圆的基本概念和性质—知识讲解(提高

圆的基本概念和性质—知识讲解(提高
圆的基本概念和性质—知识讲解(提高

圆的基本概念和性质—知识讲解(提高)

【学习目标】

1.知识目标:理解圆的有关概念和圆的对称性;

2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,?圆的对称性进行计算或证明;

3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯.

【要点梳理】

要点一、圆的定义及性质

1.圆的定义

(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.

要点诠释:

①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;

②圆是一条封闭曲线.

(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.

要点诠释:

①定点为圆心,定长为半径;

②圆指的是圆周,而不是圆面;

③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.

2.圆的性质

①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;

②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.

要点诠释:

①圆有无数条对称轴;

②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.

3.两圆的性质

两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).

要点二、与圆有关的概念

1.弦

弦:连结圆上任意两点的线段叫做弦.

直径:经过圆心的弦叫做直径.

弦心距:圆心到弦的距离叫做弦心距.

要点诠释:

直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.

为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.

证明:连结OC、OD

∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)

∴直径AB是⊙O中最长的弦.

2.弧

弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧

AB”.

半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;

优弧:大于半圆的弧叫做优弧;

劣弧:小于半圆的弧叫做劣弧.

要点诠释:

①半圆是弧,而弧不一定是半圆;

②无特殊说明时,弧指的是劣弧.

3.同心圆与等圆

圆心相同,半径不等的两个圆叫做同心圆.

圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.

4.等弧

在同圆或等圆中,能够完全重合的弧叫做等弧.

要点诠释:

①等弧成立的前提条件是在同圆或等圆中,不能忽视;

②圆中两平行弦所夹的弧相等.

【典型例题】

类型一、圆的定义

1.已知:如图,矩形ABCD的对角线AC与BD相交于点O,求证:点A、B、C、D在以点O为圆心

的同一个圆上.

【答案与解析】

∵四边形ABCD是矩形,

∴OA=OC,OB=OD,AC=BD,

∴OA=OC=OB=OD,

∴点A、B、C、D在以点O为圆心、OA为半径的圆上.

【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等. 举一反三:

【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()

A.正方形

B.菱形

C.矩形

D.等腰梯形

【答案】C.

2.爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全?

【答案与解析】

导火索燃烧的时间为18

09

20

.

()

=s

相同时间内,人跑的路程为2065130

?=

.()

m

∴点导火索的人安全.

【总结升华】爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示.

类型二、圆及有关概念

3.已知,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有的⊙O的弦中,弦长为整数的弦的条数为( )

A.2

B.3

C.4

D.5

【答案】 C.

【解析】作图,过点P作直径AB,过点P作弦,连接OC

则OC=5,CD=2PC,

由勾股定理,得,

∴CD=2PC=8,又∵AB=10,

∴过点P的弦长的取值范围是,

弦长的整数解为8,9,10,根据圆的对称性,弦长为9的弦有两条,所以弦长为整数的弦共4 条.

故选C.

【总结升华】在一个圆中,过一点的最长弦是经过这一点的直径,最短的弦是经过这一点与直径垂直的弦.知道这些,就可以利用垂径定理来确定过点P的弦长的取值范围.根据圆的对称性,弦长为9的弦有两条,容易漏解.

B

B 类型三、圆的对称性

4.圆O 所在平面上的一点P 到圆O 上的点的最大距离是10,最小距离是2,求此圆的半径是多少?

【答案与解析】

如图所示,分两种情况:

(1)当点P 为圆O 内一点(如图1),过点P 作圆O 的直径,分别交圆O 于A 、B 两点,

由题意可得P 到圆O 最大距离为10,最小距离为2,则AP=2,BP=10,

所以圆O 的半径为

62102=+.

图1 图2

(2)当点P 在圆外时(如图2),作直线OP ,分别交圆O 于A 、B ,由题可得P 到圆O 最大距离为10,

最小距离为2,则BP=10,AP=2,所以圆O 的半径

42

210=-. 综上所述,所求圆的半径为6或4.

【总结升华】题目中说到最大距离和最小距离,我们首先想到的就是直径,然后过点P 做圆的直径,得

到圆的半径.通常情况下,我们进行的都是在圆内的有关计算,这逐渐成为一种习惯,使得我们一看到题首先想到的就是圆内的情况,而忽略了圆外的情况,所以经常会出现漏解的情况.这也是本题想要提醒大家的地方.体现分类讨论的思想.

