平行四边形矩形菱形经典例题(8套)

平行四边形矩形菱形经典例题(8套)
平行四边形矩形菱形经典例题(8套)

经典例题(附带详细答案)

1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.

【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥,

BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF =

2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,

求四边形ABCD 的周长. 【

【答案】20、

解法一: ∵

∴ 又∵

∴∥即得是平行四边形 ∴

∴四边形的周长 解法二:

连接

3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=AC A

D C

B

A

D C

B

D

C

A

B

E

F

又∵ ∴≌

∴四边形的周长 解法三:

连接

又∵ ∴

∴∥即是平行四边形 ∴

∴四边形的周长

3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,

∠C 的大小.

【关键词】多边形的内角和 【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.

根据四边形内角和定理得,360602)20(=++++x x x . 解得,70=x .

∴?=∠70A ,?=∠90B ,?=∠140C .

4.(如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.

【关键词】平行四边形的性质,判定

【答案】证明:(1)DF BE Q ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=Q °,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==Q ,,

AFD CEB ∴△≌△(SAS).

AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=?+?=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A

B

D

E

F

C

A

D C

B

(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)

5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;

(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;

(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.

【关键词】平行四边形的判定

【答案】解:(1)AE EF ⊥Q 2390∴∠+∠=°

Q 四边形ABCD 为正方形

90B C ∴∠=∠=° 1390∴∠+∠=° 12∠=∠

90DAM ABE DA AB ∠=∠==Q °, DAM ABE ∴△≌△ DM AE ∴= AE EP =Q DM PE ∴=

∴四边形DMEP 是平行四边形.

解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形 证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP . 90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=Q ° 4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥Q

A

D

C

B

E

B

C

E D

A

F P F

DM EP ∴⊥

∴四边形DMEP 为平行四边形

6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。 证明:四边形DECF 是平行四边形。

【关键词】平行四边形的判定

【答案】∵D.E 、F 分别为AB.BC.CA 的中点, ∴DF ∥BC ,DE ∥AC ,

∴四边形DECF 是平行四边形.

7.(2009年包头)已知二次函数2

y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,

(02)C -,,直线x m =(2m >)与x 轴交于点D .

(1)求二次函数的解析式;

(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示); (3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.

【关键词】二次函数、相似三角形、运动变化、抛物线

B C

E D

A F

P

5

4

1

M

解:(1)根据题意,得04202.a b c a b c c ++=??

++=??=-?

,,

解得132a b c =-==-,,.

232y x x ∴=-+-.

(2)当EDB AOC △∽△时,

AO CO ED BD =或AO CO

BD ED =

, ∵122AO CO BD m ===-,,, 当AO CO ED BD =时,得122

ED m =-, ∴2

2

m ED -=,

∵点E 在第四象限,∴122m E m -??

???

,. 当

AO CO BD ED =时,得12

2m ED

=

-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,

. (3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则 1EF AB ==,点F 的横坐标为1m -, 当点1E 的坐标为22m m -?? ???,

时,点1F 的坐标为212m m -?

?- ???

,,

∵点1F 在抛物线的图象上, ∴

22(1)3(1)22

m

m m -=--+--, ∴2

211140m m -+=,

∴(27)(2)0m m --=,

∴7

22

m m =

=,(舍去)

, ∴1532

4F ??- ???

, ∴33144

ABEF S =?

=Y . 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,, ∵点2F 在抛物线的图象上,

∴2

42(1)3(1)2m m m -=--+--, ∴27100m m -+=,

∴(2)(5)0m m --=,∴2m =(舍去),5m =,

∴2(46)F -,

, ∴166ABEF S =?=Y .

注:各题的其它解法或证法可参照该评分标准给分.

8.(2009年莆田)已知:如图在ABCD Y

中,过对角线BD 的中点O 作直线EF 分别交DA

的延长线、AB 、DC 、BC 的延长线于点E 、M 、N 、F 。 (1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明;

(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的

变换得到?

【关键词】四边形、全等三角形、变换 (1)DOE BOF ①△≌△;

证明:∵四边形ABCD 是平行四边形

∴AD BC ∥

∴EDO FBO E F ∠=∠∠=∠, 又∵OD OB =

∴()DOE BOF AAS △≌△

BOM DON ②△≌△

E

B

M

O

D N

F

C

A E

B M O

D N

F C

A

证明:∵四边形ABCD 是平行四边形

∴AB CD ∥

∴MBO NDO BMO DNO ∠=∠∠=∠, 又∵BO DO =

∴()BOM DON AAS △≌△

ABD CDB ③△≌△;

证明:∵四边形ABCD 是平行四边形

∴AD CB AB CD ==,

又∵BD DB =

∴()ABD CDB SSS △≌△

(2)绕点O 旋转180°后得到或以点O 为中心作对称变换得到. 8分 9.(2009年温州)在所给的9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.

