6 图7

我们假设螺钉足够牢固,能把支架牢牢地固定在墙面上,所以我们对支架靠近墙面的面加上各个方向的约束,如图8所示 图8 由于空调由两个支架支撑,而且下底面压在图1所示的340mm 区域内,所以我先把空调的重力转化为在图中所示的340mm 所在的面积的压强 559.831705.880.340.05F P S ?===? 209.811529.410.340.05 F P S ?===? 如图9进行加压强载荷 图9

第7章 结构的弹性稳定性分析

ANSYS 入门教程 (9) - 结构的弹性稳定性分析 第 7 章结构弹性稳定分析 7.1 特征值屈曲分析的步骤 7.2 构件的特征值屈曲分析 7.3 结构的特征值屈曲分析 一、结构失稳或结构屈曲: 当结构所受载荷达到某一值时,若增加一微小的增量,则结构的平衡位形将发生很大的改变,这种现象叫做结构失稳或结构屈曲。 结构稳定问题一般分为两类: ★第一类失稳:又称平衡分岔失稳、分枝点失稳、特征值屈曲分析。结构失稳时相应的载荷可称为屈曲载荷、临界载荷、压屈载荷或平衡分枝载荷。 ★第二类失稳:结构失稳时,平衡状态不发生质变,也称极值点失稳。结构失稳时相应的载荷称为极限载荷或压溃载荷。 ●跳跃失稳:当载荷达到某值时,结构平衡状态发生一明显的跳跃,突然过渡到非邻近的另一具有较大位移的平衡状态。可归入第二类失稳。 ★结构弹性稳定分析 = 第一类稳定问题 ANSYS 特征值屈曲分析(Buckling Analysis)。 ★第二类稳定问题 ANSYS 结构静力非线性分析,无论前屈曲平衡状态或后屈曲平衡状态均可一次求得,即“全过程分析”。 这里介绍 ANSYS 特征值屈曲分析的相关技术。在本章中如无特殊说明,单独使用的“屈曲分析”均指“特征值屈曲分析”。 7.1 特征值屈曲分析的步骤 ①创建模型 ②获得静力解 ③获得特征值屈曲解 ④查看结果 一、创建模型 注意三点: ⑴仅考虑线性行为。若定义了非线性单元将按线性单元处理。 刚度计算基于初始状态(静力分析后的刚度),并在后续计算中保持不变。 ⑵必须定义材料的弹性模量或某种形式的刚度。非线性性质即便定义了也将被忽略。 ⑶单元网格密度对屈曲载荷系数影响很大。例如采用结构自然节点划分时(一个构件仅划分一个单元)可能产生 100% 的误差甚至出现错误结果,尤其对高阶屈曲模态的误差可能更大,其原因与形成单元应力刚度矩阵有关。经验表明,仅关注第 1 阶屈曲模态及其屈曲载荷系数时,每个自然杆应不少于 3 个单元。 二、获得静力解 注意几个问题: ⑴必须激活预应力效应。

空调支架ansys分析

Ansys应用大作业 空调支架ansys分析 专业:机械电子工程 学号: 姓名:

空调支架ansys分析 在日常生活中,我们到处可以看到空调,由于场地的限制,空调经常要依靠支架悬挂在墙体外表面,由于空调质量大,而且经常外挂于高处,如果因为支架不够牢固而造成空调下落,有可能造成伤亡事故,所以我想拿空调的支架来进行ansys分析,分析它的受力变形状况。 (一)模型的简化 图1 图2 如图1为常见的空调支架实体,图2为我们简化后的模型。 (二)ansys模型的建立 设置单元类型为solid brick 8node 185 如图3 图3 45号钢的弹性模量为210GPa,泊松比为0.3,如图4我们设置材料的属性 图4

先用关键点1(0,0,0)2(0,0.155,0 )3(-0.540,0.155,0)4(-0.540,0.11,0)生成面,再扩展成厚度为0.005的体,接着用生成块命令生成3个块,4个体再进行相加,如图5所示 图5 (三)进行网格划分与静态分析 根据支架的尺寸,我们设置网格单元大小为0.005,如图6所示,然后进行网格划分,结果如图7所示 图6 图7

我们假设螺钉足够牢固,能把支架牢牢地固定在墙面上,所以我们对支架靠近墙面的面加上各个方向的约束,如图8所示 图8 由于空调由两个支架支撑,而且下底面压在图1所示的340mm 区域内,所以我先把空调的重力转化为在图中所示的340mm 所在的面积的压强 559.831705.880.340.05F P S ?===? 209.811529.410.340.05 F P S ?===? 如图9进行加压强载荷 图9