举一反三:

【变式1】平面上的一个点到圆的最小距离是4cm,最大距离是9cm ,则圆的半径是( ).

A.2.5cm

B.6.5cm

C. 2.5cm 或6.5cm

D. 5cm 或13cm

【答案】C.

【变式2】(1)过____________________上的三个点确定一个圆.

(2)交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.

【答案】(1)不在同一直线;

(2) 圆的旋转不变性;

5.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 的长的取值范围是 .

【答案】3≤OP≤5.

【解析】OP最长边应是半径长,为5;

根据垂线段最短,可得到当OP⊥AB时,OP最短.

∵直径为10,弦AB=8

∴∠OPA=90°,OA=5,由圆的对称性得AP=4,

=,∴OP最短为3.

由勾股定理得3

∴OP的长的取值范围是3≤OP≤5.

【总结升华】关键是知道OP何时最长与最短.

举一反三:

【变式】已知⊙O的半径为13,弦AB=24,P是弦AB上的一个动点,则OP的取值范围是___ ____.【答案】OP最大为半径,最小为O到AB的距离.所以5≤OP≤13.

圆的基本概念和性质教学设计

圆的基本概念和性质教学设计 教学设计思想 圆是初中几何中重要的内容之一。本节通过第一课时建立圆的基本概念,认识圆的轴对称性与中心对称性。讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验;第二课时在第一课时的基础上,掌握垂径定理及其逆定理;第三课时加深学生对弦、弧、圆心角之间关系的认识;第四课时的重点是圆周角,通过圆周角定理及其推理的推理论证,从而把圆周角、圆心角、弧和弦之间的关系展现出来,从而使学生全面了解和掌握圆的基本性质。教学时先让学生动手操作来发现结论,再通过推理的方式说明结论的正确性。 数学源于生活,又服务于生活,最终要解决生活中的问题。利用电子白板教学帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。 教学目标 圆的基本概念和性质总目标: 1、理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,理解弧、弦、圆心角、圆周角之间的关系; 2、掌握垂径定理及推论的意义及应用,掌握圆心角与弧、弦关系定理意义及应用,掌握圆周角定理及推论的意义和应用; 3、探索圆周角与圆心角、弧、弦的关系,理解并会证明圆周角定理及其推论,理解圆内接四边形的对角互补。 第一课时教学目标 知识与技能: 1、经历圆的形成过程,理解圆的概念, 2、能在图形中准确识别圆、圆心、半径、直径、圆弧、半圆、等圆、等弧等; 3、认识圆的对称性,知道圆既是轴对称图形,又是中心对称图形; 过程与方法: 1、经历抽象和建立圆的概念、探究圆的对称性及相关性质的过程,熟记圆及有关概念; 2、通过折叠、旋转的动手实验,多观察、探索、发现圆中圆心、弧、弦之间的关系,体会研究几何图形的各种方法; 情感态度价值观: 经历探索圆及其有关结论的过程,发展学生的数学观察及思考能力以及问题的提出能力。 教学重难点 重点:(1)了解圆的概念的形成过程;(2)揭示与圆有关的本质属性。 难点:圆的概念的形成过程和圆的定义。 学情分析

圆的基本概念和性质—知识讲解(提高)

圆的基本概念和性质—知识讲解(提高) 【学习目标】 1.知识目标:理解圆的有关概念和圆的对称性; 2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,?圆的对称性进行计算或证明; 3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯. 【要点梳理】 要点一、圆的定义及性质 1.圆的定义 (1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”. 要点诠释: ①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可; ②圆是一条封闭曲线. (2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 要点诠释: ①定点为圆心,定长为半径; ②圆指的是圆周,而不是圆面; ③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面. 2.圆的性质 ①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心; ②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴. 要点诠释: ①圆有无数条对称轴; ②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”. 3.两圆的性质 两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线). 要点二、与圆有关的概念 1.弦 弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径. 弦心距:圆心到弦的距离叫做弦心距.

