高等数学(下册) 二重积分要点总结

高等数学(下册) 二重积分要点总结
高等数学(下册) 二重积分要点总结

高数积分总结doc

第四章 一元函数的积分及其应用 第一节 不定积分 一、原函数与不定积分的概念 定义1.设)(x f 是定义在某区间的已知函数, 若存在函数)(x F ,使得) ()(x f x F ='或 dx x f x dF )()(=,则称)(x F 为)(x f 的一个原函数 定义2.函数 )(x f 的全体原函数C x F +)(叫做)(x f 的不定积分,,记为: ?+=C x F x x f )(d )( 其中 )(x f 叫做被积函数 x x f d )(叫做被积表达式 C 叫做积分常数 “ ?”叫做积分号 二、不定积分的性质和基本积分公式 性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即 ()?==' ? x x f x x f x f x x f d )(d )(d )(d )(;. 性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即 ?+=+=?'C x f x f C x f x x f )()(d ,)(d )(或 性质3. 非零的常数因子可以由积分号内提出来,即 ?≠=?)0(d )(d )(k x x f k x x kf . 性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即 []??±=?±x x g x x f x x g x f d )(d )(d )()( 基本积分公式 (1)?+=C kx x k d (k 为常数) (2)C x x x ++= ?+1 1 1d μμμ(1-≠μ) (3)C x x x +=?ln d 1 (4)? +=C e dx e x x (5)? +=C a a x a x x ln d (6)?+=C x x x sin d cos (7)? +-=C x x x cos d sin (8)?+=C x x x tan d sec 2 (9)?+-=C x x x cot d csc 2 (10)?+=C x x x x sec d tan sec (11)?+-=C x x x x csc d cot csc (12)?++=C x x x x tan sec ln d sec (13)+-=C x x x x cot ln d csc (14)C x x +=arctan d 1

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

高等数学二重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

高等数学微积分总结

积 分 整个高数课本,我们一共学习了不定积分,定积分,重积分(二重,三重),曲线积分(两类),曲面积分(两类).在此,我们对 积分总结,比较,以期同学们对积分有一个整体的认识. 一、不定积分 不定积分是微分的逆运算,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种 方法(两类换元,分部积分,有理函数积分等) 二、定积分 1.定义式: ()b a f x dx ? 2.定义域:一维区间,例如[,]a b 3.性质:见课本P 229-P 232 特殊:若 1f =,则()b a f x dx b a =-?,即区间长度. 4.积分技巧:奇偶对称性. 注意:定积分中积分变量可以任意替换即()()b b a a f x dx f y dy =? ?,而不定积分不具有这种性质. 5.积分方法:与不定积分的方法相同. 6.几何应用: 定积分的几何意义: ()b a f x dx ? 表示以()f x 为顶与x 轴所夹区域面积的代数和(注意如()0f x <,则面积为负); 其他应用:如 ()f x 表示截面积,则积分为体积;平面弧长 (b a f x ? 等. 三、二重积分 1.定义式: (,)xy D f x y d σ ?? 2.定义域:二维平面区域 3.性质:见下册课本P 77 特殊: 若 1f =,则(,)xy D f x y dxdy S =?? ,即S 为xy D 的面积. 4.坐标系: ①直角坐标系: X 型区域,Y 型区域 ②极坐标系:适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定θ的范围,再确定r 的范围. 5.积分技巧:奇偶对称性(见后),质心; 6.几何应用: 二重积分的几何意义:若(,)0f x y ≥,则(,)xy D f x y dxdy ?? 表示以(,)f x y 为顶以xy D 为底的曲顶柱体体积; 其他应用:求曲面(,)z z x y =的面积xy D ?? 四、三重积分 1.定义式 (,,)f x y z dv Ω??? 2.定义域:三维空间区域; 3.性质:与二重积分类似; 特殊: 若 1f =,则(,,)f x y z dv V Ω =???,其中V 表示Ω的体积. 4.坐标系: ①直角坐标系:投影法,截面法(一般被积函数有一个自变量,而当该变量固定时所得截面 积易求时采用) ②柱坐标系:积分区域为柱形区域,锥形区域,抛物面所围区域时可采用; ③球坐标系:积分区域为球域或与球面相关的区域时,确定自变量范围时,先θ,后?,最后 r . 5.积分技巧:奇偶对称性,变量对称性(见后),质心等. 6.应用: (,,)f x y z 表示密度,则(,,)f x y z dv Ω ???为物体质量.(不考虑几何意义) 五、第一类曲线积分

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

高等数学习题详解-第8章二重积分

习题8-1 1. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)D m x y d μσ=??. 2. 试比较下列二重积分的大小: (1) 2()D x y d σ+??与3()D x y d σ+??,其中D 由x 轴、y 轴及直线x +y =1 围成; (2) ln()D x y d σ+??与2 ln()D x y d σ+??????,其中D 是以A (1,0),B (1,1), C (2,0)为顶点的三角形闭区域. 解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()D D x y d x y d σσ+≥+????. (2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2 ln()[ln()]D D x y d x y d σσ+≥+???? 习题8-2 1. 画出积分区域,并计算下列二重积分: (1) ()D x y d σ+??,其中D 为矩形闭区域:1,1x y ≤≤; (2) (32)D x y d σ+??,其中D 是由两坐标轴及直线x +y =2所围成的闭