ansys分析钢结构稳定问题

ANSYS软件分析轴压和压弯构件的 稳定性问题

摘要:轴心受压杆件和压弯杆件广泛应用于工程中,本文通过ansys软件对该两种杆件进行分析,对于轴心受压杆件,运用beam189、solid95、shell65单元,进行弹性稳定分析和非线性分析,得到其屈曲荷载和变形情况;对于压弯杆件,在集中荷载和分布荷载的条件下,运用beam3单元进行非线性分析,得到其最大弯矩值,通过和理论值相比较,验证其正确性。 关键词:ANSYS;轴心受压杆件;压弯杆件;非线性分析 Abstract:Axial strut pieces and bending rods are widely used in engineering. This paper, using ANSYS software, analyzes the two rods. For Centrally Compressed Members, this paper using beam189, solid95, shell65 unit, carries out elastic stability analysis and nonlinear analysis, getting the buckling load and deformation. For the bending rod under conditions of concentrated loads and distributed loads, nonlinear analysis was conducted using beam3 unit, getting its greatest moment, and was compared to theoretical value to verify its correctness. Keywords: ANSYS;Centrally Compressed Members; the bending rod member; nonlinear analysis 钢材具有高强度、质轻、力学性能良好的优点,是制造结构物的一种极好的建筑材料,所以广泛运用于工程实例中,它和钢筋混凝土结构相比,对于充任相同受力功能的构件,具有截面轮廓尺寸小、构件细长和构件柔薄的特点。对于因受压、受弯和受剪等存在受压受压区的构件或板件,如果技术上处理不当,可能使钢结构出现整体失稳或局部失稳。失稳前结构物的变形可能很微小,突然失稳使结构物的几何形状急剧改变而导致结构物完全丧失抵抗能力,以致整体塌落。钢结构的稳定性能是决定其承载力的一个特别重要的因素[1]。对于钢结构稳定性的研究也就极其重要。而轴压杆件和压弯杆件是钢结构的基础,对此杆件进行稳定性分析也就是不可避免的和尤为重要的。所以,非常有必要利用大型通用ANSYS软件对这两类杆件进行分析,得到一系列的研究成果。 一、基本理论 结构在荷载作用下由于材料的弹性性能而发生变形,若变形后结构上的荷载保持平衡,这种状态称为弹性平衡。如果结构在平衡状态时,受到扰动而偏离平衡位置,当扰动消除后仍能恢复到原来平衡状态的,这种平衡状态称为稳定平衡状态。根据失稳的性质,结构的稳定问题可以分为平衡分岔失稳,极值点失稳和跃越失稳三种情况。结构的弹性稳定分析属于平衡分岔失稳,在ANSYS中对应的分析类型是特征值屈曲分析(Buckling Analysis)[2]。

钢支架结构的ANSYS分析

钢支架结构的ANSYS分析 1.问题描述 现要做两个简易的隔板置物架,主体尺寸如图1所示,宽为50mm。材料为45钢,弹性模量去210GPa。支架左边由膨胀丝固定在墙上,假设固定牢固。隔板放在两个物架的顶面上,要求最大能承受125kg的重物。 图1 物架主视图 2. ansys模型的建立 三维模型在solidworks中间建立,然后导入ANSYS中。 设置单元类型为solid brick 8node 185。 使用钢材的弹性模量为210GPa,泊松比为0.3,设置材料的属性。 3.进行网格划分与静态分析 根据支架的尺寸,我们设置网格单元大小为0.005,然后进行网格划分。

我们假设膨胀丝足够牢固,能把支架牢牢地固定在墙面上,所以我们对支架靠近墙面的面加上各个方向的约束。由于隔板由两个支架支撑,压力作用在两个50mmX175mm顶面内,一个顶面受到的压力为625N,以此施加载荷。 进行求解,然后我们查看结果。首先,查看位移图2,我们可以看出最大的位移在支架的末端,为0.219e-0.4,可见位移很小,在生活中我们基本忽略不计。 图2 物架变形图 然后,查看V on mises stress图3,我们可以看出应力基本上集中在弯曲处,我们查看标准,GB/T699-1999标准规定,取抗拉强度为600MPa,屈服强度为 图3 物架应力图

355MPa,伸长率为16%,断面收缩率为40%,冲击功为39J。我们从图中看出最大内应力为1.16GPa。 4.结构的优化 在静态分析中,我们看出支架的内应力大的地方一般集中转角处,我们可以添加两个支撑板进行改善。本文尝试了在两种位置添加支撑板,对它们进行了同样的分析。 查看V on mises stress图,对于第一种方案,可以看出其位移最大为 0.992e-06mm,可以看出内应力最大值为161MP,最大内应力在顶面。对于第二种方案,可以看出其位移最大为0.406e-06mm。可以看出内应力最大值为166MP,最大内应力在弯曲处。 可以看到两种方案对于减少位移和内应力有很大的效果。我们希望弯曲处应力较小,而且考虑到节省材料的角度,选择一方案。 图4 方案一应力图

ANSYS课程作业-边坡稳定性分析

边坡稳定性分析、问题描述 边坡围岩分别选择3种材料,用强度折减法判断稳定性及安全系数。、建模 三、材料参数 单元类型:PLANE82 受力状态:平面应变Plain strain

四、载荷 1. 位移条件 两侧边约束X方向位移,底边约束X、Y方向位移。 2. 受力条件 重力10g/cm2 1 NODES U 五、结果分析 1?收敛结果 ANSYS R15XJ JUN 28 Z015 13:03:04 丄塔丄』;;冷:忖:£ K :

