有序介孔碳吸附剂的研究进展

有序介孔碳吸附剂的研究进展
有序介孔碳吸附剂的研究进展

有序介孔碳吸附剂的研究进展

闻振涛, 万 颖*

(上海师范大学生命与环境科学学院,上海200234)

摘 要:介绍了有序介孔碳吸附剂在吸附中的重要作用,总结了有序介孔碳应用于处理染料废水,去除水中芳香有机污染物,去除重金属离子以及吸附生物分子中的研究现状。展望了有序介孔碳应用于吸附的发展前景。

关键词:有序介孔碳;吸附剂;研究进展中图分类号:TQ 085+

4 文献标志码:A 文章编号:0367 6358(2011)07 0434 03

R esearch Progress of Ordered M esoporous Carbons as Sorbent s

WEN Zhen tao, WAN Ying

*

(Dep ar tment of Chemistr y ,S hang hai Normal Univ er sity ,S hang hai 200234,China)

Abstract:The recent research prog ress of o rdered mesoporo us carbo ns in adso rption o f pollutants such as dye,o rganic arom atics,heavy metal ions and biomolecules,such as v itamin E,w as review ed.T he futur e development of the order ed mesopo rous carbons as sorbents w as also predicted.Key w ords:ordered meso poro us carbo ns;sorbents;research pro gress

收稿日期:2011 05 10

作者简介:闻振涛(1986~),男,硕士生。

*E mail:yw an @https://www.360docs.net/doc/e23949741.html, 当前,工业中常用的吸附剂大多为微孔材料,主要包括:氧化物分子筛,碳分子筛,活性炭,活性炭纤维,碳纳米管和石墨纳米纤维等。但是,微孔材料存在许多问题,比如微孔太多,使孔的利用率太低;微孔吸附后难脱附,使其再次利用比较困难;微孔孔径过小,不能有效的吸附大分子污染物等。

有序介孔碳由于具有高的表面积,大的孔体积,良好的孔道稳定性,使其不仅具有比活性碳更高的吸附容量而且具有良好的重复利用性;有序介孔碳孔径比活性炭等微孔吸附剂孔径大,使其更容易吸附大分子有机物;通过调节合成时的投料比可以改变有序介孔碳的孔结构,进而使其可以选择性吸附不同种类的吸附质。

有序介孔碳材料一般都是经过纳米灌注的方法合成的,以介孔二氧化硅为硬模板,在介孔氧化硅的孔道中灌注碳源,高温碳化后得到二氧化硅/碳复合材料,通过氢氟酸或氢氧化钠溶液溶解除去氧化硅

得到介孔碳材料

[1]

。Zhao 等

[2]

用三嵌段共聚物

F127为模板,以用苯酚和甲醛制备相对分子质量低

的酚醛树脂为碳源,通过溶剂挥发自组装(EISA ),热聚过程,高温煅烧等步骤,合成了有序介孔碳材料。有序介孔碳已经成为新型的高效吸附剂,在吸附领域有巨大的应用前景。1 有序介孔碳在水处理中的应用

1.1 处理染料废水

染料废水是当前最严重的水体污染物之一,它的污染成分复杂,水体影响因素多,色度大,因此处理非常困难。Yuan 等[3]

以SBA 15和NaY 分子筛为模板合成了不同孔径大小的有序介孔碳材料,研究了材料对亚甲基蓝和中性红的吸附。结果表明,孔径大于3.5nm 的有序介孔碳能够高效吸附亚甲基蓝,当孔径较小时对中性红的吸附性能更好。Yan 等[4]用酸和碱处理过的沸石为模板,糠醛为碳源,通过气相沉积聚合的方法合成介孔碳,把其应用

434 化 学 世 界 2011年

于亚甲基蓝的吸附研究。实验发现,以酸处理过的沸石为模板合成的介孔碳吸附量为223mg/g,以碱处理过的沸石为模板合成的介孔碳的吸附量为380 mg/g。把介孔碳用水处理后能够提高其吸附速率,但是其吸附量基本保持不变。

Zhuang等[5]用软模板法合成有序介孔碳,以表面活性剂F127为模板,酚醛树脂为碳源,合成有序介孔碳材料,首次把其应用于研究水中大体积染料分子吸附,结果表明此介孔碳对染料的吸附量是商业活性炭的两倍,并且介孔碳对低浓度的染料有较高的吸附率,高达99%,无论是对碱性染料,酸性染料还是对偶氮染料都有很好的吸附性能。吸附后的介孔碳仍然很稳定,可以重复利用。染料分子的空间尺寸在介孔碳的吸附过程中起了决定性作用,当吸附小尺寸的染料分子时,孔径小的介孔碳利于吸附,当吸附尺寸大的染料分子时,孔径大的介孔碳利于吸附。

碳材料对染料的吸附量至少达到200m g/g,才能被认为是好的脱色碳[6],前面提到的有序介孔碳材料对染料的吸附量均大于200mg/g,有序介孔碳材料在染料废水的处理中具有重要的应用价值。1.2 去除水中芳香有机污染物

M ar czew ski[7]研究了有序介孔碳对硝基苯,4 硝基苯酚,4 氯苯酚等3种有机物的吸附。动力学研究结果显示,材料对有机物的吸附速率比微孔碳的吸附速率高。

有序介孔碳表面的官能团相当于一个活性位,在材料吸附有机物的过程中起了非常重要的作用。通过改变有序介孔碳表面官能团组成能够提高吸附剂的吸附性能。Anbia等[8]通过MCM 48氧化硅材料为模板,蔗糖做碳源,合成了有序介孔碳,并用硝酸改变介孔碳的表面化学性质。把未处理的介孔碳和氧化处理后的介孔碳用于吸附水相中的萘,萘酚,1,5 二氨基萘等。结果表明,氧化处理过的有序介孔碳对三种有机物的吸附量分别为1.6、2.3、2.8 mm ol/g,远大于未处理的有序介孔碳对三种有机物的吸附量:1.36、1.25、1.1mm ol/g。表现出更高的吸附容量。A nbia等[9]用不同尺寸大小的MCM 48氧化硅材料为模板,蔗糖做碳源合成了高度有序的碳分子筛,然后用苯胺处理改变表面官能团修饰。用此材料吸附苯酚,间苯二酚,对甲酚等有机物,发现其呈现出比CM K 1更高的处理能力,介孔碳分子筛对间苯二酚的吸附量大于对其他酚类衍生物的吸附量。H e等[10]通过在CM K 3表面嫁接辛基进行改性,改性后的材料对苯酚的吸附量为720 mol/g,高于CM K 3对苯酚的吸附620 mo l/g。

