有序介孔碳的制备

有序介孔碳的制备
有序介孔碳的制备

Surface and Pore Structures of CMK-5Ordered

Mesoporous Carbons by Adsorption and Surface

Spectroscopy

Hans Darmstadt,*,?Christian Roy,?Serge Kaliaguine,?Tae-Wan Kim,?and

Ryong Ryoo?

De′partement de Ge′nie Chimique,Universite′Laval,Que′bec,Qc,G1K7P4,Canada,and National Creative Research Initiative Center for Functional Nanomaterials and Department of Chemistry(School of Molecular Science BK21),Korea Advanced Institute of Science and

Technology,Daejeon,305-701,Korea

Received June17,2002.Revised Manuscript Received May20,2003

Ordered mesoporous carbons(OMCs)were synthesized in the pore system of SBA-15 aluminosilicates with different Si/Al ratios ranging from5to80.Nitrogen adsorption was used to characterize the pore structure of the aluminosilicates and of the OMCs,whereas the OMC surface chemistry was studied by X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy.The results indicate that the physicochemical properties of the OMCs depended significantly on the acid catalytic activity of the aluminosilicate frameworks,which comes along with the variation of Si/Al ratios.The OMC pore widths and order of the graphene layers followed the same trend as the catalytic activity of the aluminosilicates,whereas the concentration of extraframework species in the aluminosilicates indirectly influenced the mechanical properties of the OMCs.The reasons for this behavior are discussed.

Introduction

Porous carbons are widely used as absorbents and catalyst supports.In many applications,such as adsorp-tion of large hydrocarbons,carbons with mesopores of defined dimensions are desirable.Presently,most car-bon adsorbents are synthesized by carbonization of a carbon-containing feedstock material followed by partial oxidation(activation).Unfortunately,by this synthesis route carbons with narrow mesopore size distribution are difficult to produce.However,by a molding process in an appropriate matrix,ordered mesoporous carbons (OMCs)can be produced in a convenient way.1-4A suitable OMC precursor is furfuryl alcohol adsorbed in the pore system of mesostructured silica,where it can be easily polymerized.The polymerization product is carbonized at elevated temperatures.In the final step of the synthesis,the OMC is liberated by dissolution of the silica matrix with hydrofluoric acid or sodium hydroxide.If during the synthesis the entire pore system of the matrix is filled with the carbon product,the structure of the OMC can be described as a network of carbon rods.However,it is also possible to form the carbon product only on the pore walls of the matrix,without filling the entire pore.This procedure was applied in the present work.The produced OMCs consist of a network of nanopipes.These OMCs have three different kinds of pores:(i)mesopores inside the nano-pipes,(ii)mesopores between the nanopipes,and(iii) micropores,which correspond to defects in the walls of the nanopipes.

In the present work,OMCs were synthesized by polymerization of furfuryl alcohol in SBA-15alumino-silicate templates with Si/Al ratios ranging from5to 80.The polymerization of furfuryl alcohol is normally acid catalyzed.The addition of an acid catalyst is re-quired for the successful synthesis of OMCs when the synthesis is performed in nonacidic silica.5However, this is unnecessary if the synthesis is performed in an acidic aluminosilicate matrix as in the present work. Hydroxyl groups adjacent to aluminum in the alumi-nosilicate framework can catalyze the polymerization reaction as Br?nsted acid sites.The strength and the concentration of these sites depend on the aluminum content of the framework.Furthermore,a significant portion of the aluminum can be present as extraframe-work species.The corresponding Lewis acid sites may also catalyze the furfuryl alcohol polymerization.This short discussion illustrates that the Si/Al ratio of the matrix may have an important influence on the proper-ties of the OMCs.

The introduction of aluminum not only influences the acidity of the matrix,it may also affect its pore struc-ture.Therefore,in the present work,the matrixes used

*To whom correspondence should be addressed.Telephone:+1(418) 6562131,Ext.6931.Fax:+1(418)6565993.E-mail:hans.darmstadt@ gch.ulaval.ca,or rryoo@webmail.kaist.ac.kr.

?Universite′Laval.

?Korea Advanced Institute of Science and Technology.

(1)Ryoo,R.;Joo,S.H.;Jun,S.J.Phys.Chem.B1999,103,7743.

(2)Joo,S.H.;Choi,S.J.;Oh,I.;Kwak,J.;Liu,Z.;Terasaki,O.; Ryoo,R.Nature2001,412,169.

(3)Jun,S.;Joo,S.H.;Ryoo,R.;Kruk,M.;Jaroniec,M.;Liu,Z.; Ohsuna,T.;Terasaki,O.J.Am.Chem.Soc.2000,122,10712.

(4)Ryoo,R.;Joo,S.H.;Kruk,M.;Jaroniec,M.Adv.Mater.2001, 13,677.

(5)Kruk,M.;Jaroniec,M.;Ryoo,R.;Joo,S.H.J.Phys.Chem.B 2000,104,7960.

3300Chem.Mater.2003,15,3300-3307

10.1021/cm020673b CCC:$25.00?2003American Chemical Society

Published on Web07/10/2003

for the OMC synthesis were characterized by nitrogen adsorption.The OMCs were studied by X-ray photo-electron spectroscopy(XPS),static secondary ion mass spectroscopy(SIMS),and nitrogen adsorption.By the two surface spectroscopic methods,only information on the external surface is obtained.The“internal”surface in the OMCs pores is much larger than the external surface.However,the thickness of the walls of the nanopipes is smaller than the analysis depth of XPS (~50?).Thus,in this special case,XPS can give structural information on the internal surface to a considerable extent.Furthermore,it was shown in previous studies on similar OMCs that the surface spectroscopic results are representative for the entire surface.6,7

Experimental Section

Materials.Aluminum-free SBA-15silica was synthesized as reported elsewhere.8Different amounts of aluminum were introduced by slurrying the silica with an aqueous solution of AlCl3for approximately30min.Then,the SBA-15alumino-silicates were dried at80°C and subsequently calcined in air.9

The Si/Al molar ratio ranged from5to80.For the synthesis of CMK-5OMCs the pores of the aluminosilicates were filled at room temperature with furfuryl alcohol by an incipient wetness method.The amount of furfuryl alcohol corresponded to the pore volume of the aluminosilicate.The loaded alumi-nosilicate was heated to95°C to polymerize the furfuryl alcohol.Then,the SBA-15template containing the carbon source was heated with increasing temperature to900°C under vacuum.Finally,the OMCs were liberated by treatment with hydrofluoric acid.2In the case of a Si/Al ratio of20,the carbon synthesis was repeated three times in all,to check the reproducibility(samples CMK-5(20a),(20b),and(20c)).

Characterization.An Autosorb-1MP apparatus from Quantachrome(Boynton Beach,FL)was used for the nitrogen adsorption experiments at-196°C.Prior to the adsorption experiments,samples corresponding to a total surface area of approximately50m2were outgassed at200°C until the pressure increase in the closed sample cell was lower than1.3 Pa/min.A typical final dynamic pressure was0.13Pa.For the OMCs,the adsorption isotherm of each carbon sample was recorded in two experiments:an experiment for very low relative pressures(P/P0from10-6to10-3)and a second experiment for higher pressures(P/P0from10-3to0.995).To reduce the dead volume during the high-pressure experiment, a glass rod was placed in the sample cell.The low-pressure experiments were performed without a glass rod,because at very low pressures the rod strongly hinders the diffusion of nitrogen to the adsorbent.The experimental error due to the larger dead volume can be neglected at low pressures.In the case of the aluminosilicates,only one experiment at higher pressures was performed(P/P0from10-3to0.995).The BET equation10was used to calculate the apparent surface area from data obtained at P/P0between0.05and0.15.The cross sectional area of the nitrogen molecule was assumed to be16.2?2.Because the BJH method11underestimates the mesopore width,the mesopore size distribution of the aluminosilicates was calculated with a modified BJH method12using desorption data.The volume of micro-and mesopores in the aluminosili-cates was determined by a comparison plot method.12Because of the special pore structure of the CMK-5OMC(cylindrical mesopores inside the nanopipes,with irregularly shaped mesopores between them)accurate adaptation of the modified BJH method would be difficult.Thus,despite its shortcomings, for the OMCs the“traditional”BJH method was used.The total volume of micro-and mesopores was calculated from the amount of nitrogen adsorbed at P/P0)0.95,assuming that adsorption on the external surface was negligible as compared to adsorption in pores.13

Elemental analysis of the aluminosilicates for Si/Al ratios was performed with inductively coupled plasma(ICP)emission spectroscopy(Shimadzu,ICPS-1000III).The powder X-ray diffraction(XRD)spectra were measured at room temperature using a Rigaku MultiFlex instrument(Cu K R source,2kW). TEM images were obtained with a Philips CM20instrument operated at100kV.For observation,a suspension of OMC in ethanol(99.9vol%)was dropped on a carbon microgrid. Details of the XPS and SIMS experiments have already been published elsewhere.7,14,15

Results and Discussion

Structure of the Al-SBA-15Aluminosilicates. The X-ray diffractograms of the SBA-15aluminosilicates showed intense narrow diffraction lines,indicating highly ordered structures(Figure1).The Si/Al ratio had only a minor influence on the X-ray diffractograms.It should be considered,however,that the aluminosilicates contained aluminum in both tetrahedral and octahedral coordination.9The tetrahedrally coordinated aluminum participates in the formation of the aluminosilicate framework,whereas octahedrally coordinated alumi-num may be located on the pore walls,inside the pores, or at the external surface,depending on the alumination

(6)Darmstadt,H.;Roy,C.;Kaliaguine,S.;Choi,S.J.;Ryoo,R.Pore Structure and Graphitic Surface Order of Mesoporous Carbon Molec-ular Sieves by Low-Pressure Nitrogen Adsorption.In Extended Abstracts,Carbon2001,International Conference on Carbon,July14-19,2001,Lexington,KY.