区域; (3) 22()D x y x d σ+-??,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区 域; (4) 2 D x y d σ??,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0; (5) ln D x y d σ??,其中D 为:0≤x ≤4,1≤y ≤e ; (6) 22D x d σy ??其中D 是由曲线11,,2 xy x y x ===所围成的闭区域. 解:(1) 111 111()()20.D x y d dx x y dy xdx σ---+=+==????? (2) 222 200 (32)(32)[3(2)(2)]x D x y d dx x y dy x x x dx σ-+=+=-+-????? 2232022 20[224]4.33 0x x dx x x x =-++=-++=? (3) 32 2 2 2 2 2 2 002193()()()248y y D y x y x d dy x y x dx y dy σ+-=+-=-????? 43219113 .9686 0y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称, 所以20.D x yd σ=?? (5) 44 201041ln ln (ln ln )2(1)2110 e D e e e x yd dx x ydy x y y y dx x e σ-==-==-?????.

同济六版高等数学(下)知识点整理

第八章 1、 向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、 两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k ) =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、 二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转) )

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

考研数学:高数重要公式总结(基本积分表)

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研数学:高数重要公式总结(基本积 分表) 考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正确解答。凯程小编总结了高数中的重要公式,希望能帮助考研生更好的复习。 其实,考研数学大多题目考查的还是基础知识的运用,难题异题并不多,只要大家都细心、耐心,都能取得不错的成绩。考研生加油哦!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *010 2()(), ()x x f x F x x x f x ≤?=? >?; *0 0()(),x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()m a x (,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x + →=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=,

高数积分总结

高数积分总结 一、不定积分 1、不定积分的概念也性质 定义1:如果在区间I 上,可导函数F (x )的导函数为f(x),即对任一I x ∈,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上的原函数。 定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f (x )(或者f(x)dx )在区间I 上的不定积分,记作 ?dx x f )(。 性质1:设函数f(x)及g(x)的原函数存在,则 ???+=+dx x g dx x f dx x g x f )()()]()([。 性质2:设函数f(x)的原函数存在,k 为非零常数,则 ??=dx x f k dx x kf )()(。 2、换元积分法 (1)第一类换元法: 定理1:设f(u)具有原函数,)(x ?μ=可导,则有换元公式 ) (])([)(')]([x d f dx x x f ? μμμ??=??=。

例:求?xdx 2cos 2 解 ????=?=?=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得 ?+=C x xdx 2sin 2cos 2 (2)第二类换元法: 定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设 )(')]([t t f ψψ具有原函数,则有换元公式 ,] )(')]([[)() (1 x t dt t t f dx x f -=??=ψ ψψ 其中)(1 x -ψ是)(t x ψ=的反函数。 例:求? >+)0(2 2 a a x dx 解 ∵t t 2 2sec tan 1=+, 设 ??? ??<<-=22 tan ππ αt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+, 于是 ? ??==+tdt dt t a t a a x dx sec sec sec 222 ∴C t t a x dx ++=+?tan sec ln 2 2 ∵a a x t 2 2sec += ,且0tan sec >+t t ∴1222222)ln(ln C a x x C a a x a x a x dx +++=+??? ? ? ?++ =+? ,

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

高等数学中有理分式定积分解法总结

由十个例题掌握有理分式定积解法 【摘要】 当被积函数为两多项式的商 () () P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结 【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分 两个多项式的商 () () P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式. 1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式. 例1.2 422 23 1 x x dx x +++? ()222 2 2131 x x x dx x ++-=+? 解 原式 2 2 2212311 x x dx dx dx x x =+-++??? ()42 2222 2 22 222223321.11 311 31 13111 31 arctan x x dx x x x x dx x x x dx dx x x dx dx x x dx dx dx x x x x C +++-=+=-+? ?=-- ?+?? =-++=--+?????????例 解 原式

3 24arctan 3 x x x C = +-+ 总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如: 2221111x dx dx x x ? ?=- ?++?? ?? 对于真分式 () () P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和: ()()P x Q x ()()()() 1 212P x P x Q x Q x =+,上述过程称为 把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、() () 1k P x x a -、 () () 22 l P x x px q ++等三类函数,则多项 式的积分容易求的 2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分 2.1 类型一 ()m k ax b dx cx +? 例2.1.1 () 3 2 1x dx x -? 322 331 =x x x dx x -+-?解 原式 211 =33xdx dx dx dx x x -+-???? 211 =332x x In x C x -+++ 总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数, 然后利用常见积分公式进行运算 2.2 类型二 () k m cx dx ax b +?

《高等数学》-各章知识点总结——第1章

第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有 |x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞ →lim 或xn →a (n→∞). (2)函数极限的定义 设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε , 那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为 A x f x x =→)(lim 0 或f (x )→A (当x →x0).( 或lim ()x f x A →∞ =) 类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作 00 lim ()(lim ())x x x x f x A f x A - +→→==或 显然有0 lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?== 如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞ →+∞ ==或 显然有lim ()lim ()lim ())x x x f x A f x f x A →∞ →-∞ →+∞ =?== 2、极限的性质 (1)唯一性 若a x n n =∞ →lim ,lim n n x b →∞ =,则a b = 若0() lim ()x x x f x A →∞→=0() lim ()x x x f x B →∞→=,则A B = (2)有界性 (i)若a x n n =∞ →lim ,则0M ?>使得对,n N + ?∈恒有n x M ≤

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

相关文档
最新文档