有序介孔碳对有机物的吸附同样受到温度,pH 等因素影响。Sui等[11]用CM K 3研究对双酚A的吸附,吸附试验表明CM K 3能够有效去除水中的双酚A,动力学数据遵循二阶模型,而且CM K 3的吸附速率大于活性炭的速率。在温度20~40 C范围内,CMK 3的吸附量随温度的升高而降低。溶液的初始pH值在3~9范围内,CMK 3对双酚A的吸附量变化很小,而pH值在9~13范围内,由于双酚A的质子化,CMK 3对双酚A的吸附量明显降低。

1.3 去除重金属离子

郭卓等[12]以SBA 15为模板,制备3种具有不同孔径大小的有序介孔碳CM K 3,研究了有序介孔碳材料对铬Cr( )的吸附能力。结果表明,介孔碳的投入量、pH值、震荡时间等因素均对Cr( )的吸附效果存在一定影响.研究显示,当pH= 2.0~ 4.0时,有序介孔碳对Cr( )的吸附最有利,3种有序介孔碳吸附能力都超过90%。CM K 3展现出比活性碳更高的吸附量,更快的吸附速率。

为了增加有序介孔碳对重金属的吸附容量,可以对有序介孔碳进行改性。陈田等[13]把有序介孔碳通过先氧化、后氯化、再胺化处理,得到不同胺基接枝量的胺化有序介孔碳。以有序介孔碳、胺化有序介孔碳作吸附剂对Cu(II)、Cr(VI)进行选择性吸附研究.结果表明:功能化修饰前,样品对Cu(II)、Cr(VI)饱和吸附量分别为213.33、241.55mg/g;修饰后饱和吸附量可分别达到495.05、68.21mg/g.功能化介孔碳表现了较强的选择性吸附Cu(II)的能力。Lee等[14]用羧甲基化聚乙烯亚胺通过普通的吸附方法对介孔碳CMK 1进行功能化。把CM K 1和功能化的CMK 1用作吸附剂,研究材料对水溶液中Cu(II)的吸附行为。结果显示,两种介孔碳对Cu(II)的吸附行为都符合lang muir吸附,而且功能化的CM K 1对Cu(II)的吸附量是未处理的CM K 1吸附量的10倍。当溶液中Cu(II)的浓度低于0.02m mol/L时,功能化的CM K 1可以把溶液中的Cu(II)完全吸附。

1.4 吸附生物分子

生物分子,如氨基酸,维生素等是人体必不可少的物质。用化学合成方法合成生物分子的成本太大,所以当前获得的主要途径为从动物或者植物中提取,因此,高效的分离提纯方法显得尤为重要。有序介孔碳材料具有好的生物适配性,能够高效的吸附生物分子,在生物分子的分离提纯中具有重要的

435

第7期化 学 世 界

价值。V inu 等[15]以SBA 15为模板合成了孔径范围为3~6.5nm 的有序介孔碳,把得到的有序介孔碳用于吸附不同pH 的细胞色素C 溶液,在pH 等于9.6时,有序介孔碳达到最大吸附量18.5 mol/g,此吸附量大于文献报道的介孔氧化硅材料(M CM 41,SBA 15)对细胞色素C 的吸附量。

Vinu 等[16]

比较了CMK 3,SBA 15以及活性炭对L 组氨酸的吸附,CM K 3的最大吸附量为1350 mo l/g,是SBA 15的最大吸附量的12倍,远远大于活性炭的吸附量。

有序介孔碳的对生物分子的吸附量受材料的孔结构以及材料表面性质影响。Guo 等[17,18]

在有序介孔碳CMK 1和CM K 3上负载聚甲基丙烯酸甲酯,把得到的有序介孔碳用于吸附维生素B12,结果发现,CM K 3由于具有大的孔体积和孔径,所以具有较高的吸附量。负载聚甲基丙烯酸甲酯后的有序介孔碳对维生素B12的吸附量高于未处理的有序介孔碳的吸附量。

2 展望

有序介孔碳吸附剂具有空旷多孔的结构和构架组成,在吸附领域有巨大的应用前景。鉴于有序介孔碳合成过程的可控性,可以在合成过程中掺入杂原子(铁、钴等),掺杂磁性金属的吸附剂,达到吸附饱和后,通过外加磁场,可以很容易将其与溶液分离。也可通过在有序介孔碳上负载金属氧化物使其具有催化氧化,光降解等功能进一步扩大其在水处理中的应用范围。参考文献:

[1] Jun S,Joo S H,R yoo R,et al .J of the A m Chem

Soc[J],2000,122(43):10712 10713.

[2] M eng Y,G u D,Zhang F Q ,et al .Chem o f M ater [J],2006,18(18):4447 4464.

[3] Yuan X ,Z huo S P,Wei X,et al .J o f Co lloid and

Inter face Sci[J],2007,310(1):83 89.

[4] Yan C X ,Wang C Q,Y ao J F ,et al .Collo ids and

Sur faces A [J],2009,333(1 3):115 119.[5] Zhuang X,Wan Y ,F eng C M ,et al .Chem o f M ater [J],2009,21(4):706 716.

[6] El Q ada E N ,Allen S J,Walker G M.Chem Eng in J

[J],2008,135(3):174 184.

[7] M arczew ski A W.A ppl Surface Sci [J],2007,253(13):5818 5826.

[8] Anbia M ,M or adi S E,Chem Engin J[J],2009,148

(2 3):452 458.

[9] Anbia M ,G haffari A.A pplied Sur face Sci[J],2009,255(23):9487 9492.[10] H e J G ,

M a K ,

Jin J,

et al .

M icro po ro us

M eso po ro us M ater [J],2009,121(1 3):173 177.

[11] Sui Q ,H uang J,L iu Y S,et al .J of Env ir on Sci[J],

2011,23(2):177 182.

[12] 郭 卓,赖坤茂,王海峰,等.沈阳化工学院学报

[J],2009,23(1):29 33.[13] 陈 田,王 涛,王道军,等.物理化学学报[J],2010,26(12):3249 3256.

[14] L ee H I,Jung Y J,K im S,et al .Carbon[J],2009,

47(4):1043 1049.

[15] Vinu A ,Streb C,M urugesan V ,et al .J of Phys Chem B[J],2003,107(33):8297 8299.[16] Vinu A,H ossain K Z,Satish K uma r G ,et al .Car bo n[J],2006,44(3):530 536.

[17] G uo Z,Z hu G S,Gao B,et al .Carbon[J],2005,43

(11):2344 2351.

[18] G uo Z,Zhang W W,Ding X P ,et al .Chem Rev[J],

2010,26(3):431 435.

(上接第441页)

[25] 阴秀丽,常 杰,汪俊锋,等.太阳能学报[J],2005,26

(4):518 522.

[26] 付 严,鲁 皓,常 杰,等.化工学报[J],2006,57(5):1064 1088.[27] 汪俊锋,常 杰,阴秀丽,等.太阳能学报[J],2005,26(3):4132 418.

[28] 王铁军,吕永兴,吴创之,等.太阳能学报[J],2009,30

(11):1566 1570.