伴随强度折减系数的增加,边坡的塑性应变增大,塑性区也随之扩大,当塑性区发展成一个贯通区域,边坡就不稳定,此时求解也不收敛。与此同时,边坡水平位移也变大。因此, 主要通过观察后处理中边坡变形图、应力图、塑形区来判断稳定性与否。 2. F=1.0结果分析 F=1.0时边坡变形图 311^1 KY5-€ W —.0S3TM MH -.C5S*44 -.SLSil ■“”戸呂0^36C"? ,0315^3 .eCSTgfl AN SYS R15.0 JUK 冲 12:aa:Z4 F=1.0时边坡X方向位移云图

F=1.0时边坡X方向应力云图 AN SYS R15.0 JOE品p冨耶43 12:DO15Q T.[?SE-L EPFLE J JV悵V⑹ Mt SME --34&E-34 M 强“阴.1&91-0< .2A0K-Q4 .HCS?-CI 3?K-?& . ll&E-CH . I^lE-04 . E ECB-O^ . J:4fiE-CH F=1.0时边坡塑性变形云图 此时边坡坡趾处有微小塑性应变,塑性区范围较小。

ANSYS与ABAQUS稳定性研究比较

ANSYS与AB AQUS稳定性分析比较(转载?来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性分析的一部分,觉得还是整理一下吧,也算是对后来者乂抛了一块砖。 算例描述: 为了能体现岀一般性,我故意找了一个比较大的结构。这是一个单层网壳结构, 最大尺寸在90m左右,杆件长度在1.13nv3.63m之间,截面形式为箱型截面;构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软件单元特征,没有关系)。 在ANSYS软件中分别采用BEAM44x BEAM 188和BEAM 189进行计算。分析结果见下文。 备注:表格中Nl、N2分别代表每根构件采用1、2个单元;El、E2代表第1、 2阶屈曲荷载因子; ANSYS BEAM 188分析结果

山表格可以看出,利用ANSYS软件进行Buckling分析时,不同BEAM单元类型对单元剖分数量的要求。 (1)B EAM44和BEAM 189对单元的剖分数量要求较低,每根构件采用1个单元和采用2、3、4个单元时计算结果相差不大,在工程上这种误差应该是可以接受 的。 (2)B EAM 188单元对单元剖分数量的要求要高一些,从结果来看,每根杆件釆用5个BEAM 188单元计?算结果才与釆用1个BEAM44或BEAM189 单元计算结果相 同。 (3)在利用ANSYS进行Buckling分析时,以选用BEAM44与BEAM 189单元为佳。(4)选用BEAM44单元时,虽然每根杆件釆用1个单元和多个单元计算结果相差不大,但是本人还是建议每根杆件选用2至3个单元。理论上对于每根构件而 言,在设计时已经保证了其稳定性,但是我们也可以在整体稳定性分析过程中进一步对其进行校核。如果采用1个单元,就达不到这个效果。 (5)理论上能选择189单元是最好不过啦,不过考虑其是3节点单元,有时候从其它软件数据转过来时可能会有点不方便。 (6)考虑到后期进行非线性稳定计算,山于BEAM44单元不能考虑材料非线性,在前后延续上还是釆用BEAM 189比较好,而且3节点单元在单元剖分数量上要求也较低。 下面给岀每种单元计算得到的屈曲模态(每行从左到右分别为笫1、2、3阶): BEAM44单元讣算结果

ANSYS与ABAQUS稳定性分析比较

ANSYS与ABAQUS稳定性分析比较(转载-来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性分析的一部分,觉得还是整理一下吧,也算是对后来者又抛了一块砖。 算例描述: 为了能体现出一般性,我故意找了一个比较大的结构。这是一个单层网壳结构,最大尺寸在90m左右,杆件长度在1.13m-3.63m之间,截面形式为箱型截面;构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软件单元特征,没有关系)。 在ANSYS软件中分别采用BEAM44、BEAM188和BEAM189进行计算。分析结果见下文。 2阶屈曲荷载因子;

由表格可以看出,利用ANSYS软件进行Buckling分析时,不同BEAM单元类型对单元剖分数量的要求。 (1)BEAM44和BEAM189对单元的剖分数量要求较低,每根构件采用1个单元和采用2、3、4个单元时计算结果相差不大,在工程上这种误差应该是可以接受的。 (2)BEAM188单元对单元剖分数量的要求要高一些,从结果来看,每根杆件采用5个BEAM188单元计算结果才与采用1个BEAM44或BEAM189单元计算结果相同。 (3)在利用ANSYS进行Buckling分析时,以选用BEAM44与BEAM189单元为佳。 (4)选用BEAM44单元时,虽然每根杆件采用1个单元和多个单元计算结果相差不大,但是本人还是建议每根杆件选用2至3个单元。理论上对于每根构件而言,在设计时已经保证了其稳定性,但是我们也可以在整体稳定性分析过程中进一步对其进行校核。如果采用1个单元,就达不到这个效果。 (5)理论上能选择189单元是最好不过啦,不过考虑其是3节点单元,有时候从其它软件数据转过来时可能会有点不方便。 (6)考虑到后期进行非线性稳定计算,由于BEAM44单元不能考虑材料非线性,在前后延续上还是采用BEAM189比较好,而且3节点单元在单元剖分数量上要求也较低。 下面给出每种单元计算得到的屈曲模态(每行从左到右分别为第1、2、3阶): BEAM44单元计算结果