《圆的基本性质》各节知识点

圆的知识点及基础训练 第一节 圆 第二节 圆的轴对称性 第三节 圆心角 第四节 圆周角 第五节 弧长及扇形的面积 第六节 侧面积及全面积 六大知识点: 1、圆的概念及点与圆的位置关系 2、三角形的外接圆 3、垂径定理 4、垂径定理的逆定理及其应用 5、圆心角的概念及其性质 6、圆心角、弧、弦、弦心距之间的关系 【课本相关知识点】 1、圆的定义:在同一平面,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。 2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。 3、弧:圆上任意 叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。 4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆 5、点与圆的三种位置关系: 若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则: 点P 在⊙O 外 ; 点P 在⊙O 上 ; 点P 在⊙O 。 6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上 7、过一点可作 个圆。过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。 8、过 的三点确定一个圆。 9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。三角形的外心是三角形三条边的 【典型例题】 【题型一】证明多点共圆 例1、已知矩形ABCD ,如图所示,试说明:矩形ABCD 的四个顶点A 、B 、C 、D 在同一个圆上 【题型二】相关概念说法的正误判断 例1、(中考数学)有下列四个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧。其中正确的有( )A.4个 B.3个 C.3个 D.2个 例2、下列说法中,错误的是( ) A.直径是弦 B.半圆是弧 C.圆最长的弦是直径 D.弧小于半圆 例3、下列命题中,正确的是( ) A .三角形的三个顶点在同一个圆上 B .过圆心的线段叫做圆的直径 C .大于劣弧的弧叫优弧 D .圆任一点到圆上任一点的距离都小于半径 例4、下列四个命题:① 经过任意三点可以作一个圆;② 三角形的外心在三角形的部;③ 等腰三角形的外心必在底边的中线上;④ 菱形一定有外接圆,圆心是对角线的交点。其中真命题的个数( ) A.4个 B.3个 C.3个 D.2个 7、圆周角定理 8、圆周角定理的推论 9、圆锥的侧面积与全面积

圆的基本性质知识点整理

3.1 圆(1) 在同一平面内,线段OP绕它固定的一个端点O旋转一周,所经过的封闭曲线叫做圆,定点O叫做,线段OP叫做。 如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,那么就有:d<r 点P在圆; dr 点P在圆上; d>r 点P在圆; 如图,在ABC中,∠BAC=Rt∠,AO是BC边上的中线,BC 为O的直径. (1)点A是否在圆上?请说明理由. (2)写出圆中所有的劣弧和优弧. 如图,在A岛附近,半径约250km的范围内是一暗礁区, 往北300km有一灯塔B,往西400km有一灯塔C.现有一渔船 沿CB航行,问:渔船会进入暗礁区吗? ====================================================================== 3.1圆(2) (1)经过一个 ..已知点能作个圆; (2)经过两个已知点A,B能作个圆;过点A,B任意作一个圆, 圆心应该在怎样的一条直线上? (3)不在同一条直线上的三个点一个圆 经过三角形各个顶点的圆叫做,这个外接圆的圆心叫做三角形的,三角形叫做圆的; 三角形的外心是的交点。 锐角三角形的外心在; 直角三角形的外心在; 钝角三角形的外心在。

作图:已知△ABC ,用直尺和圆规作出△ABC 的外接圆 3.2图形的旋转 图形旋转的性质 图形经过旋转所得的图形和原图形; 对应点到的距离相等,任何一对对应点与连线所成的角度等于。 3.3垂 径定理(1) 圆是图形,它的对称轴是。 如图,直径CD 垂直于弦AB , 根据对称性你能发现哪些相等的量?填一填:∵CD 是直径,CD ⊥AB ∴ 1、如图,射线OP 经过怎样的旋转,得到射线OQ ? 3、如图,以点O 为旋转中心,将线段AB 按顺时针方向旋转60°,作出经旋转所得的线段B A '',并求直线B A ''与直线AB 所成的锐角的度数。 2、如图,以点O 为旋转中心,将△ABC 按顺时针方向旋转60°,作出经旋转所得的图形。

(完整版)函数的基本性质详细知识点及题型分类(含课后作业)

《函数的基本性质》专题复习 (一)函数的单调性与最值 ★知识梳理 一、函数的单调性 1、定义: 设函数的定义域为,区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 2、单调性的简单性质: ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内: 增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。 3、判断函数单调性的方法步骤: 利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1)(x f y =I I )(x f y =