(7)Darmstadt,H.;Roy,C.;Kaliaguine,S.;Choi,S.J.;Ryoo,R. Carbon2002,40,2673.

(8)Kruk,M.;Jaroniec,M.;Ko,C.H.;Ryoo,R.Chem.Mater.2000, 12,1961.

(9)Jun,S.;Ryoo,R.J.Catal.2000,195,237.

(10)Brunauer,S.;Emmet,P.H.;Teller,E.J.Am.Chem.Soc.1938, 60,309.

(11)Barrett,E.P.;Joyner,L.G.;Halenda,P.P.J.Am.Chem.Soc. 1951,73,373.

(12)Lukens,W.W.;Schmidt-Winkel,P.;Zhao,D.;Feng,J.;Stucky,

https://www.360docs.net/doc/b45319630.html,ngmuir1999,15,5403.

(13)Rodriguez-Reinoso, F.;Molina-Sabio,M.;Gonzalez,M.T. Carbon1995,33,15.

(14)Darmstadt,H.;Su¨mmchen,L.;Roland,U.;Roy,C.;Kaliaguine, S.;Adnot,A.Surf.Interface Anal.1997,25,245.

(15)Darmstadt,H.;Cao,N.-Z.;Pantea,D.;Roy,C.;Su¨mmchen, L.;Roland,U.;Donnet,J.-B.;Wang,T.K.;Peng.C.H.;Donnelly,P.J. Rubber Chem.Technol.2000,73,

293.

Figure1.X-ray diffractograms of SBA-15aluminosilicates with different Si/Al ratios;diffractograms shifted vertically.

Surface and Pore Structures of OMCs Chem.Mater.,Vol.15,No.17,20033301

methods and the Si/Al ratios.These amorphous extra-framework aluminum species did not cause new X-ray diffractions to appear.

In general,aluminosilicate frameworks become less stable with increasing aluminum content.16Conse-quently,the concentration of extraframework aluminum species increases with decreasing Si/Al ratio.This was also observed for aluminosilicates synthesized with the same technique as the samples of the present work.9Extraframework species in the pore system may narrow the pore diameter or block sections of the pore system.The mesopore volume and surface area of the alumino-silicates were indeed found to decrease monotonically with decreasing Si/Al ratio.The sample with the highest Si/Al ratio (80)had a mesopore volume of 0.94cm 3/g,whereas for the sample with the lowest Si/Al ratio (5)a considerably lower mesopore volume of 0.70cm 3/g was found (Table 1).The pore size distribution depended much less on the Si/Al ratio.For the sample with a Si/Al ratio of 80a narrow pore size distribution with a maximum at widths of 75to 80?was observed (Figure 2).With decreasing Si/Al ratio,the widths of the mesopores changed very little.Only for the most alu-minum-rich sample (Si/Al ratio of 5),in addition to the above-mentioned pores,a small concentration of nar-rower pores with widths of 60to 75?was found.

The differences between the pore widths are too small to explain the differences in the pore volumes.There-fore,the observations discussed above may be attributed mainly to the presence of extraframework species that could occupy the entire cross section of some parts of the mesopores.In some aluminosilicates,extraframe-work aluminum species located at the external surface result in a decrease of the pore volume.For the samples of the present study,however,the presence of significant amounts of extraframework aluminum species on the external surface could be ruled out.The concentration of aluminum on the surface,as determined by XPS,was smaller (higher Si/Al ratio)or only slightly higher as compared to that of the bulk (Table 1).

The Si/Al ratio will not only influence the concentra-tion of extraframework aluminum species,but the catalytic activity of the aluminosilicate has to be con-sidered as well.It was already mentioned that the polymerization of furfuryl alcohol -the OMC precursor -is catalyzed by the acid sites of the aluminosilicate.The aluminosilicate acidity strongly depends on the Si/Al ratio,particularly in the case of mesoporous materi-als.9Usually,the strength of acid Br?nsted sites in-creases with increasing Si/Al ratio.This was also observed for aluminosilicates prepared by the same procedure as the Al -SBA-15of the present study.9However,when the Si/Al ratio increases the increasing strength of individual sites is accompanied by a de-creased concentration of acid sites.Therefore,in many reactions the dependence of the catalytic activity of aluminosilicates on the Si/Al ratio can be described by a volcano curve.17,18First,the catalytic activity increases with increasing Si/Al ratio,at a medium Si/Al ratio a maximum value is reached.For higher Si/Al ratios,the catalytic activity decreases.This discussion illustrates that one can expect a significant influence of the Si/Al ratio of the matrix on the chemical nature of the OMCs.Structure of the OMC.It was already mentioned that the structure of the OMCs studied in this work can be described as a network of interconnected nanopipes.The high mesoscopic structural order of the pores in and between these pipes is confirmed by the low-angle X-ray diffractograms,which show five Bragg lines (presented for a representative sample in Figure 3).The corre-sponding TEM image (Figure 4)also confirmed the highly ordered arrangement of the carbon nanopipes.2Chemical Nature of the Carbon on the OMC Surface.The basic building units of OMCs are graphene layers.However,their arrangement differs from that of graphite (see below).The general characteristics of the XPS carbon spectra of OMCs were already presented in detail elsewhere.15Thus,only features related to the order of the graphene layers at the OMC surface are discussed here.The carbon spectra were dominated by an intense asymmetrical so-called graphite peak (C 1)and by a smaller πf π*peak (C 5).Such spectra are typical for carbonaceous solids consisting mainly of graphene layers such as carbon blacks 15and carbon fibers.19The full width at half-maximum (fwhm)of the

(16)Breck,D.W.Zeolite Molecular Sieves,Structure,Chemistry,and Use ;John Wiley &Sons:New York,1974;p 483.

(17)Jacobs,P. A.Carboniogenic Activity of Zeolites ;Elsevier:Amsterdam,The Netherlands,1977;p 85.

(18)Maxwell,I.E.;Stork,W.H.J.Hydrocarbon Processing with Zeolites.In Introduction to Zeolite Science and Practice;Van Bekkum,H.,Flanigen,E.M.,Jansen,J.C.,Eds.;Elsevier:Amsterdam,The Netherlands,1991;p 571.

(19)Desimoni,E.;Casella,G.I.;Salvi,A.M.;Cataldi,T.R.I.;Morone,A.Carbon 1992,30,527.

Table 1.Properties of the SBA-15Aluminosilicates Si/Al ratio pore volume (cm 3/g)bulk surface a

specific surface area (m 2/g)

pore width (?)micropores

mesopores 59.861974b 0.010.7010730740.030.822023.8779750.050.8640866760.070.9380

70.6

889

76

0.07

0.94

a

Determined by XPS.b In addition to pores with a width of 74?,a small concentration of pores with a width of 63?was

found.

Figure 2.Pore size distribution of SBA-15aluminosilicates with different Si/Al ratios.

3302Chem.Mater.,Vol.15,No.17,2003Darmstadt et al.

graphite peak and the area of the πf π*peak depend on the order of the graphene layers.With increasing order of the graphene layers,the graphite peak becomes narrower and the intensity of the πf π*peak in-creases.20,21Even when enlarged,the XPS carbon spectra of the OMCs appeared similar (Figure 5).Fitting of the spectra,however,revealed small but significant differences.The fwhm of the graphite peak first de-creased with increasing Si/Al ratio of the matrix.A minimum value was found for a Si/Al ratio of 20.For higher Si/Al ratios the fwhm increased again (Table 2).Thus,the observations of the present work suggest that the graphene layers of the OMC synthesized in a matrix with a “medium”Si/Al ratio of 20had the highest order.This finding is also supported by the dependence of the πf π*peak area on the Si/Al ratio.For the OMCs,the largest πf π*peak was found for the sample synthesized in the matrix with a Si/Al ratio of 20(Table 2),indicating that the graphene layers of this OMC had the highest order.To verify the XPS results,static SIMS was used as a second surface spectroscopic method for the analysis of the order of the graphene layers.