(1)在图甲中画一个平行四边形,使它的周长是整数;(2)在图乙中画一个平行四边形,使它的周长不是整数.(注:图甲、图乙在答题纸上) 【关键词】平行四边形的性质,判定 【答案】解:(1)

(2)

10.(2009年中山)在ABCD Y

中,10AB =,AD m =,60D ∠=°, 以AB 为直径作O ⊙,

(1)求圆心O 到CD 的距离(用含m 的代数式来表示); (2)当m 取何值时,CD 与O ⊙相切.

【关键词】利用平行四边形证明线段相等

【答案】(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F ,

AE OF OF ∴∥,就是圆心O 到CD 的距离. Q 四边形ABCD 是平行四边形, AB CD AE OF ∴∴=∥,.

在Rt ADE △中,60sin sin 60AE AE

D D AD AD

∠=∠=

=

°,,°,

222

AE AE OF AE m m ====,,, 圆心到CD 的距离PF

. (2

)OF =

Q , AB 为O ⊙的直径,且10AB =,

∴当5OF =时,CD 与O ⊙相切于F 点,

5m ==, ∴

当3

m =

时,CD 与O ⊙相切. 11.(2009年宁德市)(本题满分8分)如图:点A.D.B.E 在同一直线上,AD =BE ,AC =DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)

【关键词】平行四边形的判定

【答案】解法1:图中∠CBA =∠E

证明:∵AD =BE

∴AD +DB =BE +DB 即AB =DE ∵AC ∥DF ∴∠A =∠FDE 又∵AC =DF

∴△ABC ≌△DEF

∴∠CBA =∠E

解法2:图中∠FCB =∠E 证明:∵AC =DF ,AC ∥DF

∴四边形ADFC 是平行四边形 ∴CF ∥AD ,CF =AD

∵AD =BE ∴CF =BE ,CF ∥BE ∴四边形BEFC 是平行四边形 ∴∠FCB =∠E

12.(2009年山东青岛市)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题: (1)当t 为何值时,PE AB ∥?

(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使2

25

PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.

(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.

A

F

E D C

B A F

E D C B

【关键词】全等三角形的性质与判定、相似三角形判定和性质、平行四边形有关的计算 【答案】

解:(1)∵PE AB ∥

DE DP

DA DB

=

. 而10DE t DP t ==-,, ∴10610t t -=, ∴154t =.

∴当15

(s)4

t PE AB =,∥.

(2)∵EF 平行且等于CD , ∴四边形CDEF 是平行四边形.

∴DEQ C DQE BDC ∠=∠∠=∠,. ∵10BC BD ==,

∴DEQ C DQE BDC ∠=∠=∠=∠. ∴DEQ BCD △∽△.

DE EQ

BC CD =

. 104

t EQ

=

. ∴2

5

EQ t =.

过B 作BM CD ⊥,交CD 于M ,过P 作PN EF ⊥,交EF 于N .

BM ====

∵ED DQ BP t ===,

F

F

∴102PQ t =-. 又PNQ BMD △∽△,

PQ PN

BD BM

=

10210t -=,

15t PN ?=-??

211212255PEQ t S EQ PN t ?=

=??-=??

g △. (3

)1

1

42

2

BCD S CD BM ==??=g g △ 若2

25

PEQ BCD S S =△△,

则有22

25

+=? 解得121

4t t ==,. (4)在PDE △和FBP △中,

10DE BP t PD BF t PDE FBP PDE FBP ==?

?

==-???∠=∠?

,△≌△, ∴PDE PFCDE PFCD S S S =+△五边形四边形 FBP PFCD S S =+△四边形

BCD S ==△.

∴在运动过程中,五边形PFCDE 的面积不变.

13. (2009年达州)如图10,⊙O 的弦AD ∥BC,过点D 的切线交BC 的延长线于点E ,AC ∥DE 交BD 于点H ,DO 及延长线分别交AC.BC 于点G 、F.

(1)求证:DF 垂直平分AC ; (2)求证:FC =CE ;

(3)若弦AD =5㎝,AC =8㎝,求⊙O 的半径.