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

圆的基本性质知识点

圆的基本性质 复习总标 1.知道圆及有关概念,确定圆的条件。三角形的内心和外心。 2.能灵活运用弧、弦、圆心角和圆心角的关系解决问题;掌握圆的轴对称性、中心对称和旋转不变性;探索并理解锤径定理。 3.会用垂径定理进行有关计算。 知识梳理 1.圆的有关概念 (1)圆心、半圆、同心圆、等圆、弦与弧。 (2)直径是经过圆心的弦。是圆中最长的弦。弧是圆的一部分。 2.圆周角与圆心角 (1)一条弧所对的圆周角等于它所对的圆心角的一半。 90圆周角所对的弦是圆的直径。(2)圆周角与半圆或直径:半圆或直径所对的圆周角是直角; (3)圆周角与半圆或等弧:同弧或等弧所对的圆周角相等;在同源或等圆中,相等的圆周角所对的弧相等。 3.圆的对称性 (1)圆是中心对称图形,圆心是它的对称中心。 (2)圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其他各组量分别相等。 (3)圆的轴对称性:经过圆心都的任意一条直线都是它的对称轴。垂径定理是研究有关圆的知识的基础。垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。还可以概括为:如果有一条直线,1.垂直于弦;2.经过圆心;3.平分弦(非直径);4.平分弦所对的优弧;5.平分弦所对的劣弧,同时具备其中任意两个条件,那么就可以得到其他三个结论。 易错知识点

1.弧是圆的一部分,直径是圆中最长的弦,半径不是弦。 2.垂径定理的推论:平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧。 3.理解圆心角、弧、弦三者之间的关系时,应注意“同圆或等圆中”或“等弧”这个条件。 4.同一条弦所对的圆周角有两个,它们互补。 中考规律盘点及预测 本讲点内容在中考中,圆的基本性质在淡化与降低,证明难度成了考查知识的重点。旗本性质的应用 主要有两个方面,一是应用弧、弦、弦心距、圆心角、圆周角各对量之间的关系进行证明;二是应用半径、半弦和弦心距构成直角三角形进行相关计算。多数以填空题、选择题或中等难度解答题等基本题型出现,难度一般不大。 1、(2009年安徽)如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且 CD=, ,则AB 的长为…【 】 A 、2 B 、3 C 、4 D 、5 【解析】主要考察:垂径定理、勾股定理或相交弦定理.用垂径定理得 ,由勾股定理得HB=1 ,则()2 2 2 1R R =+-由此得2R=3 或由相交弦定理得 ()2 121R =?-,由此得2R=3,所以AB=3.选 B 2、(2008 绍兴)如图,量角器外缘边上有A P Q ,,三点,它们所表 示的读数分别是180,70,30,则PAQ ∠的大小为( ) A .10 B .20 C .30 D .40 【解析】主要考察:弧的度数与它所对的圆周角度数之间的关系。一条弧所对的圆周角 等于它所对圆心角的一半。()?=?-?==∠2030702 1 21Q P PAQ 选B 3、(2008年海南) 如图, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段 OB 上运动.设∠ACP =x ,则x 的取值范围是 . 第9题图

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结 一、知识归纳 1.函数的奇偶性 2.函数的周期性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 解题提醒: ①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. ②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)

=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). ③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 题型一 函数奇偶性的判断 典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1) 1-x 1+x ; (2)f (x )=? ???? -x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x 2; (4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x 1+x ≥0, 所以-1<x ≤1, 所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法) 当x >0时,f (x )=-x 2+2x +1, -x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1, -x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).

函数的基本性质 知识点和典型例题

学生姓名: 年级: 班型:1对1 上课时间: (第 次课) 剩余课时: 上课内容:函数的基本性质 一、函数的单调性: 1、定义域为I 的函数f (x )在区间D 上的增减性 (1)共同条件:12 , ,D I x x D ??↓?∈?任意 (2)假设前提:12x x <。 (3)判断依据: ①若__________________,则f (x )在区间D 上是增函数; ②若__________________,则f (x )在区间D 上是增函数。 2、单调区间 如果函数y=f (x )在区间D 上是增函数或减函数,就说f (x )在区间D 上具有(严格的)___________,区间D 叫做f (x )的__________。 思考探究 1、把增(减)函数定义中的“任意两个自变量12,x x ”换成“存在两个自变量12,x x ”还能判断函数是增(减)函数吗? 2、把增(减)函数定义中的“某个区间D ”去掉,其余条件不变,能否判断函数的增减性? 3、所有的函数都具有单调性吗? 自主测评 1、下列说法正确的是( ) A 、定义在(,)a b 上的函数f (x ),若存在12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 B 、定义在(,)a b 上的函数f (x ),若有无穷多对12,(,)x x a b ∈使得12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 C 、若f (x )在区间I 1上为增函数,在区间I 2上也为增函数,那以f (x )在I 1U I 2上也一定为增函数