[29] 李 理,阴秀丽,吴创之,等.可再生能源[J],2007,25(1):40 43.[30] L i Y P ,Wang T J,Wu C Z,et al .Energ y and F uels [J],2008,22:1897 1901.

[31] 吕永兴,王铁军,李宇萍,等.燃料化学学报[J],2008,

36(2):246 249.

[32] 许庆利,颜涌捷,张素平,等.太阳能学报[J],2009,30

(5):673 676.[33] 米 铁,张春林,刘武标,等.化学工程[J],2003,31(5):26 30.

[34] 刘 豪,邱建荣,董学文,等.热能动力工程[J],2002,

17(5):451 454.

[35] 米 铁,刘武标,刘德昌,等.农村能源[J],2002,(1):

21 24.[36] Yang H P,Yan R,Chen H P ,et al .F uel Pr oce T ech [J],2006,87(10):935 942.

[37] Ju F D,Chen H P ,Ding X J,et al .Biotech A dv[J],

2009,27(5):599 605.

[38] 阴秀丽,常 杰,汪俊锋,等.煤炭转化[J],2004,27

(3):17 22.

436 化 学 世 界 2011年

多孔材料研究进展.

多孔材料研究进展 1前沿 根据国际纯粹化学与应用化学联合会的规定 1, 由孔径的大小, 把孔分为三类:微孔 (孔径小于 2nm 、介孔(2~50nm 、大孔(孔径大于 50nm ,如图 1所示。同时,孔具有各种各样的类型(pore type和形状(pore shape ,分别如图 2, 3所示。在一个真实的多孔材料中, 可能存在着一类, 两类甚至三类孔了。在这片概述中, 我们把多孔材料 (porous materials 分为微孔材料 (microporous materials、介孔材料 (mesoporous materials、大孔材料 (macroporous materials ,将分别对其经典例子、合成方法,及其应用予以讨论。

Figure 1 pore size Figure 2 Pore type Figure 3 Pore shape 2 多孔材料 2.1 微孔材料 (microporous materials 典型的微孔材料是以沸石分子筛为代表的。在这里我们要举金属 -有机框架化合物 MOFs (metal-organic frameworks 的例子来给予介绍。 MOF-52是这类材料中的杰出代表, 是 Yaghi 小组在 1999年最先合成出来的。以 Zn (NO 3 2·6H 2O 和对苯二甲酸为原料,通过溶剂热法合成了非常稳定(300℃,在空气中加热 24小时,晶体结构和外形保持不变、具有很高孔隙率(0.61-0.54 cm3 cm-3 、密度很小(0.59gcm 3的多孔材料 MOF-5。如图 4所示分别是 MOF-5的结构单元及其拓扑结构。在MOF-5中, Zn 4(O(BDC3构成了次级构筑单元 SBU(second building unit, SBU通过

介孔碳材料的合成及应用分析研究

介孔碳材料的合成及应用研究 李璐 (哈尔滨师范大学> =摘要> 综述了介孔碳材料的合成及应用.关键词: 介孔碳。合成。应用 0 引言 介孔碳是近年来发现的一类新型非硅介孔材料, 它是由有序介孔材料为模板制备的结构复制品. 由于其具有大的比表面( 可高达2500m2# g- 1 >和孔容(可达到2. 25 cm3 # g- 1 >,良好的导电性、对绝大多数化学反应的惰性等优越的性能, 且易通过煅烧除去, 与氧化物材料在很多方面具有互补性, 使其在催化、吸附、分离、储氢、电化学等方面得到应用而受到高度重视. 1 介孔碳材料的合成 介孔碳的制备通常采用硬模板法, 选择适当的碳源前驱物如葡萄糖、蔗糖乙炔、中间相沥青、呋喃甲醇[ 1]、苯酚/甲醛树脂[ 2]等, 通过浸渍或气相沉积等方法, 将其引入介孔氧化硅的孔道中, 在酸催化下使前驱物热分解碳化, 并沉积在模板介孔材料的孔道内, 用NaOH或HF溶掉SiO2 模板,即可得到介孔碳. 以下介绍几种介孔碳材料的合成方法及性质.

1. 1 CMK- 1 Ryoo首次用MCM- 48为模板 合成了介孔碳材料(CMK- 1>. 由于MCM- 48具有两套不相连通的 孔道组成, 这些孔道将变成碳材料的固体部分, 而MCM- 48中氧 化硅部分则会变成碳材料的孔道. 因此CMK- 1 并不是MCM- 48 真 正的复制品, 而是其反转品. 在脱除MCM- 48 的氧化硅过程中, 其结晶学对称性下降[ 3] , 后 续的研究表明与所用的碳前驱物有关, 其中一个具有I41 /a对称性[ 4] .1. 2 CMK- 3 使用SBA- 15 合成六方的介 孔碳( CMK 3>, 由于二维孔道的SBA- 15孔壁上有微孔, 因 图1 孔道不相连的的模板(MCM- 41或1234K 下 焙烧的SBA - 15> 制备的无序碳材料( A>。孔道相 连的模板( 1173K温度以下焙烧的SBA - 15> 制备 的有序介孔碳材料CMK- 3( B>