Chemical Nature of the Carbon on the OMC Surface Studied by SIMS.The static SIMS spectra of the OMCs showed intense peaks of C 2-and C 2H -ions (Figure 6).In the case of carbons materials consisting

of graphene layers,most of the C 2H -ions originate from the edge of graphene layers,whereas the most impor-tant contribution to the C 2-peak arises from the interior of the graphene layer.14,22The ratio of the C 2H -/C 2-peaks is therefore a measure for the inverse size of the graphene layers.A small C 2H -/C 2-ratio indicates large graphene layers and a low concentration of defects in the form of terminating edges.This was confirmed by the SIMS spectra of reference compounds.For graphi-tized carbon black s the reference compound for well-ordered,large graphene layers s a small C 2H -/C 2-ratio of 0.17was found,whereas in the case of 3,4-benzo-fluoranthene s consisting of five condensed aromatic rings s a large C 2H -/C 2-ratio of 2.20was observed (Table 2).

For the OMCs of the present study,the C 2H -/C 2-ratios first decreased with increasing Si/Al ratio of the matrix,reached a minimum for a Si/Al ratio of 20,and then increased again (Table 2).This observation con-firms the XPS finding that the order of the graphene

(20)Morita,K.;Murata,A.;Ishitani,A.;Muragana,K.;Ono,T.;Nakajima,A.Pure Appl.Chem.1986,58,456.

(21)Kelemen,S.R.;Rose,K.D.;Kwiatek,P.J.Appl.Surf.Sci.1992,64,167.

(22)Albers,P.;Deller,K.;Despeyroux,B.M.;Prescher,G.;Scha ¨fer,A.;Seibold,K.J.Catal.1994,150,

368.

Figure 3.Low-angle X-ray diffractogram of CMK-5(10)

OMC.

Figure 4.TEM image of CMK-5(10)

OMC.

Figure 5.Carbon XPS spectra of OMCs;spectra enlarged to 10%of maximum height.

Table 2.Parameter for the Order of the Graphene Layers

on the OMC Surface

XPS

SIMS sample

fwhm graphite peak eV relative area of the πf π*peak %

C 2H -/C 2-ratio CMK-5(5) 1.20 6.30.69CMK-5(10) 1.19 6.80.48CMK-5(20a) 1.187.20.42CMK-5(40) 1.21 6.10.48CMK-5(80) 1.22 6.00.69CMK-3(900°C)a 1.187.70.51CMK-3(1100°C) 1.118.30.15CMK-3(1600°C)

1.049.20.07graphitized carbon black b 0.828.90.173,4-benzo-fluoranthene

n.d.c

n.d.

2.20

a

Carbonization temperature.7b Carbopak Y.c n.d.Not deter-mined.

Surface and Pore Structures of OMCs Chem.Mater.,Vol.15,No.17,20033303

layers depends on the Si/Al ratio of the matrix and that the OMC with the most ordered graphene layers was formed in the matrix with a medium Si/Al ratio.This is explained as follows:Upon heating,the OMCs underwent several reactions (e.g.,aromatization and condensation)that increased the size and order of its graphene layers.At least a portion of these reactions was catalyzed by the acid sites of the aluminosilicate matrix.It was already mentioned that the catalytic activity of aluminosilicates often could be described by a volcano curve where the highest activity is observed at medium Si/Al ratios.The dependence of the order of the graphene layers on the Si/Al ratio is therefore an example for a volcano curve,as in the matrix with a medium Si/Al ratio the OMC with most ordered graphene layers was formed.

In an earlier work,similar CMK-3OMCs were studied by XPS and SIMS.6,7Both CMK-3and CMK-5are synthesized in a SBA-15matrix.The most impor-tant difference is that CMK-3consists of carbon rods as opposed to the nanopipes of CMK-5.For CMK-3OMCs carbonized at the same temperature as the CMK-5of the present study (900°C),similar SIMS C 2H -/C 2-ratios and XPS peak parameter were found.7The CMK-3OMCs were synthesized in a nonacidic silica by polymerization of sucrose in the presence of sulfuric acid,whereas an acidic matrix and furfuryl alcohol was used in the synthesis of CMK-5.Yet,despite the quite different synthesis procedures,the order of the graphene layers in CMK-3and CMK-5OMCs were similar.This indicates that the temperature was the most important parameter for the order of the graphene layers.By heat-treatment of CMK-3at temperatures above 900°C samples with a much more ordered graphene layers were obtained (Table 2).This should also be the case for the CMK-5OMCs.

Graphitic Order of the OMCs.The XRD diffrac-tograms of the OMCs showed very broad peaks at 2θ~22.3°and 43.7°(Figure 7).These signals correspond to the 001and 101diffractions of graphite.However,as compared to graphite,the lines were shifted to much higher 2θvalues.Consequently,the lattice spacings were considerably larger as compared to those of

graphite (d (002)~0.405vs 0.336nm;d (101)~0.207vs 0.203nm).These observations indicate that the graphitic order of the OMCs was low.In some domains,the graphene layers were arranged in a roughly parallel,turbostratic fashion,although these domains were relatively small.Considering the OMC is formed in the constrained space of the aluminosilicate pores,it is understandable that the arrangement of the graphene layers in the OMCs is different from that in graphite.It is probable that the graphene layers are parallel to the axis of the nanopipes.

Surface Chemistry of the OMC and Elemental Composition of the OMC Surface.It was shown above that the order of OMC graphene layers depends on the Si/Al ratio of the matrix.This should also have consequences of non-carbon elements present at the edges of the graphene layers or in amorphous regions between these layers.The elemental surface composi-tion was determined by XPS.Carbon was the most abundant element on the OMC surface.In addition to this element,oxygen,fluorine,and silicon were detected (Table 3).The fluorine is attributed to organic fluorine compounds,whereas oxygen was present in organic and inorganic environments (see below).The presence of silicon indicated that the treatment with hydrofluoric acid did not entirely remove the matrix from the OMC.Silica was indeed detected in the corresponding detail spectra.The elemental composition depended on the Si/Al ratio of the aluminosilicate matrix.With increasing Si/Al ratio,the concentration of the non-carbon elements first decreased.A minimum was reached for the OMC synthesized in a matrix with a Si/Al ratio of 20.

For

Figure 6.Static SIMS spectra of OMCs;negative

ions.

Figure 7.X-ray diffractograms of SBA-15aluminosilicates with different Si/Al ratios;diffractograms shifted vertically.

Table 3.Elemental Composition Atom %of the CMK-5

OMC Surface,as Determined by XPS

sample C O Si F CMK-5(5)91.9 4.5 1.4 2.2CMK-5(10)94.6 3.4 1.0 1.0CMK-5(20a)97.0 2.10.40.5CMK-5(40)92.9 4.7 1.2 1.2CMK-5(80)

90.1

5.7

2.2

2.0

3304Chem.Mater.,Vol.15,No.17,2003Darmstadt et al.

higher Si/Al ratios,the concentration of non-carbon elements increased again.This is explained as follows.The graphene layers with the highest order were observed for the OMC synthesized in the matrix with highest activity (Si/Al ratio of 20).It is reasonable to assume that,during the carbonization heat-treatment,this matrix also catalyzed most efficiently the removal of oxygen from the OMC.Furthermore,graphene layers with a higher order and a smaller concentration of defects had a smaller tendency to react with fluorine during destruction of the matrix with hydrofluoric acid (see below).

Chemical Nature of the Fluorine on the OMC Surface.The XPS fluorine spectra showed peaks at binding energies (BEs)of approximately 686.9eV (Figure 8).Peaks at this position were observed for carbon -fluorine groups,such as in fluorinated carbon blacks.23Peaks of other fluorine compounds,which could reasonably be expected on the OMC surface,are found at other BEs.For example,the BE of fluorine ions is approximately 684.0eV.23,24The spectra of the present work suggest therefore that organic fluorine groups were formed during the removal of the aluminosilicate matrix with hydrofluoric acid.The formation of carbon -fluorine groups is remarkable for two reasons.First,fluorination of carbon is usually carried out with elemental fluorine.Second,if fluorination is performed without a catalyst,elevated temperatures are re-quired.25It is therefore assumed that upon removal of the matrix by the hydrofluoric acid,very reactive sites on the OMC surface became accessible.These sites are so active that they react with hydrofluoric acid even under “unfavorable”conditions.

Chemical Nature of the Silicon on the OMC Surface.The XPS silicon spectra showed doublets with

BEs of approximately 102.9eV for the 2p3/2peak (Figure 9).This BE is typical for silicon atoms in silicates and silica.26,27The BE of silicon atoms with bonds to carbon atoms is considerably lower (101.0eV).24No indication for a peak at this BE was found in the spectra.It can therefore be concluded that small quanti-ties of nondissolved matrix were left on the surface of the OMCs.In addition to the doublet at 102.9eV,small doublets at higher BEs (106.6eV)were observed in the spectra.Doublets at such high BEs were found for silicon atoms with bonds to electron withdrawing groups (e.g.,F and EtO).24Thus,these doublets may indicate species at an intermediate stage of the destruction of the aluminosilicate framework,such as partly fluori-nated silica species (SiO x F y ).

Structure of the Ordered Mesoporous Carbons.It was shown above that the Si/Al ratio of the alumi-nosilicate matrix influenced the structure of its pore system and the chemical nature of the OMCs.This in turn should influence the structure of the OMCs.