ANSYS分析实例详解

ANSYS分析实例详解 姓名:XXX 学号:XXX 专业:XXX 内容:空调支架的有限元分析 本次作业为对一空调支架的有限元分析,其主要内容包括空调支架的建模、有限元分析、强度校核以及结构优化等。下图为空调支架一侧的实物图片: 1、空调支架的特点分析 由于空调支架为一个完全对称结构,空调的重量均匀分部在两侧对称支架上,因此只要对空调支架的一侧进行分析即可达到对整体空调支架的分析,同时也达到了简化空调支架分析的目的。本次作业可以分三部分来完成:一,空调支架一侧的建模;二,利用商业化有限元分析软件对建好的空调支架模型进行有限元分析;三,根据空调支架模型有限元分析的结果对支架进行强度校核以及结构优化。 2、空调支架的建模 空调支架的具体尺寸图如下图所示:

考虑到空调支架模型结构简单,故在此没有利用三维软件建模而是直接在有限元分析软件中进行建模,本次作业采用的有限元分析软件为美国ANSYS公司研制的大型通用有限元分析(FEA)软件ANSYS10.0。建立模型包括设定分析作业名和标题,定义单元类型、定义材料属性、建立三维模型、划分有限元网格。 2.1设定分析作业名和标题 打开ANSYS软件进入ANSYS操作界面,首先从主菜单中选择【Preferences】命令,勾选Structural。然后从实用菜单中选择【Change Jobname】命令,将文件名修改为Ktiao2,从实用菜单中选择【Change Title】命令,将标题修改为Ktiao2。如下图所示: 2.2定义单元类型 在进行有限元分析时,首先应根据分析问题的几何结构、分析类型和所分析的问题精度要求等,选定适合具体分析的单元类型。本文中选用8节点六面体单元Solid185。如下图所示:

基于ANSYS的拱坝坝肩及坝基整体稳定分析

1002 -5634(2012)03 -0004 -05 基于ANSYS的拱坝坝肩及坝基整体稳定分析 丁泽霖1,2王婧1黄德才2 1.华北水利水电学院,河南郑州450011:2贵州省黔西南州望谟县水利局,贵州望谟552300 摘 要:结合拱坝坝肩与坝基的地形、地质特征以及软弱结构面分布状况,通过ANSYS软件建立拱坝天然地基条件下的三维数值模型,并进行超载法计算,分析坝体变形与应变特征、坝肩和断层的变位分布特征、坝肩的破坏形态和过程,得到整体稳定超载安全系数,评价拱坝的安全度,为工程设计、施工和加固处理提供依据.拱坝;有限元;坝肩稳定 2012 -04 -05 丁泽霖( 1983-),男,满族,辽宁凤城人,讲师,博士,主要从事水工结构工程方面的研究. 万方数据

密或少量 曲泥瞒存情万方数据

万方数据

i梁剖面塑万方数据

@@[1]苑宝军,张玉文.加快四川水电建设打造中国水电基地 [J].水利科技与经济,2006,12(2):118 -120. @@[2 ] Boulon M, Alachaher A. A new incrementally nonlinear  constitutive law for finite element applications in geome chanics[ J ]. Computers and Geotechnics, 1995,17 (2) : 177 - 201. @@[3]陈胜宏,汪卫明.小湾高拱坝坝踵开裂的有限单元法分 析[J].水利学报,2003(1):66 -71. @@[4]杨强,吴浩,周维垣.大坝有限元分析应力取值的研究 [J].工程力学,2006,23(1):69 -72. @@[5]王新敏.ANSYS工程结构数值分析[M].北京:人民交 通出版社,2007. Stability Analysis of Foundation and Abutment of Arch Dam Based on ANSYS  DING Ze-linWANG JingHUANG De-cai 万方数据