关于有序介孔炭CMK

关于有序介孔炭CMK-3从水溶液中吸附铀的研究 摘要: 有序介孔碳CMK-3在水溶液中铀的去除和获取方面的能力已经进行了探索。CMK-3的制构特性是以使用小角X射线衍射和N2吸附脱附,BET比表面积,孔体积和孔径是1143.7平方米/克,1.10立方厘米/克和3.4 nm为特征的。了对不同的实验参数,例如溶液的pH值,初始浓度,接触时间,离子强度和温度对吸附的影响进行研究。CMK-3显露出铀在最初pH=6,接触时间为35分钟时吸附能力最高。吸附动力学也通过伪二阶模型很好地描述了。吸附过程可用朗格缪尔和Freundlich等温线很好地定义。热力学参数,ΔG°(298K),ΔH°,ΔS°分别定为-7.7, 21.5 k J mol -1和98.2 J mol-1 K-1,这表明CMK-3在自然界朝向铀吸附进程是可行的,自发的和吸热的。吸附的CMK-3可以有效地为U(VI)的去除和获取,通过0.05 mol/L的HCL再生。从1000ml包含铀离子的工业废水的u(VI)的完全去除可能带有2g CMK-3。 关键词:有序介孔碳CMK-3 吸附铀 前言:处理放射性物质产生低中高水平的放射性废物的许多活动要求用先进的技术处理[1,2]。在过去的几十年,考虑到潜在的环境健康威胁和不可再生的核能源资源的双重意义,各种各样的技术,例如溶剂萃取[3,4],离子交换[5],和吸附已经从放射性废物的铀的去除和获取得到了发展[6]。最近,吸附由于其效率高、易于处理,基于碳质材料例如活性炭[7-8],碳纤维[11],因为他们比有机换热器树脂有更高热量和辐射电阻,与熟悉的无极吸附剂相比有更好的酸碱稳定性,因此逐渐应用于这一领域[8]。 另外,作为碳质材料家族的新成员,有序介孔碳CMK-3是通过纳米铸造技术合成的[12],因为它独特的特征如高表面积,规整的介孔结构,窄的孔径分布,大孔隙体积,以及优异的化学和物理稳定性,已经引起了广泛关注[13,14]。这些特征使CMK-3在生物医药,电化学,能量储存和环境领域变得更加有吸引力[15–17]。CMK-3及其复合材料已经用于去除VE [18], VB12 [19],苯酚[20],溶菌酶[21],铅[22]和汞[23]。然而,据我们所知,到目前为止,还没有报道CMK-3用于水系统吸附铀酰离子。因而,这将是有趣的事,去探讨以上所提到的CMK-3用于环境的可能性。 本次调查的目的是研究通过硬模板法制备的有序介孔炭CMK-3的从水溶液除铀的效率。各种技术被用来描述CMK-3的结构和构造特性,包括小角X射线衍射(SAXRD)和N2 吸附解吸。各种实验参数包括溶液的pH值,离子强度,接触时间,最初的浓度,温度,以及对吸附动力学,等温吸附模型,热力学进行了研究。另外,CMK-3再生的方法,和工业废水除铀的努力也进行了研究。 实验 材料 从南京科技Co., Ltd获得有序介孔硅。U(VI)储备液的制备,1.1792 g U3O8加入到一个100ml的烧杯,10ml的盐酸(q=1.18 g/mL),2 mL 30 %的过氧化氢也加入到此烧杯。溶液被加热直到它几乎是干的,然后10毫升盐酸(q= 1.18克/毫升)被添加。溶液被转入到一个1000ml的容量瓶,用蒸馏水稀释到刻度来产生1 mg/mL 的铀原液。铀溶液通过稀释原液到根据实验要求的适当的量来制备。所有的其他试剂都是AR级。 有序介孔碳CMK-3的制备

有序介孔炭的制备与表征_王小宪

有序介孔炭的制备与表征① 王小宪1,李铁虎1,冀勇斌1,金 伟1,林起浪2 (1.西北工业大学材料学院,陕西西安 710072; 2.福州大学材料学院,福建福州 350002) 摘 要:采用溶胶-凝胶技术,用蒸发诱导自组装(EISA)工艺制备了表面活性剂/氧化硅复合体。通过原位氧化炭化法直接制备了介孔炭材料,讨论了炭化温度对炭/氧化硅及介孔炭孔隙结构的影响。利用透射电镜(TEM)、氮物理吸附-脱附、扫描电镜(FESEM)及热重分析(TGA)对材料的形貌结构性能进行了分析。结果表明,复合体具有高度有序的六方相结构孔道,随着炭化温度的提高,复合体的孔径分布呈现先增大后减小的变化过程,而介孔炭孔径分布逐渐减小。介孔炭颗粒由类纳米碳管团簇组成,孔隙有序程度高,内部无缺陷。 关 键 词:介孔炭,纳米复合体,炭化,纳米碳管 中图分类号:TB383 文献标识码:A 文章编号:1000-2758(2008)06-0787-05 介孔炭具有大比表面积、大孔容和均一孔径分布的特点,因此在选择性催化、储能材料及光电磁等方面都有着广泛的应用。通常制备介孔炭方法有物理化学活化法[1]、有机聚合物炭化法[2]、共混聚合物炭化法[3]、铸型炭化法[4]等,其中物理化学活化法是制备活性炭的常用方法,该方法制备的介孔炭孔径小且分布范围大。有机聚合物炭化法和共混聚合物炭化法虽可制备出分布范围小的介孔炭,但无法实现有序性的要求。近年来,铸型炭化法是能控制介孔炭孔径的有效方法,即选用具有一定结构的模板材料,通过反相复制获得介孔炭产品。从微观角度来说,介孔炭是模板的负副本,即模板的孔壁转化为介孔炭的孔隙,因此对模板孔壁的有效控制就是对介孔炭的孔径控制,而模板的形成受到多方面的影响。在水热合成体系中,改变制备模板的陈化温度[5]可以使介孔炭在3.0~ 5.2nm之间变化,混合表面活性剂法[6]可使介孔炭在2.2~ 3.3nm之间变化。但是利用水热合成体系制备模板本身就需要1~3天时间,然后经过液相浸渍、炭化、酸洗等步骤才能获得介孔炭产品,这个过程费时、费力,不利于介孔炭的发展与应用。 本文在非水体系条件下,结合蒸发诱导自组装工艺和溶胶-凝胶技术,以占据氧化硅介孔体的表面活性剂为碳源前驱体。通过原位氧化炭化法直接制备出了具有六方结构的介孔炭材料,研究发现,模板与有机物的炭化过程中的相互作用和炭化温度是影响介孔炭孔径的重要因素。该方法缩短了制备周期,节约了制备成本,同时还可以对介孔炭的孔径进行有效的控制。 1 实验部分 1.1 复合体的制备 复合体的制备过程如下:将1g P123(聚乙烯醚-聚丙烯醚-聚乙烯醚,EO30PO70EO30,南京威尔化工公司)完全溶解于10g无水乙醇中;在搅拌的条件下加入2g的正硅酸已酯(AR,北京化学试剂有限公司,简称TEO S),0.9g H2O,0.1g HCl(2M),室温下继续搅拌2h,获得溶胶;将所得溶胶置于25℃,湿度为30~60%的环境中自然蒸发,待完全蒸发后获得表面活性剂/氧化硅的复合体。 1.2 介孔炭的制备 在1g上述复合体中加入4g去离子水和1g浓硫酸,混合均匀;将混合物置于热处理炉中在100℃和160℃分别处理3~6h以充分氧化,所得样 2008年12月第26卷第6期 西北工业大学学报 Jour na l o f No r th wester n Poly technical U niv ersity Dec.2008 V o l.26No.6 ①收稿日期:2007-10-11基金项目:国家自然科学基金(50472081)与高等学校博士点基金(20060699028)资助 作者简介:王小宪(1980-),西北工业大学博士生,主要从事新型炭材料的研究。