浙教版九年级数学上 第3章圆的基本性质 复习提纲

第三章圆的基本性质复习 一、 点和圆的位置关系: 如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,则: (1)dr → 1、两个圆的圆心都是O ,半径分别为1r 、2r ,且1r <OA <2r ,那么点A 在( ) A 、⊙1r 内 B 、⊙2r 外 C 、⊙1r 外,⊙2r 内 D 、⊙1r 内,⊙2r 外 2、一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是( ) A 、2.5 cm 或6.5 cm B 、2.5 cm C 、6.5 cm D 、5 cm 或13cm 3. ⊙0的半径为13cm ,圆心O 到直线l 的距离d=OD=5cm .在直线l 上有三点P,Q,R ,且PD = 12cm , QD<12cm , RD>12cm ,则点P 在 ,点Q 在 ,点R 在 . 4. AB 为⊙0的直径,C 为⊙O 上一点,过C 作CD ⊥AB 于点D ,延长CD 至E ,使DE=CD ,那么点E 的位置 ( ) A .在⊙0 内 B .在⊙0上 C .在⊙0外 D .不能确定 二、几点确定一个圆 问题:(1)经过一个已知点可以画多少个圆? (2)经过两个已知点可以画多少个圆?这样的圆的圆心在怎样的一条直线上? (3)过同在一条直线上的三个点能画圆吗? 定理:经过 确定一个圆。 1、三角形的外心恰在它的一条边上,那么这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定 2、作下列三角形的外接圆: 3、找出下图残破的圆的圆心 二、 圆的轴对称性: 1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧 2、推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧

【重点梳理】-初三数学-圆的基本概念和性质(1)

作业帮一课初中独家资料之【初三数学】 1. 圆的定义 (1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆 O”. 要点诠释: ①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者 缺一不可; ②圆是一条封闭曲线. (2)静态:圆心为 O,半径为 r 的圆是平面内到定点O 的距离等于定长r 的点的集合. 要点诠释: ①定点为圆心,定长为半径; ②圆指的是圆周,而不是圆面; ③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点 的集合是球面,一个闭合的曲面. 2.圆的性质 ①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对 称图形,对称中心是圆心; ②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何 一条直线都是圆的对称轴. 要点诠释: ①圆有无数条对称轴; ②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”, 而应该说“圆的对称轴是直径所在的直线”. 3.两圆的性质 两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线). 每周六 10 点,【作业帮一课初中】服务号定时上新独家资料,等你来抢~~~ 核心知识点二:与圆有关的概念 1.弦 弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径. 弦心距:圆心到弦的距离叫做弦心距. 要点诠释: 直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径. 为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD. 证明:连结OC、OD ∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦. 2.弧

圆的基本性质知识点总结

《圆的基本性质》知识点总结 1.在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的封闭曲线叫做圆。固定的端点O 叫做圆心,线段OA 叫做半径,以点O 为圆心的圆,记作☉O ,读作“圆O ” 2、与圆有关的概念 (1)弦和直径(连结圆上任意两点的线段BC 叫做弦,经过圆心的弦AB 叫做直径) (2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条 弧,每一条弧都叫做半圆) (3)等圆(半径相等的两个圆叫做等圆) 3、点和圆的位置关系: 如果P是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,则: (1)d<r → 圆内 (2)d=r → 圆上 (3)d >r → 圆外 4、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。 一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。 5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)平分弧的直径,垂直平分弧所对的弦。 6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 7、圆周角定理: 一条弧所对的圆周角等于它所对的 圆心角的一半 。 推论:半圆(或直径)所对的圆周角是 直角,90°圆周角所对的弦是 直径 。 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。 8、弧长及扇形的面积圆锥的侧面积和全面积 (1)弧长公式: 180 r n l π=