基于ANSYS的电机支架结构的模态分析

0引言 振动是一种常见的物理现象,由于振动或冲击而产生的共振、疲劳破坏等危害到航空航天、仪器仪表、机械性能、交通运输以及军事防御等各个领域。模态分析用于振动测量和结构动力学分析,可测得比较准确的固有频率、模态振型等参数,它们对机械结构的安全性有重要意义,也有助于设计工程师们可以避开这些频率或最大限度的减小对这些频率上的激励,从而消除过度振动 和噪声[1] 。 电机支架连接构件的整体性能好坏对电机的性能和寿命有很大的影响。电机支架是支撑结构中的主要承载构件,电机支架针对不同的场合使用有不同的类型,本文利用有限元对其中一种工字连接构件进行模态分析,得到其固有频率和振型,可避免工字连接件在工作过程中与其他部件发生共振,造成事故。 1模态分析原理 模态直接反映机械结构的固有振动特性,每个模态具有特定的固有频率、阻尼比和模态振型。一般地,对于多自由度阻尼系统的运动微分方程为 : (1) 式中:[M]—系统的质量矩阵;[C]—系统的阻尼矩阵;[K]—系统的刚度矩阵;{X}—系统的位移向量;{F (t )}—系 统的激阵力向量。 在没有外力作用时,可以得到系统的自有振动方程,但通常情况下,又由于阻尼对模态分析影响不大,从而得到无阻尼的自由运动方程 :(2)其对应的特征值方程为: (3) 因为系统{X}≠{0},即 : (4) 解出ωn 即为多自由度系统各阶固有频率,将ωn 解出后代入到方程(3)中求得{X},即为各阶固有频率的振型。 2工字连接件结构分析 工字连接件其截面为工字型的钢材,选用尺寸为250mm ×118mm ×10mm 方钢,结构图如图1所示,材料参数如表1所示。 图1工字连接 件结构图 表1材料参数 参数名称 参数值 杨氏模量泊松比密度200000/(GP ) 0.37890/(kg (m 3)-1 ) 2.1建模及网格划分利用CATIA 软件建立工字连接件的三维模型,再通过其与ANSYS Workbench 之间的软件接口将支架模型导 入ANSYS Workbench , 导入后的模型如图2所示。依据模型的几何结构,进行网格划分是有限元模态分析中非常重要的一步,同时,网格的质量也对计算结果的准 确性有重要影响。在ANSYS Workbench 中,对于三维几何体, 提供了多种网格划分方法,包括Automatic 、Multizone 、Tetrahedron 、Hex Dominant 、Swept meshing 、Cutcell 。由于该基于ANSYS 的电机支架结构的模态分析 Modal Analysis of Motor Bracket Structure Based on ANSYS 杨舒婷YANG Shu-ting (重庆交通大学机电与车辆工程学院,重庆400074) (College of Electrical and Mechanical and Vehical Engineering ,Chongqing Jiaotong University ,Chongqing 400074,China ) 摘要:利用CATIA 软件对电机支架的连接构件即工字连接件进行参数化实体建模,将模型通过软件接口导入ANSYS Workbench ,对连接件进行有限元分析,得到工字连接件各阶固有频率和振型。分析结果表明,连接件低阶模态频率和振动幅度都较小,满足设计要求,为工字连接件的设计和改进提供了方法和依据。 Abstract:The parametric solid model of the connecting component of the motor bracket,I -type connector,is modeled by CATIA software.The model is imported into the ANSYS Workbench through the software interface,and the finite element analysis of the connection is carried out by using the Model module,and the natural frequencies and vibration modes of each order are obtained.The analysis results show that the low order modal frequency and vibration amplitude of the connectors are small,which meets the design requirements and provides a method and basis for the design and improvement of the I-type connectors. 关键词:工字连接件;有限元分析;固有频率;振型Key words:I-type connector ;finite element analysis ;natural frequency ;vibration modes —————————————————————— —作者简介:杨舒婷(通讯作者)(1993-),女,硕士生,主要研究方向为机电一体化。

基于ANSYS的铁塔动态特性及稳定性有限元分析

延 边 大 学 2018年9月3日 本 科 毕 业 论 文 本科毕业设计 题 目:基于A N S Y S 的铁塔动态特性及 稳定性有限元分析 学生姓名: 学 院:工学院 专 业:机械设计制造及其自动化 班 级: 指导教师:

目录 catalog 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1国内外关于铁塔的研究现状 (3) 1.2本文工作 (4) 第二章 1C-SJ1-27m110KV输电线路杆塔的有限元建模 (5) 2.1 1C-SJ1-27m110KV输电线路杆塔概述 (5) 2.2 1C-SJ1-27m110KV输电线路杆塔有限元模型的建立 (5) 2.3 1C-SJ1-27m110KV输电线路杆塔有限元模型的建立 (6) 2.4 1C-SJ1-27m110KV铁塔的计算载荷 (9) 2.4.1 1C-SJ1-27m110KV铁塔的外载荷简介 (9) 2.4.2 1C-SJ1-27m110KV输电线路杆塔载荷计算 (9) 2.5 小结 (10) 3.1 1C-SJ1-27m110KV铁塔的静力分析 (10) 3.2 1C-SJ1-27m110KV铁塔的模态分析 (13) 3.3 小结 (18) 第四章 1C-SJ1-27m110KV输电铁塔的整体稳定性分析 (19) 4.1 1C-SJ1-27m110KV铁塔的在大风工况下(14N)的风振响应 (19) 4.1.1 铁塔在大风工况下的分析 (21) 4.2 1C-SJ1-27m110KV铁塔雪载工况 (23) 4.3 1C-SJ1-27m110KV铁塔的整体稳定性分析方法 (25) 4.4 拉线铁塔的简单介绍及想法 (26) 4.5 小结 (26) 第五章有限元分析法及软件的简要介绍 (27) 5.1 有限元分析法介绍 (27) 5.2 ANSYS软件介绍 (27) 结论 (28) 参考文献 (29) 致谢 (32)

有限元分析报告-空调支架

深圳大学考试答题纸 (以论文、报告等形式考核专用) 二○一三~二○一四学年度第 1 学期 课程编号 23111221 02 课程名称有限元分析方法主讲教师龚峰评分 学号20111102 68 姓名朱志强专业年级机械设计制造及其自动化02 题目:空调支架的静力分析与屈曲分析 空调支架的静力分析与屈曲分析 【摘要】“空调支架失效,致使坠落伤人”事件频发,引起了社会的极大响应,整个行业也对“空调支架”充满了许多期许。究其根源,社会众说纷纭。本文针对此问题,选取了生活中的一种户外空调支架,对其进行了实测与工况分析, 并采用有限元方法,借助计算机建模软件Solidworks建立空调支架的3D模型,运用Patran/Nastran软件, 建立了空调架的有限元模型,对其进行了静力的应力应变分析和屈曲分析,得出了空调支架在静力条件下的危险工作部位,为空调支架的安全性设计与改进提供了理论依据。 【关键词】空调支架、静力分析、屈曲分析、优化设计 目录