简易模板法制备有序介孔碳_邱会华

收稿日期:2009-07-27。收修改稿日期:2009-09-16。国家-广东联合基金资助项目(No.U0734005)。 * 通讯联系人。E -mail :tliuyl@https://www.360docs.net/doc/e23949741.html, ;会员登记号:S060017521P 。第一作者:邱会华,女,24岁,硕士研究生;研究方向:纳米碳材料。 简易模板法制备有序介孔碳 邱会华 刘应亮* 曾江华 左诗笛 郑明涛 (暨南大学化学系,广州 510632) 摘要:通过一种简易的模板法制备了有序介孔碳,即硅/P123三嵌段共聚物复合物经硫酸处理后,再加入蔗糖碳源经碳化和除硅处理合成出有序介孔碳。该方法与传统硬模板相比,其合成工序简单,成本更低;与其他简化合成方法相比,避免了由碳源不足而造成的介孔碳有序性低的缺点。通过小角XRD 、N 2吸脱附和HRTEM 对样品及其中间过程进行了表征。结果表明,自晶化过程后,样品在合成的各个时期均保持着有序的介孔结构,当蔗糖添加量为1.5g 时合成出的介孔碳材料有序性最高,比表面积和孔容也最高,分别为1261m 2·g -1,1.03cm 3·g -1。关键词:模板法;有序介孔碳;蔗糖中图分类号:O613.71 文献标识码:A 文章编号:1001-4861(2010)01-0101-05 Simple Template Method for Synthesis of Ordered Mesoporous Carbon QIU Hui -Hua LIU Ying -Liang *ZENG Jiang -Hua ZUO Shi -Di ZHENG Ming -Tao (Department of Chemistry,Jinan University,Guangzhou 510632) Abstract:Ordered mesoporous carbon materials were synthesized via a simple template method by adding sucrose to the sulfuric -acid -treated silica/P123triblock copolymer composite and followed by carbonization and removal of the silica.This technique is simpler and the cost is lower than the conventional hard template method.Besides,compared to other simple way,this technique avoids the disadvantage of low ordered structure of the mesoporous carbon caused by deficiency of carbon source.The samples were investigated by X -ray diffraction (XRD),high -resolution transmission electron microscopy (HRTEM)and nitrogen adsorption -desorption.The results show that the samples after crystallization maintain ordered mesoporous structure at various periods during the course of the synthesis.When the addition of sucrose is 1.5g,the highest ordered mesoporous carbon is obtained with highest surface area of 1261m 2·g -1and pore volume of 1.03cm 3·g -1. Key words:template method;ordered mesoporous carbon;sucrose 引言 有序介孔碳材料由于其具有高的比表面积、大的孔容和均一的孔径分布等特点,使其在催化、吸附、电化学等领域有着广泛的应用价值[1-3]。自1999 年Ryoo 等[4]以有序介孔硅MCM -48为模板,蔗糖为碳源合成出有序介孔碳CMK -1以来,介孔碳材料 的发展进入了一个新的时期。随后很多科学家通过不同的方法合成了一系列的有序介孔碳材料,如 CMK -3[5]、CMK -5[6]、COU -1[7]、FDU -15[8]等,其方法可分 为硬模板法和软模板法[9]。硬模板法所得到的介孔碳材料为无机模板的反相复制,软模板法所得的介孔碳材料为正相结构,在应用方面各有其优势。但硬模板法合成过程耗时长,步骤繁多,其首先需要 第26卷第1期2010年1月 Vol .26No .1101-105 无机化学学报 CHINESE JOURNAL OF INORGANIC CHEMISTRY

介孔材料的研究及应用

材料化学1112班张高洁 1120213236 介孔材料的研究及应用 摘要:介孔材料是当前具有广泛应用前景的一类新材料, 具有大的比表面积和孔体积、高的机械稳定性和化学稳定性、良好的导电性等特点,在分离提纯、生物材料、化学合成及转化的催化剂、半导体、计算机、传感器件、超轻结构材料等许多领域有着潜在的用途,成为了当今国际上的一个研究热点.本文阐述了介孔材料目前的研究进展,概述了介孔材料的分类、特点,合成方法及机理,表征手段,应用等,从而展望了介孔材料的应用前景。 关键词:介孔材料;分类;特点;合成方法及机理;表征方法;应用 1 介孔材料的分类 介孔材料按材料的组成大致分为两类:“硅基”介孔材料和“非硅”介孔材料。“硅基”介孔材料即构成骨架的主要成分是二氧化硅,“硅基”的介孔材料又包括纯硅的和掺杂有其它元素的两类介孔材料。“非硅”介孔材料即骨架组成为非硅的其他氧化物或金属等介孔材料。 2 介孔材料的特点 介孔材料具有独特的优点:1.孔道高度有序,均一性好,孔道分布单一,孔径可调范围宽。2.具有较高的热稳定性和水热稳定性。3.比表面积大,孔隙率高。 4.通过优化可形成不同结构,骨架,性质的孔道,孔道形貌具有多样性。 5.可负载有机分子,制备功能材料。 3 介孔材料的合成方法及机理 目前合成介孔材料的方法很多,如:溶胶凝胶法,水热合成法,微波辐射合成法,相转变法及沉淀法等,其中以前两种方式应用最多。介孔材料的合成机理,为各种合成路线提供了理论基础。在所提出的各种机理中,有一个共同的特点是溶液中表面活性剂引导溶剂化的无机前驱体形成介孔结构。这些表面活性分子中存在两种基团:亲水基和疏水基。为减少不亲和基之间的接触,溶液中的表面活性剂分子通过自组装的方式聚集起来形成胶束,以降解体系的能量。 3. 1 液晶模板机理