高一数学函数的基本性质知识点梳理

高一数学函数的基本性质知识点梳理 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx| x∈A }叫做函数的值域. 注意:如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是: 1 分式的分母不等于零; 2 偶次方根的被开方数不小于零; 3 对数式的真数必须大于零; 4 指数、对数式的底必须大于零且不等于 1. 5 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 . 6指数为零底不可以等于零 2.构成函数的三要素:定义域、对应关系和值域 再注意: 1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数 2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备 值域补充 1 、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 . 2 . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的

圆基本概念和性质

_O _A 图1 C D 北辰教育学科教师辅导学案 学员编号: 年 级: 课 时 数: 学员姓名: 辅导科目: 学科教师: 授课类型 T 圆的基本概念 C 圆的基本概念 T 圆的对称性 授课日期及时段 年 月 日 00:00--00:00 教学内容 —————圆的基本概念 知识结构 一、圆的基本概念: 1、圆的概念:圆可以看作是到定点的距离等于定长的点的集合。如图,把线段OA 绕着端点O 在平面内旋转1周,端点A 运动所形成的图形叫做圆.其中,固定的端点O 叫做圆心,线段OA 叫做半径.记作⊙O ,读作“圆O ”. 2、 2、圆的半径确定圆的大小;圆心确定圆的位置。 3、圆:圆可以看作是到定点的距离等于定长的点的集合;圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合。 4、点与圆的位置关系:点P 与圆心的距离为d ,半径为r,则点在直线外?r d >; 点在直线上?r d =; 点在直线内?r d <。 注意:这里是等价关系,即由左边可以推出右边,由右边也可以推出左边。 二、圆心角、圆周角、弧、弦、弦心距之间的关系 1、弦:连接圆上任意两点的线段,如图1上弦AB ;直径是一条 特殊的弦,并且是圆中最大的弦;从圆心到弦的距离叫做弦心距。 2、直径:经过圆心的弦,如图1上弦CD 。 3、圆心角:顶点在圆心的角,如图2上:∠AOB 。 4、圆周角:顶点在圆上,并且两边都和圆相交的角,如图3上:∠BAC 。 3、 5、同心圆:圆心相等、半径不同的两个圆。 图2

4、 6、等圆:半径相同、圆心不同的两个圆。 5、 7、等弧:能够互相重合的弧。同圆或等圆的半径相等。 注意:半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径。 8、圆的任意一条直径的两个端点吧圆分成两条弧,每条弧都叫做半圆。大于半圆 的弧叫做优弧,小于半圆的弧叫做劣弧。 题型1: 1、概念辨析:判断下列说法是否正确? (1)直径是弦; ( √ ) (2)弦是直径; ( × ) (3)半圆是弧,但弧不一定是半圆; ( √ ) (4)半径相等的两个半圆是等弧; ( √ ) (5)长度相等的两条弧是等弧; ( × ) (6)半圆是弧; ( √ ) (7)弧是半圆. ( × ) 2、如图,在Rt ABC △中,直角边3AB =,4BC =,点E ,F 分别是BC ,AC 的中点,以点A 为圆心, AB 的长为半径画圆,则点E 在圆A 的_________,点F 在圆A 的_________. 解题思路:利用点与圆的位置关系,答案:外部,内部 2、如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°,点C 是弧AB 上异于A 、B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连接DE ,点G 、H 在线段DE 上,且DG =GH =HE . (1)求证:四边形OGCH 是平行四边形 (1)连结oc ,交de 于m , ∵四边形odce 是矩形 ∴om =cm ,em =dm 又∵dg=he ∴em -eh =dm -dg ,即hm =gm ∴四边形ogch 是平行四边形 3、已知:如图,AB 是⊙O 的直径,半径OC ⊥AB ,过CO 的中点D 作DE ∥AB 交⊙O 于点E ,连接EO ,则∠EOC 的度数为_____度. 答案:60 通过半径相等,把条件转化到Rt△ODE 中,OD=OE ,利用特殊直角三角形的性质求解 解:∵OD= OC= OE ,OC⊥AB,DE∥AB, ∴在Rt△ODE 中,∠E=30°, ∴∠EOC=90°-30°=60° 图3