The influence of the aluminosilicate Si/Al ratio on the OMC structure is first presented for the nitrogen adsorption isotherms.For the three OMC samples synthesized in the matrixes with the lowest Si/Al ratios (5,10,and 20)the amount of adsorbed nitrogen after filling all micro and mesopores was similar (Table 4,as shown for two samples in Figure 10).However,even when adsorption was similar there were differences in the shapes of the isotherms.For example,for P/P 0from 0.2to 0.6the isotherm of CMK-5(20c)was more “curved”than that of CMK-5(5).These differences are attributed to the different pore structures of the OMCs (see below).Higher adsorption was found for the OMCs synthesized in high Si/Al ratio matrixes (Si/Al of 40and 80).

For very low pressures (P/P 0<2×10-5),however,adsorption on the OMCs depended only very little on the Si/Al ratio of the matrix (only shown for three

(23)Nanse,G.;Papirer,E.;Fioux,P.;Moguet,F.;Tressaud,A.Carbon 1997,35,175.

(24)Wagner, C. D.;Riggs,W.M.;Davis,L.E.;Moulder,J.F.;Muilenberg,G. E.Handbook of X-ray Photoelectron Spectroscopy .Perkin-Elmer Corporation:Eden Prairie,MN,1979.

(25)Root,M.J.;Dumas,R.;Yazami,R.;Hamwi,A.J.Electrochem.Soc.2001,148,A339.

(26)Barr,T.L.J.Vac.Sci.Technol.A.1991,9,1793.(27)Kaliaguine,S.Stud.Surf.Sci.Catal.1996,102,

191.

Figure 8.Fluorine XPS spectra of OMCs;spectra normalized to the same

height.

Figure 9.Silicon XPS spectra of OMCs;spectra normalized to the same height.

Surface and Pore Structures of OMCs Chem.Mater.,Vol.15,No.17,20033305

samples in Figure 11).Because at these low pressures most of the adsorption takes place in micropores,this indicates that concentration and widths of the micro-pores in the different OMCs were similar.

More insight on the reasons for the differences between the adsorption isotherms can be obtained from the pore size distribution (PSD).The PSD showed the presence of two types of pores (Figure 12).Because the PSD was relatively wide and the peaks were overlap-ping,the distribution was fitted to two peaks as shown in Figure 13for one sample.This allowed the width and the volume of the two types of mesopores to be deter-mined with better precision.The pores with widths between 34and 37?were assigned to the voids inside the nanopipes,whereas the pores with width 25to 30?were assigned to the voids between the nanopipes.2

The pore width distribution showed a much wider distribution for the pores between the nanopipes as opposed to the pores inside the nanopipes.With increas-ing Si/Al ratio,the width of the pores between the nanopipes first increased and then decreased again (Table 4).When the OMC is formed inside the matrix,its initial network structure depends on the structure of the matrix.As outlined above,the most important structural differences between the five aluminosilicate matrixes was the presence of different amounts of extraframework species in the pores.The widths of the matrix pores,however,were similar (Figure 2).Thus,most probably the initial external diameter of the OMCs nanopipes differed only little.

Table 4.Characteristics of the CMK-5OMCs

specific pore volume cm 3/g

pore width ?

mesopores

sample SBA-15Si/Al ratio

specific surface area m 2/g

between the nanopipes

inside the nanopipes total between the nanopipes

inside the nanopipes CMK-5(5)5204026.236.3 1.85 1.370.49CMK-5(10)10201027.435.3 1.85 1.380.45CMK-5(20)a 20184029.535.1 1.82 1.210.54CMK-5(40)40245026.236.6 2.26 1.580.67CMK-5(80)

80

2280

25.0

36.4

2.03

1.38

0.62

a

Average

values.

Figure 10.Nitrogen adsorption isotherms on CMK-5OMCs synthesized in aluminosilicates with different Si/Al ratios.For better representation,the isotherm of CMK-5(5)was hori-zontally shifted by

0.1.

Figure 11.Nitrogen adsorption isotherms on CMK-5OMCs synthesized in aluminosilicates with different Si/Al ratios (logarithmic P/P 0

scale).

Figure 12.Pore size distribution of CMK-5OMCs synthe-sized in aluminosilicates with different Si/Al

ratios.

Figure 13.Fit of the OMC pore size distribution to two peaks.

3306Chem.Mater.,Vol.15,No.17,2003

Darmstadt et al.

It was observed earlier for CMK-3OMCs that during the carbonization heat treatment the network structure changed.6Upon heating of CMK-3the order of its graphene layers increases.This increase causes the carbon rods to shrink.Because of this shrinkage the distance between them-the mesopores-becomes wider.It is probable that during carbonization of the CMK-5OMCs of the present study a similar shrinkage of the nanopipes occurred.As discussed above,the order of the graphene layers of the CMK-5OMCs depended on the Si/Al ratio of the matrix.It first increased with increasing Si/Al ratio and then decreased again.Since the widest pores between the nanopipes were observed for the sample with the highest order of the graphene layers(CMK-5(20)),it is assumed that nanopipes consisting of graphene layers with the highest order experience the most important shrinkage.The shrink-age also influenced the widths of the pores inside the nanopipes.The narrowest pores were found for CMK-5 (20),whereas the pores in the OMCs synthesized in matrixes with higher or lower Si/Al ratio were wider (Table4).

Up to now all differences between the OMC were explained(directly or indirectly)by the different cata-lytic activity of the matrixes.However,the matrixes also differed by the amount of extraframework species in their pores(see above).In pore sections where the extraframework species were present,they blocked the entire cross section of the pores.Thus,it is very likely that in these sections no carbon was formed.The corresponding OMCs should therefore consist of nano-pipes with“missing”sections.This structure may have advantages when the OMCs are used in adsorption applications.As compared to a structure with long intact nanopipes,diffusion to adsorption sites inside the nano-pipes should be much faster when“missing”sections provide additional entrances into the nanopipes. These“missing”sections also influence the volume of the pores inside the nanopipes.One would expect that the sample with the narrowest pores(CMK-5(20))also had the lowest pore volume.The pore volume inside the nanopipes of CMK-5(20)was indeed lower as compared to OMCs synthesized in matrixes with higher Si/Al ratio.However,it was larger than the pore volume of the OMCs synthesized in matrixes with lower Si/Al ratio (Table4).This observation can be related to extraframe-work species in the matrix.Their concentration in-creased with decreasing Si/Al ratio.Consequently,in the OMCs synthesized in low Si/Al matrixes there were more“missing”sections in the nanopipes and the volume inside the nanopipes was smaller than expected. The extraframework species in the aluminosilicates also may negatively affect some OMC properties.The micropore volume of the aluminosilicate drastically decreased with decreasing Si/Al ratio(Table1),most probably due to a blockage of the micropores entrances by extraframework species.Micropores in the alumino-silicate are important for the stability of the OMC synthesized.The micropores provide connections be-tween the main mesoporous channels that are arranged in a two-dimensional hexagonal packing.Thus,in the corresponding OMCs,the carbon rods formed inside the micropores connect the larger carbon nanopipes formed in the mesopores.2It is evident that these carbon rods are very important for the mechanical stability of the OMC.Consequently,one has to expect poorer mechan-ical stability for OMC synthesized in an Al-SBA-15 matrix with a small micropore volume.

The very high surface areas indicate that the OMCs are attractive adsorbents.Mesopore volumes of up to2 g/cm3were found.For some samples,the BET surface areas were well above2000m2/g.Even the lowest value was above1800m2/g(Table4).It is well-known that the BET equation overestimates the specific surface area for porous samples.28However,even when this is taken into account these surface areas are still very high for mesoporous carbons.

Summary and Conclusions

Ordered mesoporous carbon(OMC)can be synthe-sized in the pores of a SBA-15aluminosilicate by polymerization of furfuryl alcohol.The polymerization is catalyzed by the acid sites of the aluminosilicate.The basic building units of OMCs are graphene layers.In CMK-5carbon nanopipes are interconnected by nar-rower carbon rods.Because the catalytic activity of Al-SBA-15and its pore structure strongly depend on the Si/Al ratio,the Si/Al ratio also strongly influences the OMC properties.The aluminosilicate with a“medium”Si/Al ratio of20has the highest catalytic activity. During carbonization,the acid sites of the matrix also catalyze reactions,which increase the order of the graphene layers.Thus,the OMC with the highest order of the graphene layers is formed in the matrix with a Si/Al ratio of20.The increasing order of the graphene layers is accompanied by shrinkage of the nanopipes, which decreases the width of the pores inside the nanopipes and increases the width of the pores between the nanopipes.