硫/有序介孔碳复合材料的制备及其电化学性能

硅酸盐学报 · 572 ·2011年 硫/有序介孔碳复合材料的制备及其电化学性能 李永,董晓雯,赵宏滨,徐甲强 (上海大学理学院化学系,上海200444 ) 摘要:用模板法合成有序介孔碳材料(ordered mesoporous carbon,OMC),以该材料作为硫的载体,用低温熔融的方法制备了硫/有序介孔碳(S/OMC)复合材料。通过透射电子显微镜、比表面分析和X射线粉末衍射仪对材料进行表征。结果表明:OMC孔道有序,比表面积高达1600m2/g,硫在OMC 内分散性良好。对S/OMC又进行了恒流充放电、循环伏安和交流阻抗等电化学性能测试,显示S/OMC电化学可逆性较好,首次放电容量达1430 mA?h/g,60次循环时仍稳定在500mA?h/g。OMC内部有序的孔道和较大的表面微孔对电池性能的提高起到了重要的作用。 关键词:硫电极;软模板法;有序介孔碳;复合材料;阴极材料 中图分类号:TQ152 文献标志码:A 文章编号:0454–5648(2011)04–0572–05 Preparation and Electrochemical Properties of Sulfur/Ordered Mesoporous Carbon Composite LI Yong,DONG Xiaowen,ZHAO Hongbin,XU Jiaqiang (School of Science, Shanghai University, Shanghai 200444, China) Abstract: An ordered mesoporous carbon (OMC) material was synthesized via a template synthesis method. The composites of S/OMC with OMC as a matrix of sulfur were prepared by means of low temperature melting. The composites were investigated by transmission electron microscopy, Brunauer–Emmett–Teller method and X-ray powder diffraction. The results show that the channels of OMC is in an order, and the specific surface area of OMC is >1600m2/g. The sulfur could be efficiently dispersed in OMC. The composites of S/OMC were determined by galvanostatic charge/discharge, cyclic voltammograms and electrochemical impedance spectroscopy. It is indicated that the S/OMC has preferable electrochemical reversible, and the first discharge capacity reaches 1430 mA·h/g and stabilizes at 500mA·h/g after 60 cycles. It is essential for the improvement of the battery performance to possess the mas-sive micropores with the greater surface area existed in the OMC. Key words: sulfur electrode; soft-template method; ordered mesoporous carbon; composite material 随着石油危机的出现,全世界对能源消费需求的日益增加,以及便携式电子设备和电动汽车的快速发展及应用,对于高比能量、长循环寿命的锂离子电池的需求十分迫切。目前在已知的锂离子电池正极材料中,硫电极具有最高的理论比容量(1675 mA?h/g)。其与金属锂电极组成锂–硫电池的理论比能量高达2600W?h/kg。硫电极具有环境友好、价格低廉、资源丰富等优点,是一种很有应用前景的高比能量的正极材料[1]。然而,单质硫在常温下的电子导电率仅为5×10–30 S/cm[2]。如此低的电子导电率使锂–硫电池中阴极活性材料的利用率很低。此外,锂–硫电池在充放电过程中会形成多硫化锂,该化合物会溶于有机电解液,并会在阴阳电极之间穿梭,其中一部分穿梭的多硫化锂能转变成硫化锂并沉积在阳极上[3],造成电池内部阻抗增加、电池容量减小以及循环性能的急剧下降。 针对硫电极以上的缺点,许多研究者开发研究溶胶电解液[4]、固体电解质[5]和常温的离子液体[6],尽管这些研究在一定程度上达到了缓解多硫化合物穿梭反应的目的,但是同时又由于离子的缓慢移动造成了电池能量密度的降低。为了减轻由于多硫化物的穿梭对阳极的影响,还有许多研究集中在保护 收稿日期:2011–01–07。修改稿收到日期:2011–01–27。 基金项目:上海大学研究生创新基金(SHUCX 102021)、上海博士后基金(10R21412900)、中国博士后基金(20100470677)资助项目。第一作者:李永(1982—),男,硕士研究生。 通信作者:徐甲强(1963—),男,教授。Received date:2011–01–07. Approved date: 2011–01–27. First author: LI Yong (1982–), male, graduate student for master degree. E-mail: 08720101@https://www.360docs.net/doc/e23949741.html, Correspondent author: XU Jiangqiang (1963–), male, professor. E-mail: xujiaqiang@https://www.360docs.net/doc/e23949741.html, 第39卷第4期2011年4月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 4 April,2011

介孔碳材料

介孔碳材料:合成及修饰 关键词:嵌段共聚物,介孔碳材料,自组装,模板合成 许多应用领域对多孔材料的兴趣是由于他们的高比表面积和理化性质。传统的合成只能随机产生多孔材料,对超过孔径分布几乎是无法控制的,更不用说细观结构了。最新的突破是其它多孔材料的制备工艺,这将导致具有极高比表面积和有序介孔结构的介孔材料制备方法的发展。随着催化剂的发展,分离介质和先进的电子材料被用在许多科学学科。目前合成方法可归类为硬模板法和软模板法。这两种方法都是用来审查碳材料表面功能化取得的进展。 1.简介 多孔碳材料是无处不在和不可或缺的,应用于许多的现在科学领域。多孔碳材料被广泛用作制备电池电极、燃料电池、超级电容。作为分离过程和储气的吸附剂,应用于许多重要的催化过程。介孔碳材料的用途在不同的应用中有着直接的联系,不仅仅关系到其优良的物理和化学性能,如导电、热导率、化学稳定性和低密度,而且关系到其广泛的可用性。近年来碳技术已经取得了很大进展,同时也通过开发和引进新的合成技术改变现有的制备方法。多孔碳材料根据其孔径可分为微孔(孔径<2nm);中孔(2nm<孔径<50nm);大孔(孔径>50nm)。传统的多孔碳材料,例如活性炭和碳分子筛,被热解和物理或是被有机体化学活化合成的。有机体包括在高温下的煤、风、果壳、聚合物[1-3]。这些碳材料通常在中孔和微孔范围内有广泛的孔径分布。活性碳和碳分子筛已大批量生产并被广泛用于吸附、分离和催化方面。 微孔碳材料综述的主要进展包括(a)合成碳材料(表面积高达3000m2g-1)[4,5]使用的氢氧化钾,(b)带有卤素气体的碳选择性反应可控制碳材料产生的微孔大小[6]。后一种方法使用碳化物为碳源,并且卤素气体选择性的除去金属离子。这种化学蚀刻法产生一个具有很窄的粒度分布的微孔。这些碳材料产生的微孔能提供高比表面积、大孔容、吸附气体和液体。尽管微孔材料被广泛应用在吸附分离和催化上,生产使用的方法遭到限制。活性炭微孔材料的缺点(a)由于空间限制规定小孔径使分子运输速度缓慢,(b)低电导率的产生是由于表面官能团的缺陷产生的,(c)多孔结构被高温或石墨化破坏。 为了克服上述这些限制努力寻求其他的合成方法,方法如下:(a)通过物理或组合物理/化学方法的高度活化,[1,7-9](b)碳前躯体碳化是热固性组成成分之一,也是热不稳定性成分,[10,11](c)催化剂辅助活化碳前驱体与金属(氧化物)或有机金属化合物,[9,12-14](d)碳化气凝胶或冷冻,[15,16](e)通过浸渍硬模板复制合成介孔碳,碳化和模板拆除。[17,18](f)自组装通过缩合和碳化使用软模板[19-21]。方法a之d只会导致介孔碳材料有广泛孔径分布(PSD)和可观微孔[9,22]。因此,这些方法都缺乏吸引力。 值得重新审查的是方法e和方法f,这两种方法与有良好控制孔径的介孔碳材料的合成有关联。方法e涉及预合成的有机或无机模板的使用,也被称为硬模板合成方法。这些模板主要是作为介孔碳的模具材料,并且没有明显的化学作用采取前体之间发生模板和碳化[23]。相应的多孔结构是由有明确定义的纳米结构模板预定的。反过来,方法f涉及软模板,通过生成有机分子自组装纳米结构。相应的孔径结构确定合成条件,如混合比、溶剂和温度。虽然该术语"软模板"尚未正式确定,软模板法在本次审查是指自组装模板。软模板法不同于有机自组装硬模板法,分子或基团被操纵在分子能级和被组织成纳米空间氢键或疏水/亲