【关键词】圆,平行四边形,勾股定理

【答案】

(1)∵DE是⊙O的切线,且DF过圆心O

∴DF⊥DE

又∵AC∥DE

∴DF⊥AC

∴DF垂直平分AC

(2)由(1)知:AG=GC

又∵AD∥BC

∴∠DAG=∠FCG

又∵∠AGD=∠CGF

∴△AGD≌△CGF(ASA)

∴AD=FC

∵AD∥BC且AC∥DE

∴四边形ACED是平行四边形

∴AD=CE

∴FC=CE5分

(3)连结AO;∵AG=GC,AC=8cm,∴AG=4cm

在Rt△AGD中,由勾股定理得GD=AD2-AG2=52-42=3cm

设圆的半径为r,则AO=r,OG=r-3

在Rt△AOG中,由勾股定理得AO2=OG2+AG2

有:r2=(r-3)2+42解得r=256

∴⊙O的半径为256cm.

经典例题(附带答案2)

例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?

分析根据平行四边形的对角相等,邻角互补可以求出四个内角的度数.

解设平行四边形的一个内角的度数为x,则它的邻角的度数为3x,根据题意,得,解得,∴

∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.

例2 已知:如图,的周长为60cm,对角线AC、BD相交于点O,的周长比的周长多8cm,求这个平行四边形各边的长.

分析由平行四边形对边相等,可知平行四边形周长的一半=30cm,又由的周长比的周长多8cm,可知cm,由此两式,可求得各边的长.

解∵四边形为平行四边形,∴

,∴

,∴

答:这个平行四边形各边长分别为19cm,11cm,19cm,11cm.

说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.

例 3 已知:如图,在中,交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由.

分析观察图形,,从而可说明

证明在中,交于O,∴

教师 几种特殊的平行四边形:矩形、菱形、正方形 - 副本

特殊的平行四边形:矩形、菱形、正方形 【本讲教育信息】 一. 教学内容: 几种特殊的平行四边形:矩形、菱形、正方形 [目标] 1. 理解矩形、菱形的定义与性质。 2. 掌握矩形、菱形的判定方法。 二. 重点、难点: 1. 矩形、菱形性质的综合应用。特别是菱形性质和直角三角形的知识的综合应用。 2. 矩形、菱形的判定方法的综合应用。 三. 知识要点: 1. 矩形 (1)矩形的概念 有一个角是直角的平行四边形叫矩形。 (2)矩形的特殊性质 ①矩形的对角线相等 ②矩形四个角都是直角 (3)矩形性质的应用 ①矩形的一条对角线将矩形分成2个全等的直角三角形; ②矩形的2条对角线将矩形分成4个等腰三角形; ③有关矩形的问题往往可以化为直角三角形或等腰三角形的问题来解决; ④矩形的面积计算公式: 宽长矩形?=S (4)矩形的判定条件 ①有三个角是直角的四边形是矩形 ②对角线相等的平行四边形是矩形 注意: 1)在判定四边形是矩形的条件中,平行四边形的概念是最基本的条件,其他的判定条件都是以它为基础的。 2)四边形只要有3个角是直角,那么根据多边形内角和性质,第四个角也一定是直角。(在判定四边形是矩形的条件中,给出“有3个角是直角”的条件,是因为数学结论的表述中一般不给出多余条件。)

3)将两个判定条件比较,后者的条件中,除了“有3个角是直角”的条件外,只要求是“四边形”,而前者的条件却包括“平行四边形”和“两条对角线相等”两个方面。 4)矩形的判定与性质的区别 2. 菱形 (1)菱形的概念 有一组邻边相等的平行四边形叫菱形。 (2)菱形的特殊性质 ①菱形的四条边都相等 ②菱形的对角线相互垂直,且每一条对角线平分一组对角 (3)菱形性质的应用 由于菱形的对角线互相垂直平分,菱形的2条对角线就将菱形分成了四个全等的直角三角形,结合图形向学生介绍菱形的一个面积计算公式。 两条对角线的乘积菱形 S 的一半 思考归纳:计算菱形的面积有哪些方法? (4)菱形的判定条件 ①四边都相等的四边形是菱形; ②对角线互相垂直的平行四边形是菱形 (5)四边形、平行四边形、菱形之间的关系如图: 【典型例题】 例1. 等边三角形、矩形、菱形和圆中,既是轴对称图形又是中心对称图形的是( ) A. 等边三角形和圆 B. 等边三角形、矩形、菱形 C. 菱形、矩形和圆 D. 等边三角形、菱形、矩形和圆 分析:因为等边三角形是轴对称图形而不是中心对称图形,明确了这一点,就很容易排除A 、B 、D ,只选C 了 解:菱形、矩形、圆这三种图形,都是轴对称图形,且又都是中心对称图形,故选C 。 例2. 如图,过□ABCD 的对角线的交点O 作两条互相垂直的直线EF 、GH 、分别与□ABCD 的四条边交于E 、F 和G 、H ,求证EGFH 为菱形。