The OMCs have very high BET surface areas(~2000 m2/g)and mesopore volumes(~2g/cm3).However, aluminosilicates with a low Si/Al ratio contain very few micropores.In these micropores,carbon rods are formed which link the nanopipes of the OMC.It is therefore assumed that OMCs synthesized in low Si/Al ratio aluminosilicates have low mechanical strengths.These results indicate that the OMC with the“best”properties for adsorption applications can be synthesized in an aluminosilicate with a high Si/Al ratio. Acknowledgment.We are grateful to Dr.W.Lukens for providing the program used for the calculation of the pore size distribution,to Dr.W.R.Beetz for sup-plying the graphitized carbon black,to Dr.A.Adnot for helpful discussion of the surface spectroscopic data,and to Dr.A.Schwerdtfeger for review of the manuscript. CM020673B

(28)Byrne,J.F.;Marsh,H.Porosity in Carbons:Characterization and Applications;Patrick,J.W.;Halsted Press:Chichester,UK,1995; p1.

Surface and Pore Structures of OMCs Chem.Mater.,Vol.15,No.17,20033307

介孔碳材料的合成及应用分析研究

介孔碳材料的合成及应用研究 李璐 (哈尔滨师范大学> =摘要> 综述了介孔碳材料的合成及应用.关键词: 介孔碳。合成。应用 0 引言 介孔碳是近年来发现的一类新型非硅介孔材料, 它是由有序介孔材料为模板制备的结构复制品. 由于其具有大的比表面( 可高达2500m2# g- 1 >和孔容(可达到2. 25 cm3 # g- 1 >,良好的导电性、对绝大多数化学反应的惰性等优越的性能, 且易通过煅烧除去, 与氧化物材料在很多方面具有互补性, 使其在催化、吸附、分离、储氢、电化学等方面得到应用而受到高度重视. 1 介孔碳材料的合成 介孔碳的制备通常采用硬模板法, 选择适当的碳源前驱物如葡萄糖、蔗糖乙炔、中间相沥青、呋喃甲醇[ 1]、苯酚/甲醛树脂[ 2]等, 通过浸渍或气相沉积等方法, 将其引入介孔氧化硅的孔道中, 在酸催化下使前驱物热分解碳化, 并沉积在模板介孔材料的孔道内, 用NaOH或HF溶掉SiO2 模板,即可得到介孔碳. 以下介绍几种介孔碳材料的合成方法及性质.

1. 1 CMK- 1 Ryoo首次用MCM- 48为模板 合成了介孔碳材料(CMK- 1>. 由于MCM- 48具有两套不相连通的 孔道组成, 这些孔道将变成碳材料的固体部分, 而MCM- 48中氧 化硅部分则会变成碳材料的孔道. 因此CMK- 1 并不是MCM- 48 真 正的复制品, 而是其反转品. 在脱除MCM- 48 的氧化硅过程中, 其结晶学对称性下降[ 3] , 后 续的研究表明与所用的碳前驱物有关, 其中一个具有I41 /a对称性[ 4] .1. 2 CMK- 3 使用SBA- 15 合成六方的介 孔碳( CMK 3>, 由于二维孔道的SBA- 15孔壁上有微孔, 因 图1 孔道不相连的的模板(MCM- 41或1234K 下 焙烧的SBA - 15> 制备的无序碳材料( A>。孔道相 连的模板( 1173K温度以下焙烧的SBA - 15> 制备 的有序介孔碳材料CMK- 3( B>

关于有序介孔炭CMK

关于有序介孔炭CMK-3从水溶液中吸附铀的研究 摘要: 有序介孔碳CMK-3在水溶液中铀的去除和获取方面的能力已经进行了探索。CMK-3的制构特性是以使用小角X射线衍射和N2吸附脱附,BET比表面积,孔体积和孔径是1143.7平方米/克,1.10立方厘米/克和3.4 nm为特征的。了对不同的实验参数,例如溶液的pH值,初始浓度,接触时间,离子强度和温度对吸附的影响进行研究。CMK-3显露出铀在最初pH=6,接触时间为35分钟时吸附能力最高。吸附动力学也通过伪二阶模型很好地描述了。吸附过程可用朗格缪尔和Freundlich等温线很好地定义。热力学参数,ΔG°(298K),ΔH°,ΔS°分别定为-7.7, 21.5 k J mol -1和98.2 J mol-1 K-1,这表明CMK-3在自然界朝向铀吸附进程是可行的,自发的和吸热的。吸附的CMK-3可以有效地为U(VI)的去除和获取,通过0.05 mol/L的HCL再生。从1000ml包含铀离子的工业废水的u(VI)的完全去除可能带有2g CMK-3。 关键词:有序介孔碳CMK-3 吸附铀 前言:处理放射性物质产生低中高水平的放射性废物的许多活动要求用先进的技术处理[1,2]。在过去的几十年,考虑到潜在的环境健康威胁和不可再生的核能源资源的双重意义,各种各样的技术,例如溶剂萃取[3,4],离子交换[5],和吸附已经从放射性废物的铀的去除和获取得到了发展[6]。最近,吸附由于其效率高、易于处理,基于碳质材料例如活性炭[7-8],碳纤维[11],因为他们比有机换热器树脂有更高热量和辐射电阻,与熟悉的无极吸附剂相比有更好的酸碱稳定性,因此逐渐应用于这一领域[8]。 另外,作为碳质材料家族的新成员,有序介孔碳CMK-3是通过纳米铸造技术合成的[12],因为它独特的特征如高表面积,规整的介孔结构,窄的孔径分布,大孔隙体积,以及优异的化学和物理稳定性,已经引起了广泛关注[13,14]。这些特征使CMK-3在生物医药,电化学,能量储存和环境领域变得更加有吸引力[15–17]。CMK-3及其复合材料已经用于去除VE [18], VB12 [19],苯酚[20],溶菌酶[21],铅[22]和汞[23]。然而,据我们所知,到目前为止,还没有报道CMK-3用于水系统吸附铀酰离子。因而,这将是有趣的事,去探讨以上所提到的CMK-3用于环境的可能性。 本次调查的目的是研究通过硬模板法制备的有序介孔炭CMK-3的从水溶液除铀的效率。各种技术被用来描述CMK-3的结构和构造特性,包括小角X射线衍射(SAXRD)和N2 吸附解吸。各种实验参数包括溶液的pH值,离子强度,接触时间,最初的浓度,温度,以及对吸附动力学,等温吸附模型,热力学进行了研究。另外,CMK-3再生的方法,和工业废水除铀的努力也进行了研究。 实验 材料 从南京科技Co., Ltd获得有序介孔硅。U(VI)储备液的制备,1.1792 g U3O8加入到一个100ml的烧杯,10ml的盐酸(q=1.18 g/mL),2 mL 30 %的过氧化氢也加入到此烧杯。溶液被加热直到它几乎是干的,然后10毫升盐酸(q= 1.18克/毫升)被添加。溶液被转入到一个1000ml的容量瓶,用蒸馏水稀释到刻度来产生1 mg/mL 的铀原液。铀溶液通过稀释原液到根据实验要求的适当的量来制备。所有的其他试剂都是AR级。 有序介孔碳CMK-3的制备

介孔材料常用的表征方法[1]

介孔吸附材料常用的表征方法 摘要:介孔材料具有优越的性能和广泛的应用价值,成为各个领域研究的热点。本文简单介绍了介孔材料在吸附方面的应用以及常用的表征方法,如XRD、电镜分析、热重分析、BET法等。 关键词:介孔材料、吸附、XRD、BET、电镜分析 介孔材料是一种具有多种优良性质,应用广泛的新型材料。新型介孔吸附材料具有吸附容量大,选择性高,热稳定性好等[1]优点,成为研究的热点。对于气体的分离,如CO2的吸附(缓解温室效应)具有重要意义。 1.介孔吸附材料的简介 1.1介孔材料 介孔材料是一种多孔材料,IUPAC分类标准规定孔径2.0~50nm的为中孔,也就是介孔[2]。随着不断深入的研究,从最初的硅基介孔材料到现在各种各样的非硅基介孔材料被制备出来,并广泛应用于催化剂制备,新型吸附材料等行业。最初的介孔材料源于沸石,沸石是指多孔的天然铝硅酸盐矿物。这类矿物的骨架中含有结晶水,骨架结构稳定,在结晶水脱附或吸附时都不会被破坏掉[2]。后来人们根据沸石的性质结合实际需要相继合成了人造沸石(分子筛)。目前以SiO2为基础合成的介孔材料成为国际众多领域研究的热点。主要的研究方法是通过浸渍的方法在分子筛上负载相应的有机物分子,优化分子筛的表面特性,如较高的吸附容量,好的选择性及较多的活性位等,在生物材料,吸附分离,催化,新型复合材料等领域具有重要的应用价值和前景。 介孔材料具有独特的有点[3,4]:①孔道高度有序,均一性好,孔道分布单一,孔径可调范围宽。②具有较高的热稳定性和水热稳定性。③比表面积大,孔隙率高。④通过优化可形成具有不同结构、骨架、性质的孔道,孔道形貌具有多样性。 ⑤可负载有机分子,制备功能材料。 1.2新型吸附材料 上世纪90年代,Mobil Oil公司以二氧化硅作为主要氧化物,用长链烷基伯胺作模板剂,水热法制备出含有均匀孔道,孔径可调,呈蜂窝状的MCM-41介孔材料。它具有孔道呈六方有序排列、大小均匀、孔径可在2~10nm内连续调节,比表面积大等特点[2],对于开发新型的吸附剂具有重要意义。目前,研究的热点是由负载改性的介孔材料制备出选择性高、吸附容量大、热稳定性好、再生容易的复合吸附材料。研究较多的是用有机胺改性的MCM-41和SBA-15介孔材料制备高效的CO2吸附剂[5]。研究发现二异丙醇胺通过浸渍的方法负载到MCM-41和SBA-15上可显著提高其吸附容量,XRD图像说明负载前后的吸附剂孔径结构并未发生改变,负载不同的胺可得到不同的吸附效果[6]。 2.常用的表征方法