有序介孔碳材CMK-3多少钱一克 有序介孔碳材CMK-3一克多少钱

有序介孔碳材CMK-3多少钱一克 有序介孔碳材CMK-3多少钱一克?这个问题还是比较受大家关心的。介孔碳是一类 新型的非硅基介孔材料,具有巨大的比表面积和孔体积。具有石墨化程度高,杂质低,介 孔发达,强度好,导电性能好等特点,CMK-3 介孔碳,有能有效降低成本,实现工业化。那么,有序介孔碳材CMK-3多少钱一克?性能特点有哪些?下面有先丰纳米简单的介绍 一番。 有序介孔碳材价格在市场上从几百到上千元的价格都有,详情请立即咨询先丰纳米。 介孔碳是传统活性炭的一次革命性提升,其原料来自石墨,通过电化学反应制备而得。由于碳的高生物相容性,使得唯有介孔活性碳可以用在医药、农肥、美容日用领域。 具有极高的比表面积、规则有序的孔道结构、狭窄的孔径分布、孔径大小连续可调等 特点,使得它在吸附、分离,尤其是催化反应中发挥作用。 有序介孔碳材CMK-3参数: 比表面积:≥900 m2/g 、孔体积:1.2-1.5 cm3/g 、孔径:3.8-4 nm 、微孔体积:0.29 cm3/g 有序介孔碳材CMK-3应用: 催化剂载体;电容器电极;药物负载;纳米反应堆;大分子吸附;生物传感器;储能 和储氢的载体

如果想要了解更多关于有序介孔碳材CMK-3的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

有序介孔碳材CMK-3哪个厂家好 哪个有序介孔碳材CMK-3厂家好

有序介孔碳材CMK-3哪个厂家好 有序介孔碳材CMK-3哪个厂家好?这还是大家更加关心的问题。有序介孔碳作为一类新型材料,具有均一的孔径分布、大的比表面积和孔容、有序的孔道结构等独特的结构特点,同时还具有优良的机械和热稳定性,并且对绝大多数化学反应显出惰性,在催化、吸附、分离、储氢、电化学等方面具有很好的应用前景。那么,有序介孔碳材CMK-3哪个厂家好?这里推荐先丰纳米公司。下面就简单的介绍有序介孔碳材CMK-3制作方法。 一般来说,有序介孔碳材料的制备方法有两种。 一是硬模板法 1、合成有序的硬模板,如介孔氧化硅等 2、灌注碳源前驱体到硬模板的孔道中 3、碳化形成复合材料 4、去除硬模板得到有序介孔碳。 这种方法程序非常繁琐、成本非常高,很难用以实现介孔碳材料的规模化合成。 二是软模板法 即超分子自组装法。利用溶剂挥发诱导自组装(EISA)成功地合成了介孔碳材料。该过程简单、可重复性好;然而该方法需要大量的溶剂,既污染环境又浪费原料。此外该方法需要大面积的容器来挥发,占据大量的空间,也限制了该方法的规模化生产。

如果想要了解更多关于有序介孔碳材CMK-3的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

介孔碳材料及负载金属催化剂表征

介孔碳材料及负载金属催化剂表征 摘要:介孔材料作为纳米材料的一个重要发展,已成为国际科技界普遍关注的新的研究热点.本文综述了以氧化铝、活性炭为载体负载镍基催化剂的研究方法。 1.前言 近几年来,介孔材料作为一种新兴的材料在光化学、催化及分离等领域具有十分重要的应用,是当今研究的热点之一。 按照国际纯粹与应用化学协会(IUPAC)的定义,孔径在2-50nm范围的多孔材料称为介孔(中孔)材料。按照化学组成,介孔材料可分为硅基和非硅基组成两大类,后者主要包括碳、过渡金属氧化物、磷酸盐和硫化物等,由于它们一般存在着可变价态,有可能为介孔材料开辟新的应用领域,展示出硅基介孔材料所不能及的应用前景[1]。按照介孔是否有序,介孔材料可分为无定形(无序)介孔材料和有序介孔材料[2]。前者如普通的SiO2气凝胶、微晶玻璃等,孔径范围较大,孔道形状不规则;后者是以表面活性剂形成的超分结构为模板,利用溶胶-凝胶工艺,通过有机物和无机物之间的界面定向导引作用组装成一类孔径约在1.5-30nm,孔径分布窄且有规则孔道结构的无机多孔材料,如M41S等。 介孔材料的特点在于其结构和性能介于无定形无机多孔材料(如无定形硅铝酸盐)和具有晶体结构的无机多孔材料(如沸石分子筛)之间,其主要特征[3]为:具有规则的孔道结构;孔径分布窄,且在1.5-10 nm之间可以调节;经过优化合成条件或后处理,可具有很好的热稳定性和一定的水热稳定性;颗粒具有规则外形,且可在微米尺度内保持高度的孔道有序性。 现阶段有多种方法可对介孔材料进行表征。差热/热重(DTA/TG)分析可用于表征物质表面吸附、脱附机理及晶型转变温度,并可鉴别中间体。X射线衍射分析(XRD)法是利用衍射的位置决定晶胞的形状和大小,以及晶格常数。透射电镜(TEM)是在极高、极大倍数下直接观察样品的形貌、结构、粒径大小,并能进行纳米级的晶体表面及化学组成分析。而气体吸附测试(Adsorption measurement)法则是通过向介孔材料中通人氮气等气体来测试其孔径[4]。对介孔材料中装载纳米微粒的表征,同样可以借助许多经典及现代测试手段获得。如利用X射线衍射及广延X射线精细结构能得到孔穴中纳米微粒的元素组成、离子间距及尺寸形