矩形、菱形经典题型总结

课 题 矩形、菱形 授课日期及时段 教学目的 1、掌握矩形的性质及其判定; 2、掌握菱形的性质及其判定。 教学内容 【知识梳理】 1.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质. 2.矩形的判定:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形. ③有三个角是直角的四边形是矩形. 【典例讲解】 例1、如图,已知矩形ABCD 的纸片沿对角线BD 折叠,使C 落在C ’处,BC ’边交AD 于E ,AD=4,CD=2 (1)求AE 的长 (2)△BED 的面积 巩固练习: 1.如图,矩形ABCD 中,AD=9,AB=3,将其折叠,使其点D 与点B 重合,折痕为EF 求DE 和EF 的长。 2.如图,已知将矩形ABCD 沿EF 所在直线翻折,使点A 与C 重合,AB=6,AD=8求折痕EF 的长 C ’ D A B C E F D A B C E C ’ E F A B C D

例2:如图,矩形ABCD中,E是BC上一点,且AE=AD,又DF⊥AE,F为垂足。求证:EC=EF 巩固练习 1.矩形的相邻两边的长分别是12㎝和5㎝,则矩形的对角线的长是。 2.若矩形的面积是36 3 cm2,两条对角线相交成60o锐角,则此矩形的两邻边长分别是㎝和㎝。3.将两个同样的长为3厘米,宽为2厘米的长方形重新拼一个长方形,则此长方形的对角线长为______厘米。 4. 如图,矩形ABCD中,AD=2AB,点E在AD上, AE=AB。求∠CEB的度数。 5.如图,矩形ABCD的对角线AC、BD交于点O,AE⊥BD,BE⊥AC且AE、BE交于点E。求证:AE=BE E D C OOOOO A B 例3.已知:在矩形ABCD中,AE BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。

正方形的性质与判定经典例题练习

正方形第一课时 一、自主学习 ●目标导学 1、理解并掌握正方形的性质。 2、通过自学、合作、交流培养自己分析问题解决问题的能力。 ●合作探究 【探究一】正方形的定义 1、正方形的定义: 2、正方形与矩形和菱形的关系是 【探究二】正方形的性质 1、归纳正方形的性质:边 角 对角线 对称性 2、用几何语言叙述正方形的性质: 【探究三】正方形的周长与面积 边讲边练: ①正方形与等腰三角形(等边三角形)结合 1. 如图,E是正方形ABCD的对角线BD上一点,且BE=BC,则∠ACE=° 2. 如图,四边形ABCD是正方形,延长CD到E,使CE=CB,则∠DBE=°. 3. 如图,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则下列结论: (1)∠E=22.5°;(2) ∠AFC=112.5°;(3) ∠ACE=135°;(4)AC=CE;(5) AD∶CE=1∶ 2. 其中正确的有() A.5个 B.4个 C.3个 D.2个 4. 如图,等边△EDC在正方形ABCD内,连结EA、EB,则∠AEB=°;∠ACE=°. 5.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是°.

②正方形与旋转结合 1. 如图1,四边形ABCD 是正方形,E 是边CD 上一点,若△AFB 经过逆时针旋转角θ后与△AED 重合,则θ的取值可能为 ( ) A.90° B.60° C.45° D.30° 2. 已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图2所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________. 3. 如图3,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠EAF =45°,连接EF ,求证:DE +BF =EF . ③正方形对角线的对称性 1. 如图:正方形ABCD 中,AC =10,P 是AB 上任意一点,PE ⊥AC 于E , PF ⊥BD 于F ,则PE +PF = .可以用一句话概括:正方形边上的任意 一点到两对角线的距离之和等于 . 思考:如若P 在AB 的延长线时,上述结论是否成立?若不成立,请写出 你的结论,并加以说明. 2.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形; ④∠PFE =∠BAP ;⑤PD = 2EC .其中正确结论的序号是 . 思考:当点P 在DB 的长延长线上时,请将备用图补充完整,并思考(1)正确结论是否依旧成立?若成立,直接写出结论;若不成立,请写出相应的结论.