掺N的有序石墨对氧还原反应有很高的电催化活性

掺N的有序石墨对氧还原反应有很高的电催化活性 阴极氧还原反应是影响燃料电池性能的重要因素之一。因此高效的氧还原电催化剂的成产对燃料电池的商业化是至关重要的。长时间以来铂基材料都作为氧还原反应的高效催化剂;但是,燃料电池的广泛应用受到这种金属的短缺和昂贵的限制。近来,用于氧还原反应的便宜金属和非金属催化剂作为可替代铂基催化剂的材料而引起人们的广大兴趣。特别是,掺氮的碳材料,作为典型的非金属催化剂,对氧还原反应表现出非常好的电催化活性,这是由于氮的孤对电子与石墨烯的π体系配合而成的独特的电子结构。通常,掺氮碳材料可以通过过渡态金属大环化合物或金属盐与含氮前体物质混合物的高温分解来制备。在这些过程中,过渡态金属不仅在石墨骨架的形成方面起着重要作用,还在氮活性位置的引入方面起着重要作用。缺点就是要使用昂贵的前体物质和需要额外的步骤来移除其中的金属物质。此外,包裹在石墨骨架中的金属纳米粒子经过移除过程后仍然存在。掺在碳材料中的氮原子是否真的具有催化活性仍然存在争议。因此,制备具有极好的电化学性能而没有任何金属组分的氮掺杂石墨材料是一个很急迫的问题。这些材料不仅有望成为氧还原反应的催化剂,还有助于阐明氮掺杂碳材料的结构、组成和电化学性能之间的关系。 于此,我们报道了基于非金属纳米铸造技术的新型氮掺杂有序介孔石墨组的制备。有序介孔二氧化硅(SBA-15)当作模板,N,N’-(2,6-二异丙基苯基)-3,4,9,10-四甲酰二亚胺(PDI)作为碳前体。氮掺杂有序介孔石墨组的独特性质,包括高表面积和含适量氮的石墨骨架,使得其对氧还原反应具有很高的电催化活性、极好的长时间稳定性和抗交叉效应的能力。这些性质优于商业化的铂-碳催化剂。据我们所知,在氧还原反应中这些优秀的电化学性能很少出现在非金属催化剂中。由于不含金属的制备过程中,电催化活性完全归功于氮掺杂有序介孔石墨组中氮的掺入。比较制备时用不同的碳前体和在不同的温度下热分解形成的有序介孔石墨组,可以看出石墨像氮原子一样在氧还原反应中具有很好的电化学性能。 氮掺杂有序介孔石墨组由PDI/SBA-15的复合物在600,750和900℃不同的温度下碳化合成时具有不同的组成成分;因此制备的材料分别记作PDI-600,

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

有序介孔炭的制备与表征_王小宪

有序介孔炭的制备与表征① 王小宪1,李铁虎1,冀勇斌1,金 伟1,林起浪2 (1.西北工业大学材料学院,陕西西安 710072; 2.福州大学材料学院,福建福州 350002) 摘 要:采用溶胶-凝胶技术,用蒸发诱导自组装(EISA)工艺制备了表面活性剂/氧化硅复合体。通过原位氧化炭化法直接制备了介孔炭材料,讨论了炭化温度对炭/氧化硅及介孔炭孔隙结构的影响。利用透射电镜(TEM)、氮物理吸附-脱附、扫描电镜(FESEM)及热重分析(TGA)对材料的形貌结构性能进行了分析。结果表明,复合体具有高度有序的六方相结构孔道,随着炭化温度的提高,复合体的孔径分布呈现先增大后减小的变化过程,而介孔炭孔径分布逐渐减小。介孔炭颗粒由类纳米碳管团簇组成,孔隙有序程度高,内部无缺陷。 关 键 词:介孔炭,纳米复合体,炭化,纳米碳管 中图分类号:TB383 文献标识码:A 文章编号:1000-2758(2008)06-0787-05 介孔炭具有大比表面积、大孔容和均一孔径分布的特点,因此在选择性催化、储能材料及光电磁等方面都有着广泛的应用。通常制备介孔炭方法有物理化学活化法[1]、有机聚合物炭化法[2]、共混聚合物炭化法[3]、铸型炭化法[4]等,其中物理化学活化法是制备活性炭的常用方法,该方法制备的介孔炭孔径小且分布范围大。有机聚合物炭化法和共混聚合物炭化法虽可制备出分布范围小的介孔炭,但无法实现有序性的要求。近年来,铸型炭化法是能控制介孔炭孔径的有效方法,即选用具有一定结构的模板材料,通过反相复制获得介孔炭产品。从微观角度来说,介孔炭是模板的负副本,即模板的孔壁转化为介孔炭的孔隙,因此对模板孔壁的有效控制就是对介孔炭的孔径控制,而模板的形成受到多方面的影响。在水热合成体系中,改变制备模板的陈化温度[5]可以使介孔炭在3.0~ 5.2nm之间变化,混合表面活性剂法[6]可使介孔炭在2.2~ 3.3nm之间变化。但是利用水热合成体系制备模板本身就需要1~3天时间,然后经过液相浸渍、炭化、酸洗等步骤才能获得介孔炭产品,这个过程费时、费力,不利于介孔炭的发展与应用。 本文在非水体系条件下,结合蒸发诱导自组装工艺和溶胶-凝胶技术,以占据氧化硅介孔体的表面活性剂为碳源前驱体。通过原位氧化炭化法直接制备出了具有六方结构的介孔炭材料,研究发现,模板与有机物的炭化过程中的相互作用和炭化温度是影响介孔炭孔径的重要因素。该方法缩短了制备周期,节约了制备成本,同时还可以对介孔炭的孔径进行有效的控制。 1 实验部分 1.1 复合体的制备 复合体的制备过程如下:将1g P123(聚乙烯醚-聚丙烯醚-聚乙烯醚,EO30PO70EO30,南京威尔化工公司)完全溶解于10g无水乙醇中;在搅拌的条件下加入2g的正硅酸已酯(AR,北京化学试剂有限公司,简称TEO S),0.9g H2O,0.1g HCl(2M),室温下继续搅拌2h,获得溶胶;将所得溶胶置于25℃,湿度为30~60%的环境中自然蒸发,待完全蒸发后获得表面活性剂/氧化硅的复合体。 1.2 介孔炭的制备 在1g上述复合体中加入4g去离子水和1g浓硫酸,混合均匀;将混合物置于热处理炉中在100℃和160℃分别处理3~6h以充分氧化,所得样 2008年12月第26卷第6期 西北工业大学学报 Jour na l o f No r th wester n Poly technical U niv ersity Dec.2008 V o l.26No.6 ①收稿日期:2007-10-11基金项目:国家自然科学基金(50472081)与高等学校博士点基金(20060699028)资助 作者简介:王小宪(1980-),西北工业大学博士生,主要从事新型炭材料的研究。

碳纳米材料综述

碳纳米材料综述 课程:纳米材料 日期:2015年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene) 的出现到1991年碳纳米管(carbon nanotube,CNTs) 的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim 研究组的报道使得石墨烯( Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

氮掺杂石墨烯海绵的可控合成及其 在锂硫电池中的应用

Material Sciences 材料科学, 2019, 9(4), 361-367 Published Online April 2019 in Hans. https://www.360docs.net/doc/b45319630.html,/journal/ms https://https://www.360docs.net/doc/b45319630.html,/10.12677/ms.2019.94048 Controllable Synthesis of N-Doped Reduced Graphene Oxide Sponge and Its Application in Li-S Batteries Huizhen Zhang, Meng Feng, Hongbin Feng Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao Shandong Received: Apr. 1st, 2019; accepted: Apr. 15th, 2019; published: Apr. 22nd, 2019 Abstract In this study, N-doped reduced graphene oxide sponges (N-RGOS) with adjustable sizes and vari-ous morphologies were successfully fabricated by hydrothermal and pyrolysis methods, using melamine sponge as template for assisted assemble of GO. The N-RGOS@S composites were pre-pared by loading elemental sulfur on N-RGOS. The samples were characterized by XRD, TG, SEM and XPS. The electrochemical performance of N-RGOS@S as a cathode material for lithium-sulfur batteries was tested. The composites delivered a stable cyclic stability with a specific capacity of 549.8 mAh?g?1 maintained after 100 cycles at 0.1 C. And they also showed an excellent rate capa-bility that can reach 495.5 mAh?g?1 at 2 C. The excellent electrochemical performance is mainly at-tributed to the three-dimensional graphene network structure and nitrogen doping, which im-proves the conductivity of the electrode materials and hinders the diffusion of polysulfides during charging and discharging and reduces the shuttle effect. Keywords Assisted Assemble, Nitrogen-Doped Reduced Graphene Oxide, Lithium-Sulfur Battery, Cathode Materials 氮掺杂石墨烯海绵的可控合成及其 在锂硫电池中的应用 张慧珍,冯梦,冯红彬