有序介孔磷酸锆的研究进展

综述专论 化工科技,2006,14(6):64~68 SCIENCE &TECHNOLO GY IN CHEMICAL INDUSTR Y 收稿日期:2006203203 作者简介:冯英俊(1982-),女,山东淄博人,山东轻工业学院硕士研究生,主要从事功能材料的研究。 3基金项目:山东省自然科学基金资助项目(Y 2002F20)。 有序介孔磷酸锆的研究进展 3 冯英俊,何 文,刘建安 (山东轻工业学院材料科学与工程学院,山东济南250100) 摘 要:简要阐述了磷酸锆材料的特点和应用发展现状,重点探索了有序介孔磷酸锆的制备方法及表征技术,对于磷酸锆材料研究及制备中存在的问题进行了归纳。 关键词:有序介孔材料;磷酸锆;介孔磷酸锆 中图分类号:TQ 134.1+2 文献标识码:A 文章编号:100820511(2006)0620064205 近几年,新型纳米材料的研究不断进入新的领域,纳米材料的研究涉及到凝聚态物理、化学、 材料学、生物学等诸多学科,多学科相互渗透、形成新的学科生长点,从而合成了许多全新的纳米材料[1,2]。磷酸锆类材料是近年逐步发展起来的一类多功能材料,既有离子交换树脂一样的离子交换性能,又有沸石一样的择形吸附和催化性能。同时又有较高的热稳定性和较好的耐酸碱性。这类材料以其独特的插入和担载性能而呈现广阔的发展前景,使得这类介孔材料的研究成为国内外的研究热点。有序介孔材料的合成早在20世纪70年代就已经开始,直到1992年Mobil 公司的MCM 241的介孔材料的报道才引起人们的广泛注 意,这也是有序介孔材料合成的真正开始,不久就开始合成磷酸铝材料的尝试,有关介孔磷酸锆的研究正处于方兴未艾的时期。磷酸锆介孔材料分为介孔磷酸锆与有序介孔磷酸锆,这种有序的结构具有规则的通道和大的比表面积呈现出诱人的应用前景。 1 有序介孔磷酸锆的制备技术 在制备方法上,目前众多专家学者采用多种方法制备这一新兴的有序介孔材料,总体来看,主要有以下几种:回流法、直接沉淀法、水热(或溶剂热)合成法、模板合成法等。 1.1 回流法 利用可溶性锆盐和磷酸或金属磷酸盐反应可制得磷酸锆胶状沉淀,并在磷酸中进行长时间回流,可制得层状晶体化合物α2ZrP ?H 2O 。回流法操作简单,对仪器要求不高,制备得到的磷酸锆晶体容易实现胶体化,有利于层柱磷酸盐的制备。WeiLiu 利用无机锆盐经过两步反应,制得形状规 则、热稳定性好的六角形磷酸锆[3]。D Car 2riere [4]、南昌大学化工系的罗美、郑典模和邱祖民 也采用此种方法[5]制备了热性能好且结晶度良好的磷酸锆介孔材料。图1是用回流法制备的有序介孔磷酸锆的SEM 2电镜照片,从图1可以清楚地看到磷酸锆的层状结构及介孔的有序排列。 图1 有序介孔磷酸锆的SE M 电镜照片 1.2 水热晶化及溶剂热合成法 中国科技大学的张蕤、胡源、宋磊等人采用水热法成功制备了磷酸锆的层状材料[6]。此材料 结晶度好,晶体为规则的六边形薄片状,具有较高的热稳定性。此外,采用无水乙醇代替水做溶剂,

有序介孔碳的制备

Surface and Pore Structures of CMK-5Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy Hans Darmstadt,*,?Christian Roy,?Serge Kaliaguine,?Tae-Wan Kim,?and Ryong Ryoo? De′partement de Ge′nie Chimique,Universite′Laval,Que′bec,Qc,G1K7P4,Canada,and National Creative Research Initiative Center for Functional Nanomaterials and Department of Chemistry(School of Molecular Science BK21),Korea Advanced Institute of Science and Technology,Daejeon,305-701,Korea Received June17,2002.Revised Manuscript Received May20,2003 Ordered mesoporous carbons(OMCs)were synthesized in the pore system of SBA-15 aluminosilicates with different Si/Al ratios ranging from5to80.Nitrogen adsorption was used to characterize the pore structure of the aluminosilicates and of the OMCs,whereas the OMC surface chemistry was studied by X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy.The results indicate that the physicochemical properties of the OMCs depended significantly on the acid catalytic activity of the aluminosilicate frameworks,which comes along with the variation of Si/Al ratios.The OMC pore widths and order of the graphene layers followed the same trend as the catalytic activity of the aluminosilicates,whereas the concentration of extraframework species in the aluminosilicates indirectly influenced the mechanical properties of the OMCs.The reasons for this behavior are discussed. Introduction Porous carbons are widely used as absorbents and catalyst supports.In many applications,such as adsorp-tion of large hydrocarbons,carbons with mesopores of defined dimensions are desirable.Presently,most car-bon adsorbents are synthesized by carbonization of a carbon-containing feedstock material followed by partial oxidation(activation).Unfortunately,by this synthesis route carbons with narrow mesopore size distribution are difficult to produce.However,by a molding process in an appropriate matrix,ordered mesoporous carbons (OMCs)can be produced in a convenient way.1-4A suitable OMC precursor is furfuryl alcohol adsorbed in the pore system of mesostructured silica,where it can be easily polymerized.The polymerization product is carbonized at elevated temperatures.In the final step of the synthesis,the OMC is liberated by dissolution of the silica matrix with hydrofluoric acid or sodium hydroxide.If during the synthesis the entire pore system of the matrix is filled with the carbon product,the structure of the OMC can be described as a network of carbon rods.However,it is also possible to form the carbon product only on the pore walls of the matrix,without filling the entire pore.This procedure was applied in the present work.The produced OMCs consist of a network of nanopipes.These OMCs have three different kinds of pores:(i)mesopores inside the nano-pipes,(ii)mesopores between the nanopipes,and(iii) micropores,which correspond to defects in the walls of the nanopipes. In the present work,OMCs were synthesized by polymerization of furfuryl alcohol in SBA-15alumino-silicate templates with Si/Al ratios ranging from5to 80.The polymerization of furfuryl alcohol is normally acid catalyzed.The addition of an acid catalyst is re-quired for the successful synthesis of OMCs when the synthesis is performed in nonacidic silica.5However, this is unnecessary if the synthesis is performed in an acidic aluminosilicate matrix as in the present work. Hydroxyl groups adjacent to aluminum in the alumi-nosilicate framework can catalyze the polymerization reaction as Br?nsted acid sites.The strength and the concentration of these sites depend on the aluminum content of the framework.Furthermore,a significant portion of the aluminum can be present as extraframe-work species.The corresponding Lewis acid sites may also catalyze the furfuryl alcohol polymerization.This short discussion illustrates that the Si/Al ratio of the matrix may have an important influence on the proper-ties of the OMCs. The introduction of aluminum not only influences the acidity of the matrix,it may also affect its pore struc-ture.Therefore,in the present work,the matrixes used *To whom correspondence should be addressed.Telephone:+1(418) 6562131,Ext.6931.Fax:+1(418)6565993.E-mail:hans.darmstadt@ gch.ulaval.ca,or rryoo@webmail.kaist.ac.kr. ?Universite′Laval. ?Korea Advanced Institute of Science and Technology. (1)Ryoo,R.;Joo,S.H.;Jun,S.J.Phys.Chem.B1999,103,7743. (2)Joo,S.H.;Choi,S.J.;Oh,I.;Kwak,J.;Liu,Z.;Terasaki,O.; Ryoo,R.Nature2001,412,169. (3)Jun,S.;Joo,S.H.;Ryoo,R.;Kruk,M.;Jaroniec,M.;Liu,Z.; Ohsuna,T.;Terasaki,O.J.Am.Chem.Soc.2000,122,10712. (4)Ryoo,R.;Joo,S.H.;Kruk,M.;Jaroniec,M.Adv.Mater.2001, 13,677. (5)Kruk,M.;Jaroniec,M.;Ryoo,R.;Joo,S.H.J.Phys.Chem.B 2000,104,7960. 3300Chem.Mater.2003,15,3300-3307 10.1021/cm020673b CCC:$25.00?2003American Chemical Society Published on Web07/10/2003

相关文档
最新文档