中考数学各类经典大题集锦

25. (6分) 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨 x 元(x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 的函数关系式,并直接写出自变量的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润最大的月利润是多少元 (3)每件商品的售价定为多少元时,每个月的利润恰为2200元根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元 23.(本小题满分12分)某电厂规定,该厂家属区每户居民如果一个月的用电量不超过a 千 瓦·时,那么这户居民这个月只需交10元电费;如果超过a 千瓦·时,则这个月除了仍要交10元的用电费以外,超过的部分还要按每千瓦·时 100 a 元交费. (1)该厂某户居民2月份用电90千瓦·时,超过了规定的a 千瓦·时,则超过的部分应交电费___*___元.(用含a 代数式表示) (2)下表是这户居民3月、4月用电情况和交费情况:

23、(12分)已知一元二次方程2 40x x k -+=有两个不相等的实数根. (1)求k 的取值范围; (2)如果 k 是符合条件的最大整数,且一元二次方程 240 x x k -+=与 210x mx +-=有一个相同的根,求此时m 的值. 22、(12分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容,南沙区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿化面积不断增加(如图所示) (1)根据图中所提供的信息,回答下列问题:2011年的绿化面积为 公顷,比2010年增加了 公顷。 (2)为满足城市发展的需要,计划到2013年使城区绿化地总面积达到公顷,试求这两年(2011~2013)绿地面积的年平均增长率。 _ _ 60 _ 56_ 51_ 48 _ _ 2011 _ 2010 _ 2009 _ 2008

初中平行四边形、矩形、菱形、正方形知识点总结(精)

平行四边形、矩形、菱形、 正方形知识点总结 1.平行四边形、矩形、菱形、正方形 的性质: 平行四边形矩形菱形正方形图 形 性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等,邻角互补四个角都是直角对角相等四个角都是直角 对 角 线 互相平分互相平分且相等 互相垂直平分,且每条 对角线平分一组对角 互相垂直平分且相 等,每条对角线平分 一组对角 对称 性 只是中心对称图形既是轴对称图形,又是中心对称图形 面积 ah = S ab = S212 1 S d d =(注:d1,d2 为菱形两条对角线的 长度。) 2 S a =

2. 判定方法小结:(1) 平行四边形: ①两组对边分别平行的四边形是平行 四边形; ②两组对边分别相等的四边形是平行 四边形; ③两组对角分别相等的四边形是平行 四边形; ④对角线互相平分的四边形是平行四 边形; ⑤一组对边平行且相等的四边形是平 行四边形。 (2)矩形:有一个角是直角的平行四边形叫 做矩形。 ①有一个角是直角的平行四边形是矩 形; ②对角线相等的平行四边形是矩形; ③有三个角是直角的四边形是矩形; ④对角线相等且互相平分的四边形是 矩形。 (3) 菱形:有一组邻边相等的平行四边形 叫做菱形. ①有一组邻边相等的平行四边形是菱 形; ②对角线互相垂直的平行四边形是菱 形; ③四边都相等的四边形是菱形; ④对角线互相垂直平分的四边形是菱 形 (4) 正方形:有一组邻边相等且有一个角 是直角的平行四边形叫做正方形。 ①有一组邻边相等且有一个角是直角 的平行四边形是正方形; ②对角线互相垂直且相等的平行四边 形是正方形; ③有一组邻边相等的矩形是正方形; ④对角线互相垂直的矩形是正方形; ⑤有一个角是直角的菱形是正方形; ⑥对角线相等的菱形是正方形; ⑦对角线互相垂直平分且相等的四边 形是正方形。