函数的基本性质知识点

第 1 页 共 1 页 ?单调性 1、定义:如果函数()x f 对区间D 内的任意 21,x x ,当21x x <时都有()()21x f x f <,则()x f 在D 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在D 内时减函数。 2、函数单调性的证明方法: (1)定义法:其一般步骤为: ①任取2121,,x x D x x <且∈; ②论证)()()()(2121x f x f x f x f >(或<; ③根据定义得出结论。 (2)用已知函数的单调性 (3)图象法 3、复合函数的单调性 如果是增函数;如果 单调性相同,那么和))(()()(x g f y x g u u f y ===)(u f y =和是减函数。 单调性相反,那么))(()(x g f y x g u == 也就是说,复合函数的单调性由其内、外函数的单调性共同决定,它遵循“同增异减”的原则,即内外函数的单调性相同时递增,相异时递减。 ?函数的奇偶性 1、 定义:设函数A x x f y ∈=),(,如果对于任意的A x ∈,都有)()(x f x f -=-,则称函数)(x f y =为奇函数;如果对于任意的A x ∈,都有)()(x f x f =-,则称函数)(x f y =为偶函数。 2、 性质 函数的基本性质

第 2 页 共 2 页 (1)前提条件:定义域关于原点对称。 (2)奇函数的图像关于原点对称,偶函数的图像关于y 轴对称。 (3)若)(x f 的定义域为R ,且当[)+∞∈,0x 时为增函数,则当)(x f 为奇函数时,它在()0,∞-上为增函数,当)(x f 为偶函数时,它在()0,∞-上为减函数。 (4)若奇函数)(x f 的定义域中包含0,则0)0(=f 。 3、 判断函数奇偶性的方法 (1) 定义法:①确定定义域,看是否关于原点对称,若不对称,则非奇非偶。 ②若定义域关于原点对称,函数表达式能化简则适当化简,再判断。 ③若函数较复杂,可利用变形式子,用求和(或差)法:即看 )()(x f x f ±-与0的关系;或用求商法(即看 ) ()(x f x f -与1±的关系)。 ④分段函数应分段讨论。 (2)图像法:若函数图象关于原点中心对称,则为奇函数;若函数图象关于y 轴对称,则为偶函数。 4、熟记结论: (1)设)(x f 、)(x g 的定义域分别是D 1、D 2,那么在它们的公共定义域21D D D ?=上:奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇 (2)对于奇函数:)0)((1) ()(0)()()()(≠-=-?=+-?-=-x f x f x f x f x f x f x f 对于偶函数:)0)((1)()(0)()()()(≠=-? =--?=-x f x f x f x f x f x f x f

初三数学圆的基本概念和性质知识点、

B C 鸣 人 教 育 学 科 教 师 讲 义 【考纲说明】 1、理解圆及其有关概念, 知道圆的对称性,了解弧﹑弦﹑圆心角的关系。 2、了解圆周角与圆心角的关系,了解直径所对的圆周角是直角,会在相应的图形中确定垂径定理的条件和结论。 3、本部分在中考中占5分左右。 【知识梳理】 1.圆的基本概念 定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离 等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ” 2.圆的对称性及特性: (1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴; (2)圆也是中心对称图形,它的对称中心就是圆心. (3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。 4.直径:经过圆心的弦叫直径。 注:圆中有无数条直径 5.圆弧: (1)圆上任意两点间的部分,也可简称为“弧” 以A,B 两点为端点的弧.记作AB ,读作“弧AB ”.

(2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。如弧AD. (3)小于半圆的弧叫做劣弧,如记作AB ? (用两个字母). (4)大于半圆的弧叫做优弧,如记作ACB ? (用三个字母). 6.垂径定理及其推论: (1)定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧; (2)推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧。 垂径定理归纳为:一条直线,如果具有:①经过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所 对的劣弧。这五条中可以“知二推三” 7.垂径定理的推论:圆的两条平行弦所夹的弧相等. 8.圆心角:顶点在圆心的角叫圆心角; 9.圆周角:顶点在圆上,并且两边都与圆相交的角,叫做圆周角; 10.弦心距:过圆心作弦的垂线,圆心与垂足之间的距离. 11.弧﹑弦﹑圆心角之间的关系 (1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 (2)在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距,如果有一组量相等,那么它们所对应的其余各组量都分别相等. 12.圆周角定理及其推论 (1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半; (2)圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。 【经典例题】 【例1】下列判断中正确的是( ) A. 平分弦的直线垂直于弦 B. 平分弦的直线也必平分弦所对的两条弧 C. 弦的垂直平分线必平分弦所对的两条弧 D. 平分一条弧的直线必平分这条弧所对的弦 【例2】如果两条弦相等,那么( ) A .这两条弦所对的弧相等 B .这两条弦所对的圆心角相等 C .这两条弦的弦心距相等 D .以上答案都不对 【例3】如图,已知AB 为⊙O 的直径,∠ E =20°,∠DBC =50°,则∠CBE =______. 【例4】(08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图