【摘要】 (1) 一、概述............................................................................................ 错误!未定义书签。 二、建立空调支架的3D模型....................................................... 错误!未定义书签。 三、空调支架的静力分析 (3) 1、按实际工况进行应力应变分析 (4) 2、按安全性规范进行应力应变分析 (4) 四、空调支架的屈曲分析 .............................................................. 错误!未定义书签。 1、按实际工况进行屈曲分析 (5) 2、按安全性规范进行屈曲分析 (6) 五、空调支架的优化设计 ............................................................. .错误!未定义书签。 六、结论与展望.............................................................................. 错误!未定义书签。 一、概述 本文所选取的空调支撑架如下图1所示,整体构造由两块槽钢和一块等边角钢焊接而成,经过实际测量和查表可以确定:槽钢型号为:6.3#63*40*4.8,等边角钢为3#30*30*4,而实际槽钢测量值为:63*37*4.8,实际等边角钢测量值为3#30*30*4,与标准件的尺寸基本一致。经过查询有关文献资料,确定该空调支架使用Q235碳素钢,这是因为Q235有一定的伸长率、强度和良好的韧性,焊接性能良好,而且价格便宜。另外,Q235材料的弹性模量E=200Gpa,泊松比v=0.3。

基于ANSYS的支架稳定性分析

基于ANSYS的支架稳定性分析 摘要: 随着大跨度桥梁在我国西南大山大河地区的高速发展,超高的桥梁支架在工程建设中的应用也日益广泛,这种细长结构的稳定性问题与强度问题同样重要,有时甚至起控制作用,因此对此类支架进行稳定性分析是十分必要的。 本文利用有限元分析软件ANSYS 建立了扣件式钢管支架的计算模 型,通过对比不同支撑搭设方式下支架的极限承载力,对扣件式支架结 构体系中支撑的作用进行了分析。主要内容有: 1.在ANSYS 有限元软件中建立分析支架结构的合理模型,并验证模型的 正确性。 2.利用所建立的有限元模型,分析此类支架结构体系的失稳形式和其中 支撑的作用。 关键词:扣件支架,稳定性,有限元分析,力学模型

目录第1章绪论 1.1 研究目的和意义 1.2 国内外研究现状及分析 第2章ANSYS中的屈曲分析 2.1 屈曲分析的概念 2.2 特征值屈曲分析 2.3 非线性屈曲分析 第3章支架结构体系在 ANSYS 软件中的实现 3.1 ANSYS中的单元模型 3.2 材料的本构关系 第4章扣件式钢管支架体系中支撑作用分析第5章结论和建议 参考文献

第1章绪论 1.1研究目的和意义 一般地,可以把建筑物的生命周期分为三个阶段施工建造阶段、正常使用阶段和维修加固阶段。研究人员及设计工程师把大量的努力用在如何保障建筑物在正常使用阶段安全可靠的工作上。虽然施工建造阶段存在大量的未知不定性,但在该方面的研究工作却相对较少。对于一般性建筑物来说,建造时间一般为一到两年,其使用寿命大致为五十年左右,然而,据统计。事故绝大多数发生在建筑施工阶段,其中桥梁支架、模板架这些临时辅助施工设施的坍塌是事故发生的主要原因。可见,对施工过程中桥梁支架体系的研究是一项必要、迫切和重要的工作。 钢管支架大致可分为固定式组合支架、移动式支架和吊支架三大类, 其中固定式组合支架又包括钢管支架和框式支架两大类。本文主要介绍的扣件式钢管支架由钢管和扣件组成、具有加工简便、搬运方便、通用性强等特点,已成为当前我国使用量最大、应用最普遍的一种支架,占支架使用总量的左右,在今后较长时间内,这种支架仍占主导地位。但是, 这种支架的安全保证性较差,施工工效低,不能满足高层建筑施工的发展需要。 在钢管支架不断完善和发展的同时,桥梁支架以其施工简便快捷、整体性好等特点而得到广泛的应用于桥梁施工过程中,但同时也伴随着一个日趋突出的问题一支架倒塌问题,近年来,一些地区多次发生施工过程中钢管支架倒塌的重大工程事故,造成人员和财产的巨大损失,产生了恶劣的社会影响,因此,有必要对桥梁支架进行进一步的深入研究。 1.2国内外研究现状 牛津大学编制了计算脚手架稳定特征值程序且有不少国家已在不同程度上规定了考虑材料进入弹塑性的方法,同时也考虑了初始缺陷及风荷载的影响。日本曾对门式钢管脚手架结构进行了试验分析,并编制了安全技术规程。他们主要从单跨入手,对单层,2层,3层,5层进行了试验分析,得到了基本的压屈形态及极限承载力,同时还给出了计算单榀门架压屈承载力的方法。 英国的Godley比较了二维模型和三维模型对计算脚手架刚度的影响程度,指出节点半刚性的考虑对脚手架动力特性研究的重要性。后来,Godley在计算脚手架系统时进行了二阶几何非线性分析并考虑使用节点非线性模型。美国的Weesner和Jones对四种不同形式的高度为5米的承重脚手架进行了极限承载力试验研究并与利用有限元软件ANSYS得到的脚手架特征值屈曲荷载和几何非线性分析结果加以分析对比,认为几何非线性分析得到的极限承载力数值低于特征值屈曲荷载,但与试验数值相近。