氨基功能化介孔氧化硅材料的制备 2

氨基功能化介孔氧化硅材料的制备 摘要 介孔氧化硅材料由于其较大的孔容和比表面积,较好的生物相容性和无毒性等优点,受到越来越多研究者的关注。有机-无机介孔材料也称为PMOs(Periodic Mesoporous Organosilicas)是采用共缩聚的方法以桥联的有机硅酯作为硅源前体,将有机基团键合在材料的骨架中,可以使有机基团更均匀地分布在材料的骨架中并且不会堵塞孔道。PMOs 材料规则的孔道分布、可调的孔道微环境、丰富的有机基团等性质赋予了其潜在的应用前景,尤其在药物负载中显示了独特性能。双模型介孔材料(BMMs)是一种新型介孔材料,它具有双孔道结构:3 nm 左右的蠕虫状一级孔与10-30 nm左右的球形颗粒堆积孔。由于BMMs有别于单一孔道介孔材料,具有结构可控和粒度可控等许多独特性质,通过进一步表面改性,能够针对特定的药物分子,尤其是不溶性药物分子进行装载与可控释放,具有很好的专一性。 关键词:双模型介孔材料;氨基功能化;载药

Abstract Mesoporous silica materials due to its larger surface area, pore volume, advantages of good biocompatibility and non-toxic got more and more attention from researchers. Organic-inorganic mesoporous materials is also known as PMOs (Periodic Mesoporous Organosilicas) is using the copolycondensation method to bridging the silicone ester as a silicon source precursor, The organic group bonded in the skeleton material can make the organic groups more evenly distributed in the frame of material and will not block channel. PMOs material rules of channel distribution, adjustable pore micro environment, abundant organic groups leading to its potential application, especially shows the unique performancei n drug load. Bimodal mesoporous material (BMMs) is a new mesoporous material consisting of worm-like mesopores of 3nm as well as large inter-particles pores around 10-30 nm. Different from mesoporous materials with only one pore distribution, BMMs could realize the loading and controlled release of specific drug molecules, especially for the insoluble drugs, through surface modification, due to the unique characteristics such as the controllable structure and particles size. Keywords: Bimodal mesoporous material; Amino functionalization; drug

介孔材料概述

关于介孔材料的综述 人类社会的进步与材料科学的发展密切相关[ 1, 2 ],尤其是近几十年中,出现了许多具有特殊功能的新材料,其中介孔材料就是一种。介孔材料是指孔径为2. 0~50nm的多孔材料,如气凝胶、柱状黏土、M41S 材料。上世纪九十年代以来,有序介孔材料由于其特殊的性能已经成为目前国际上跨学科的研究热点之一[ 3 ]。从最初的硅基介孔材料到其他非硅基介孔材料,各种形貌与结构的介孔材料已制备出来[ 4 ]。目前有关介孔材料的研究还处于起步阶段,制备工艺、物理化学性质=质尚需进一步开展和改进。但是,由于它具有较大的比表面积,孔径极为均一、可调,并且具有维度有序等特点,因而在光化学、生物模拟、催化、分离以及功能材料等领域已经体现出重要的应用价值。有序介孔材料具有较大的比表面积,相对大的孔径以及规整的孔道结构,在催化反应中适用于活化较大的分子或基团,显示出了优于沸石分子筛的催化性能。有序介孔材料直接作为酸碱催化剂使用时,能够减少固体酸催化剂上的结炭,提高产物的扩散速度。另外,还可在有序介孔材料骨架中引入金属离子及氧化物等改变材料的性能,以适用于不同类型的催化反应。 一、介孔材料的概述 介孔材料是指孔径介于2-50nm,具有显著表面效应的多孔碳。由其定义可知,介孔材料不仅指孔径大小和纳米尺度,孔隙率和表面效应也是一个重要参数。介孔材料的平均孔径和孔隙率可在较大范围内变化,这取决于所研究的与表面有关的性能。对于具有介观尺度孔径

2-50nm的介孔固体,对应的临界表面原子分数大于20%,其最小孔隙率必须大于40%。一般,平均孔径越大,最小的孔隙率也越大。纳米颗粒复合的介孔碳的复合体系,是近年来纳米科学应用性越来越引人注目的前沿领域。例如,在水的净化处理中采用复合介孔碳可使净化效率大大提高,光电碳中使用复合介孔碳有利于新功能的发挥等等。 二、介孔材料的分类 按照化学组成分类,介孔碳一般可分为硅系和非硅系两大类。 1. 硅基介孔材料孔径分布狭窄,孔道结构规则,并且技术成熟,研究颇多。硅系材料可用催化,分离提纯,药物包埋缓释,气体传感等领域。硅基材料又可根据纯硅和掺杂其他元素而分为两类。进而可根据掺杂元素种类及不同的元素个数不同进行细化分类。杂原子的掺杂可以看作是杂原子取代了原来硅原子的位置,不同杂原子的引入会给材料带来很多新的性质,例如稳定性的变化、亲疏水性质的变化、以及催化活性的变化等等。 2. 非硅系介孔材料主要包括过渡金属氧化物、磷酸盐和硫化物等。如TiO2、Al2O3 、ZnS[5]、磷酸铝铬锆(ZrCrAlPO)和磷酸铝铬(CrAlPO)[6],它们一般存在着可变价态,有可能开辟介孔材料新的应用领域。由于它们一般存在着可变价态,有可能为介孔材料开辟新的应用领域,展示硅基介孔材料所不能及的应用前景。例如:铝磷酸基分子筛材料中部分P被Si取代后形成的硅铝磷酸盐

介孔碳材料

介孔碳材料:合成及修饰 关键词:嵌段共聚物,介孔碳材料,自组装,模板合成 许多应用领域对多孔材料的兴趣是由于他们的高比表面积和理化性质。传统的合成只能随机产生多孔材料,对超过孔径分布几乎是无法控制的,更不用说细观结构了。最新的突破是其它多孔材料的制备工艺,这将导致具有极高比表面积和有序介孔结构的介孔材料制备方法的发展。随着催化剂的发展,分离介质和先进的电子材料被用在许多科学学科。目前合成方法可归类为硬模板法和软模板法。这两种方法都是用来审查碳材料表面功能化取得的进展。 1.简介 多孔碳材料是无处不在和不可或缺的,应用于许多的现在科学领域。多孔碳材料被广泛用作制备电池电极、燃料电池、超级电容。作为分离过程和储气的吸附剂,应用于许多重要的催化过程。介孔碳材料的用途在不同的应用中有着直接的联系,不仅仅关系到其优良的物理和化学性能,如导电、热导率、化学稳定性和低密度,而且关系到其广泛的可用性。近年来碳技术已经取得了很大进展,同时也通过开发和引进新的合成技术改变现有的制备方法。多孔碳材料根据其孔径可分为微孔(孔径<2nm);中孔(2nm<孔径<50nm);大孔(孔径>50nm)。传统的多孔碳材料,例如活性炭和碳分子筛,被热解和物理或是被有机体化学活化合成的。有机体包括在高温下的煤、风、果壳、聚合物[1-3]。这些碳材料通常在中孔和微孔范围内有广泛的孔径分布。活性碳和碳分子筛已大批量生产并被广泛用于吸附、分离和催化方面。 微孔碳材料综述的主要进展包括(a)合成碳材料(表面积高达3000m2g-1)[4,5]使用的氢氧化钾,(b)带有卤素气体的碳选择性反应可控制碳材料产生的微孔大小[6]。后一种方法使用碳化物为碳源,并且卤素气体选择性的除去金属离子。这种化学蚀刻法产生一个具有很窄的粒度分布的微孔。这些碳材料产生的微孔能提供高比表面积、大孔容、吸附气体和液体。尽管微孔材料被广泛应用在吸附分离和催化上,生产使用的方法遭到限制。活性炭微孔材料的缺点(a)由于空间限制规定小孔径使分子运输速度缓慢,(b)低电导率的产生是由于表面官能团的缺陷产生的,(c)多孔结构被高温或石墨化破坏。 为了克服上述这些限制努力寻求其他的合成方法,方法如下:(a)通过物理或组合物理/化学方法的高度活化,[1,7-9](b)碳前躯体碳化是热固性组成成分之一,也是热不稳定性成分,[10,11](c)催化剂辅助活化碳前驱体与金属(氧化物)或有机金属化合物,[9,12-14](d)碳化气凝胶或冷冻,[15,16](e)通过浸渍硬模板复制合成介孔碳,碳化和模板拆除。[17,18](f)自组装通过缩合和碳化使用软模板[19-21]。方法a之d只会导致介孔碳材料有广泛孔径分布(PSD)和可观微孔[9,22]。因此,这些方法都缺乏吸引力。 值得重新审查的是方法e和方法f,这两种方法与有良好控制孔径的介孔碳材料的合成有关联。方法e涉及预合成的有机或无机模板的使用,也被称为硬模板合成方法。这些模板主要是作为介孔碳的模具材料,并且没有明显的化学作用采取前体之间发生模板和碳化[23]。相应的多孔结构是由有明确定义的纳米结构模板预定的。反过来,方法f涉及软模板,通过生成有机分子自组装纳米结构。相应的孔径结构确定合成条件,如混合比、溶剂和温度。虽然该术语"软模板"尚未正式确定,软模板法在本次审查是指自组装模板。软模板法不同于有机自组装硬模板法,分子或基团被操纵在分子能级和被组织成纳米空间氢键或疏水/亲