圆性质及基本概念

圆性质及基本概念公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

圆性质及基本概念 一基本概念 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点称为圆心,定长称为半径;圆O记作?O. 2.相关概念: (1)弧:半圆、优弧、劣弧:(2)弦:直径(3)弦心距: (4)圆心角:(5)圆周角:(在同圆或等圆中5要素知道一可推得其他都相等) 二重要定理 垂径定理: 垂直于弦的直径,平分弦并且平分弦所对的优弧和劣弧. 推论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的优弧和劣弧. 垂径定理推论一:对于一个圆来说,如果具备下列五个条件中的任何两个,那么也具有其它三个:①垂直于弦,②过圆心,③平分弦,④平分弦所对的优弧,⑤平分弦所对的劣弧。(当以、②③为题设时,“弦”不能是直径。) 相关定理 圆周角定理: 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的 一半;

圆周角定理推论: 1.直径所对的圆周角是90°,90°圆周角所对弦是直径. 2.同(等)弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对弧相等; 三点定圆定理: 三点定圆定理:不在同一条直线上的三个点确定一个圆.三角形的外心与内心 一概念练习 1已知:⊙O的半径为13cm,弦AB∥CD,AB=24cm, CD=10cm,则AB、CD之间的距离为() A.17cm B.7cm C.12cm D.17cm 或7cm 2下列四个命题: ①直径是弦; ②经过三个点一定可以作圆; ③三角形的外心到三角形各顶点的距离都相等; ④半径相等的两个半圆是等弧. 其中正确的是() A.4个 B.3个 C.2个 D.1个

高一数学函数的基本性质知识点练习题

函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个

圆的基本性质知识点整理

3.1 圆(1) 在同一平面内,线段0P 绕它固定的一个端点C 旋转一周,所经过的圭寸闭曲线叫做 圆,定点C 叫做,线段OF 叫做。 如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,那么就有: d v r 0点P 在圆; dr 点;P 在圆上; d > r :-点P 在圆; 如图,在 ABC 中,/ BAC= Rt Z ,AO 是BC 边上的中线, 为一 C 的直径. (1) 点A 是否在圆上?请说明理由. (2) 写出圆中所有的劣弧和优弧. 如图,在A 岛附近,半径约250knm 勺范围内是一暗礁区, 往北300kn 有一灯塔B,往西400km 有一灯塔C.现有一渔船 沿CB 亢行,问:渔船会进入暗礁区吗? 3.1 圆(2) (1) 经过一个已知点能作个圆; (2) 经过两个已知点A,B 能作个圆;过点A,B 任意作一个圆 圆心应该在怎样的一条直线上? (3) 不在同一条直线上的三个点一个圆 经过三角形各个顶点的圆叫做,这个外接圆的圆心叫做三角形的,三角形叫做圆 的; 三角形的外心是的交点。 锐角三角形的外心在; 直角三角形的外心在; 钝角三角形的外心在。 BC

作图:已知△ ABC,用直尺和圆规作出△ ABC的外接圆 3.2图形的旋转 图形旋转的性质 图形经过旋转所得的图形和原图形; 对应点到的距离相等,任何一对对应点与连线所成的角度等于。 1、如图,射线0P经过怎样的旋转,得到射线0Q ? 3、如图,以点0为旋转中心,将线段AB按顺时针方向旋转60° ,作出经旋 转所得的线段AB,并求直线AB与直线AB所成的锐角的度数 -B 径定理(1) 圆是图形,它的对称轴是。 2、如图,以点O为旋转中心,将A ABC按顺时针方向旋转60° ,作出经旋 转所得的图形 根据对称性你能发现哪些相等的量?填一填:V CD是直径,CD丄AB

相关文档
最新文档