基于ANSYS的支架稳定性分析

基于ANSYS 的支架稳定性分析 摘要: 随着大跨度桥梁在我国西南大山大河地区的高速发展,超高的桥梁支架在工程建设中的应用也日益广泛,这种细长结构的稳定性问题与强度问题同样重要,有时甚至起控制作用,因此对此类支架进行稳定性分析是十分必要的。 本文利用有限元分析软件ANSYS 建立了扣件式钢管支架的计算模型,通过对比不同支撑搭设方式下支架的极限承载力,对扣件式支架结构体系中支撑的作用进行了分析。主要内容有: 1.在ANSYS 有限元软件中建立分析支架结构的合理模型,并验证模型的正确性。 2.利用所建立的有限元模型,分析此类支架结构体系的失稳形式和其中支撑的作用。 关键词:扣件支架,稳定性,有限元分析,力学模型

目录 第1章绪论 1.1 研究目的和意义 1.2 国内外研究现状及分 析 第2章ANSYS中的屈曲分 析2.1 屈曲分析的概念 2.2 特征值屈曲分析 2.3 非线性屈曲分析 第3章支架结构体系在ANSYS 软件中的实现3.1 ANSYS 中的单元模型 3.2 材料的本构关系 第4章扣件式钢管支架体系中支撑作用分析第5章结论和建议参考文献

第 1 章绪论 1.1研究目的和意义 一般地,可以把建筑物的生命周期分为三个阶段施工建造阶段、正常使用阶段和维修加固阶段。研究人员及设计工程师把大量的努力用在如何保障建筑物在正常使用阶段安全可靠的工作上。虽然施工建造阶段存在大量的未知不定性, 但在该方面的研究工作却相对较少。对于一般性建筑物来说, 建造时间一般为一到两年, 其使用寿命大致为五十年左右, 然而, 据统计。事故绝大多数发生在建筑施工阶段, 其中桥梁支架、模板架这些临时辅助施工设施的坍塌是事故发生的主要原因。可见,对施工过程中桥梁支架体系的研究是一项必要、迫切和重要的工作。 钢管支架大致可分为固定式组合支架、移动式支架和吊支架三大类, 其中固定式组合支架又包括钢管支架和框式支架两大类。本文主要介绍的扣件式钢管支架由钢管和扣件组成、具有加工简便、搬运方便、通用性强等特点, 已成为当前我国使用量最大、应用最普遍的一种支架,占支架使用总量的左右, 在今后较长时间内, 这种支架仍占主导地位。但是, 这种支架的安全保证性较差, 施工工效低, 不能满足高层建筑施工的发展需要。 在钢管支架不断完善和发展的同时, 桥梁支架以其施工简便快捷、整体性好等特点而得到广泛的应用于桥梁施工过程中, 但同时也伴随着一个日趋突出的问题一支架倒塌问题,近年来,一些地区多次发生施工过程中钢管支架倒塌的重大工程事故,造成人员和财产的巨大损失, 产生了恶劣的社会影响,因此,有必要对桥梁支架进行进一步的深入研究。 1.2国内外研究现状牛津大学编制了计算脚手架稳定特征值程序且有不少国家已在不同程度上规定了考虑材料进入弹塑性的方法, 同时也考虑了初始缺陷及风荷载的影响。日本曾对门式钢管脚手架结构进行了试验分析,并编制了安全技术规程。他们主要从单跨入手,对单层,2 层,3 层,5 层进行了试验分析,得到了基本的压屈形态及极限承载力,同时还给出了计算单榀门架压屈承载力的方法。 英国的Godley 比较了二维模型和三维模型对计算脚手架刚度的影响程度,指出节点半刚性的考虑对脚手架动力特性研究的重要性。后来,Godley 在计算脚手架系统时进行了二阶几何非线性分析并考虑使用节点非线性模型。美国的Weesner和Jones 对四种不同形式的高度为5 米的承重脚手架进行了极限承载力试验研究并与利用有限元软件ANSYS得到的脚手架特征值屈曲荷载和几何非线性分析结果加以分析对比,认为几何非线性分析得到的极限承载力