有序介孔碳材CMK-3多少钱一克 有序介孔碳材CMK-3一克多少钱

有序介孔碳材CMK-3多少钱一克 有序介孔碳材CMK-3多少钱一克?这个问题还是比较受大家关心的。介孔碳是一类 新型的非硅基介孔材料,具有巨大的比表面积和孔体积。具有石墨化程度高,杂质低,介 孔发达,强度好,导电性能好等特点,CMK-3 介孔碳,有能有效降低成本,实现工业化。那么,有序介孔碳材CMK-3多少钱一克?性能特点有哪些?下面有先丰纳米简单的介绍 一番。 有序介孔碳材价格在市场上从几百到上千元的价格都有,详情请立即咨询先丰纳米。 介孔碳是传统活性炭的一次革命性提升,其原料来自石墨,通过电化学反应制备而得。由于碳的高生物相容性,使得唯有介孔活性碳可以用在医药、农肥、美容日用领域。 具有极高的比表面积、规则有序的孔道结构、狭窄的孔径分布、孔径大小连续可调等 特点,使得它在吸附、分离,尤其是催化反应中发挥作用。 有序介孔碳材CMK-3参数: 比表面积:≥900 m2/g 、孔体积:1.2-1.5 cm3/g 、孔径:3.8-4 nm 、微孔体积:0.29 cm3/g 有序介孔碳材CMK-3应用: 催化剂载体;电容器电极;药物负载;纳米反应堆;大分子吸附;生物传感器;储能 和储氢的载体

如果想要了解更多关于有序介孔碳材CMK-3的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

氮掺杂壳聚糖基活性炭及其制备方法

SooPAT 氮掺杂壳聚糖基活性炭及其制备 方法 申请号:201210464890.2 申请日:2012-11-19 申请(专利权)人大连理工大学 地址116024 辽宁省大连市高新园区凌工路2号 发明(设计)人邱介山凌铮肖南于畅张梦迪程晓伟 主分类号C01B31/08(2006.01)I 分类号C01B31/08(2006.01)I H01G11/34(2013.01)I 公开(公告)号102951636A 公开(公告)日2013-03-06 专利代理机构大连星海专利事务所 21208 代理人徐淑东

(10)申请公布号 CN 102951636 A (43)申请公布日 2013.03.06C N 102951636 A *CN102951636A* (21)申请号 201210464890.2 (22)申请日 2012.11.19 C01B 31/08(2006.01) H01G 11/34(2013.01) (71)申请人大连理工大学 地址116024 辽宁省大连市高新园区凌工路 2号 (72)发明人邱介山 凌铮 肖南 于畅 张梦迪 程晓伟 (74)专利代理机构大连星海专利事务所 21208 代理人徐淑东 (54)发明名称 氮掺杂壳聚糖基活性炭及其制备方法 (57)摘要 本发明提供了用生物质衍生物合成氮掺杂活 性炭。一种氮掺杂壳聚糖基活性炭,其以壳聚糖 为原料,活性炭的氮含量为2-8wt%,比表面积为 600~1100m 2/g ,孔径分布为0.46~1.5nm 。本 发明壳聚糖基氮掺杂活性炭是以壳聚糖为原料, 通过溶解及冷冻干燥,然后经高温碳化制备得到。 本发明通过溶解壳聚糖减弱壳聚糖分子间的作用 力,经冷冻干燥控制壳聚糖干凝胶的整体结构,增 大壳聚糖碳化产物的孔隙率和比表面积,得到具 有高比表面积的壳聚糖基氮掺杂活性炭。实现了 不消耗强酸强碱制备高性能活性炭的环境友好工 艺,避免了传统活性炭制备工艺中大量使用活化 剂和水等高成本且环境不友好的工序。同时,制备 壳聚糖基氮掺杂活性炭具有制备工艺简单,设备 简单易得等优点。 (51)Int.Cl. 权利要求书1页 说明书4页 附图1页 (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 1 页 说明书 4 页 附图 1 页

介孔碳CMK-3与氧化锌纳米粒子复合材料的合成、表征及其光电性能研究

介孔碳CMK-3与氧化锌纳米粒子复合材料的合成、表征及其光电性能研究 黄赟赟 中山大学化学与化学工程学院广州510275 摘要:介孔碳CMK-3是非硅系材料,其特有的组成与结构,加之高的比表面积、有序的孔径分布面,不但有利于传质,更易于主客体组装,使每单位物质有非常高的表面积和高浓度的活性点,与半导体量子点复合,有可能提高半导体的光电转换效率。本论文着重测试合成出来的ZnO/CMK-3纳米复合材料光电性能,主要通过紫外-可见光光谱、荧光光谱和光电流测试进行其性能的表征,研究其作为研发新型太阳能电池材料的可行性及其CMK-3对半导体ZnO量子点的光电性能影响。研究结果表明CMK-3特殊的介孔结构有助于提高半导体的光电转换效率,对研究新一代太阳能电池有重要意义。 关键词:介孔碳半导体量子点纳米复合物光电转换效率 1 前言 近些年来以碳基或硅基和半导体纳米化合物组成的光电转换材料制备的新型高效太阳能电池,开创了太阳能电池的新世纪。在以碳基和半导体纳米化合物组成的光电转化材料中,碳纳米管因具有独特的结构、纳米级的尺寸、高的有效比表面积等特点,以其为载体负载半导体纳米化合物的应用研究最为显著。美国的Prashant V. Kamat教授先后制备了SWCNTs/CdS, SWCNTs/TiO2, SWCNTs/SnO2 , SWCNTs/CdSe【11】等一系列纳米光电转化材料,并且通过对比试验验证了碳纳米管具有增大半导体光电流强度的性质。同时,Ryong Ryoo教授在2000年的J. Am. Chem. Soc【12】中报道了较碳纳米管具有均匀规整、纳米级的孔道结构,巨大的内比表面积以及三维网状结构等优点有序介孔碳CMK-3,之后在2001年的Nature中报道制备了在有序介孔碳上负载了高分散的金属铂,用于制备高效电极。Masaki Ichihara在2003年Adv .Mater中报道了有序介孔碳CMK-3和金属锂组成的可循环、高比电容值复合材料,它与SWCNTs与金属锂复合材料相比具有更高的比电容值,经研究发现是因为CMK-3具有三维网状的结构,与碳纳米管相比,具有更广泛的应用空间。 本课题预期以有序介孔碳CMK-3为基底负载可见光下可产生光电流的氧化锌纳米化合物,利用碳基可以有效提高半导体材料的光电流强度的性质,合成出性能稳定高效的三维网状的光电转化材料,可用于制备更加新型高效的太阳能电池。

有序介孔碳材CMK-3哪个厂家好 哪个有序介孔碳材CMK-3厂家好

有序介孔碳材CMK-3哪个厂家好 有序介孔碳材CMK-3哪个厂家好?这还是大家更加关心的问题。有序介孔碳作为一类新型材料,具有均一的孔径分布、大的比表面积和孔容、有序的孔道结构等独特的结构特点,同时还具有优良的机械和热稳定性,并且对绝大多数化学反应显出惰性,在催化、吸附、分离、储氢、电化学等方面具有很好的应用前景。那么,有序介孔碳材CMK-3哪个厂家好?这里推荐先丰纳米公司。下面就简单的介绍有序介孔碳材CMK-3制作方法。 一般来说,有序介孔碳材料的制备方法有两种。 一是硬模板法 1、合成有序的硬模板,如介孔氧化硅等 2、灌注碳源前驱体到硬模板的孔道中 3、碳化形成复合材料 4、去除硬模板得到有序介孔碳。 这种方法程序非常繁琐、成本非常高,很难用以实现介孔碳材料的规模化合成。 二是软模板法 即超分子自组装法。利用溶剂挥发诱导自组装(EISA)成功地合成了介孔碳材料。该过程简单、可重复性好;然而该方法需要大量的溶剂,既污染环境又浪费原料。此外该方法需要大面积的容器来挥发,占据大量的空间,也限制了该方法的规模化生产。

如果想要了解更多关于有序介孔碳材CMK-3的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

相关文档
最新文档