基于ANSYS Workbench的出风面板卡扣结构强度分析及应用

基于ANSYS Workbench的出风面板卡扣结构强度分析及应用 发表时间:2017-10-19T15:50:41.847Z 来源:《防护工程》2017年第16期作者:陈珠秀王振勇陈诚陈荣华 [导读] 对比公司现有空调面板卡扣装配结构可以发现:结构除了在尺寸上各有所区别之外。 珠海格力电器股份有限公司广东珠海 519070 摘要:应用ANSYS Workbench软件对空调面板的卡扣装配进行强度分析,直接生成计算结果云图,直观显示其最大应力,通过比较不同结构卡扣受力优劣,检验其设计的合理性。避免在包装跌落实验中因为卡扣强度不足,导致卡扣断裂,零件失效。该方法对产品结构强度优化设计,提高产品质量有一定指导意义。 关键词: 卡扣;应力分析;ANSYS Workbench结构强度 引言 空调柜机在长途运输以及搬运过程中不可避免出现颠簸和磕碰,常发现出风面板卡扣断裂现象,经常有客户反馈出风面板与后板间隙大,拆机发现卡扣有断裂,出风面板没拉紧后板导致间隙增大,导致质量问题。为避免该类问题,柜内机空调产品量产前进行一系列包装跌落等实验验证,在跌落和跳跃踩踏实验中,发现出风面板卡扣有断裂;由于出风面板的卡扣是产品关键性结构,卡扣的断裂不仅影响产品装配外观,还影响产品结构强度甚至产品性能;当柜内机产品进行顶部超高跌落,出风面板受冲击向下进行滑移运动,而侧板、后板、蒸发器等组件因为重力的惯性将向上进行滑移,在这种相对滑移的过程中,侧板的槽对卡扣的反冲击作用力,结果导致卡扣受力断裂[1]。在出风面板卡扣断裂情况中,主要是由此类跌落问题造成,此次也将以此类受力结果作为主要分析依据;本文应用ANSYSWorkbench软件对空调面板卡扣装配进行强度分析,指导产品设计。 1 出风面板卡扣建模 对比公司现有空调面板卡扣装配结构可以发现:结构除了在尺寸上各有所区别之外,卡扣开口模具滑块的出模也有所不同,分别是前端出模、内侧出模和后侧出模,模具斜顶出模各异,所以卡扣的结构强度在理论上有所区别,此次我们采用ANSYSWorkbench软件对三种不同出模方向卡扣装配结构强度进行对比分析,同时参考企标《注塑件设计规范》对加强筋结构的设计要求,同时为尽量避免卡扣装配结构在注塑过程中出现缩水问题,在加强筋结构设计时,出模料孔深度与卡扣侧向高度相同,确保卡扣外壁厚度相同,从而在注塑过程中避免严重缩水的情况出现,卡扣结构设计料厚需满足模具设计要求[2]。这里对表1几种结构形态进行有限元分析比较其优劣。 2 空调面板卡扣的ANSYS Workbench分析 2.1 空调面板卡扣三维模型建立 1) 利用ANSYS Workbench的DesignModeler模块包含的建模工具手动建立模型。该建模方式与AutoCAD建模类似,对处理一些简单的模型还是比较方便,复杂的模型处理比较费时间,但不建议在该软件中建模[3]。 2) 这里先在Creo2.0中建立卡扣三维模型,再转化为常用三维模型零件格式STP;为了提高在ANSYS中的求解速度, 复杂模型在导入前应删除对分析结果影响可忽略的特征, 如倒角、圆角等特征. 因为在ANSYS划分网格时,对于细小特征消耗的时间最多, 分析中对于不需关心的局部也会耗时过多,这里只建模卡扣装配以及卡扣附件模型的局小部分[4]。 2.2 施加载荷 为模拟产品在顶部在超高跌落中侧板与出风面板卡扣的受力状态,我们提取公司3种卡扣装配结构进行对比分析:这里设置固定卡扣的边界位移不变,设定一定相同的载荷大小和方向[5]。确定载荷与约束条件后,采用ANSYS软件对3种卡扣形态进行对比分析,通过分析我们得出以下分析结果,详见表2。 对比分析在相同载荷作用下3种方案发现:内侧出模的卡扣装配结构的最大应力值明显要比前端和后侧出模卡扣装配结构的最大应力值要小,即内侧出模时卡扣装配结构强度要比前端以及后侧出模的卡扣装配结构强度要强;故通过评估卡扣侧向受力响应应力结果尽量避免设计为前端出模和后侧出模。 总结两种受力过程结果,综合评估发现:出风面板卡扣模具滑块采用内侧出模时的整体结构强度要明显优于其他方向出模的结构强度。

Ansys受力分析(三维托架实体受力分析)

三维托架实体受力分析 ANSYS软件是融结构、流体、电磁场、声场和耦合场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS公司开发,它能与多数CAD软件接口,实现数据的共享和交换,如PRO/E、UG、I-DEAS、CADDS及AutoCAD等,是现代产品设计中的高级CAD工具之一。 题目:1、三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。 托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=0.3.试通过ANSYS输出其变形图及其托架的von Mises应力分布。 题目1的分析。先进行建模,此建模的难点在对V3的构建(既图中的红色部分)。要想构建V3,首先应将A15做出来,然后执行Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>V olumes命令,将所有的实体合并为一个整体。建模后,就对模型进行网格的划分,实行Main Menu>Preprocessor>Meshing>MeshTool,先对网格尺寸进行编辑,选0.1,然后点Meshing,Pick all进行网格划分,所得结果如图1。划分网格后,就可以对模型施加约束并进行加载求解了。施加约束时要注意,由于三维托架只是通过两个孔进行固定,故施加约束应该只是针对两孔的内表面,执行Main Menu>Solution>Define Loads>Apply>Structrual>Displacement>Symmetry B.C>On Areas命令,然后拾取两孔的内表面,单击OK就行了。施加约束后,就可以对实体进行加载求解了,载荷是施加在三维托架的最顶上的表面的,加载后求解运算,托架的变形图如图2。

相关文档
最新文档