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

矩形经典例题

(一)计算 1.已知矩形的对角线长为1,两条相邻边之和为m,求矩形的面积.解析:依题设画出示意图,由矩形性质: ① 又② ∴由有 . 评述1 矩形作为特殊的平行四边形其最特殊之处在于4个内角均为90°,稍加连结,则会出现Rt△,借助勾股定理,矩形中只要知道一些条件、面积、边长等皆可计算. 评述2 此处兼顾考查了整式运算技巧,这里算法误区是没有考虑整体计算,而去解方程组. 2.在矩形ABCD中,AE⊥BD于E,CF⊥BD于F,BE=1,EF=2,求矩形面积. 解析:依题设画出图形,对照图形确认题设条件似乎计算面积的条件不具备,怎么办?深入挖矩形性质,矩形整体是一个轴对称图形,DF=BE=1,BD = 4→连结AC交BD于O,则易知:OA=OB=2,又有BE=OE=1,又∵AE⊥BO,可知△ABO为正三角形,∴AB=OB=2, ,∴ 3.在矩形ABCD中,两条对角线小于0,DE平分∠ADC,E点在BC上,∠EDO=15°. 求∠COB,∠AOE的度数. 解析:依题设,画出示意图 由DE平分∠ADC,知∠EDC=45°,又∵∠EDO=15° 又由矩形ABCD知OD=OC ∴△ODC为正三角形,即OC=OD=CD ∴∠DOC=60°,∴∠COB=120° ∵∠EDC=45°,∠DCE=90° ∴CE=CD

∴CO=CE 进而可知∠COE=75° ∴∠AOE=105° 评述:学习四边形的另一个任务应是融会贯通前面所学的几何知识、几何方法.(二)特殊关系论证 3.已知:如图,矩形ABCD中,延长BC至E点,使BE=BD,连结DE,若F 是DE的中点,试确定线段AF与CF的位置关系. 解析:结合图示可以猜想AF⊥CF. 证明两线垂直,我们都有过什么想法?盘点盘点: ,……→ 法一:连结BF,因∠BFE=90°,证∠AFC=∠BFE进而考虑证△AFC≌△BFE 提示:因CF为Rt△DCE斜边上中线,故CF=EF=FD 易证△FAD≌△FBC,有FB=FA 进而可证明△AFC≌△BFE(SSS) 又由BF为等腰△BED底边上中线有BF⊥DE.所以AF⊥CF 法二:“倍长中线” 延长AF交BC延长线于G, 连结AC ,易证△ADF≌△GEF,AD=GE,BC+CE=GE+CE,即BE=CG, 易证△CAG为等腰三角形CA=CG,F为底边AG中点.CF为AG边上的高. 另:对称地思考,同法可延长CF交AD延长线于H 证△ACH为等腰三角形,利用另一方向的三线合一. 法三:利用“若三角形一边上的中线长等于这边长的一半,则该三角形为Rt△”. 连结AC,设AC交BD于O,连结FO,易知FO为△DEB中位线

初二数学八年级各种经典难题例题非常经典

1已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为( ) A . B . C .或 D . 1.一个凸多边形的每一个内角都等于150°,则这个凸多边形所有对角线的条数总共有( ) A .42条 B .54条 C .66条 D .78条 3、若直线与的交点在轴上,那么等于( ) (竞赛)1 正实数,x y 满足1xy =,那么44 114x y +的最小值为:( ) (A) 12 (B)58 16.如图,直线y=kx+6与x 轴y 轴分别交于点E ,F.点E 的 坐标为(-8,0),点A 的坐标为(-6,0). (1)求k 的值; (2)若点P(x ,y)是第二象限内的直线上的一个动点,当 点P 运动过程中,试写出△OPA 的面积S 与x 的函数 关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,△OPA 的面积为8 27,并说明理由. 6、已知,如图,△ABC 中,∠BAC=90°,AB=AC,D 为AC 上一点,且∠BDC=124°,延长BA 到点E ,使AE=AD,BD 的延长线交CE 于点F ,求∠E 的度数。

7.正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。 ①直线y=43x-83 经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ?? ? ??-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位交x 轴于点M ,交直线1l 于点N ,求NMF ?的面积. (竞赛奥数)如图,在△ABC 中,已知∠C=60°,AC >BC ,又△ABC ′、△BCA ′、△CAB ′都是△ABC 形外的等边三角形,而点D 在AC 上,且BC=DC (1)证明:△C ′BD ≌△B ′DC ; (2)证明:△AC ′D ≌△DB ′A ;

平行四边形、矩形、菱形-正方形练习题

/ 平行四边形、矩形、菱形、正方形 1.已知:如图,在?ABCD中,点E、F是对角线AC上的两点,且AE=CF.求证:BF∥DE. 2.如图,平行四边形ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由. ` 3.如图,四边形ABCD是平行四边形,E、F分别是BC、AD上的点,∠1=∠2.求证:AF=CE. "4.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证: (1)AE=AB; (2)如果BM平分∠ABC,求证:BM⊥CE. / 5.如图,在?ABCD中,点E、F在BD上,且BE=AB,DF=CD. 求证:四边形AECF是平行四边形. ,

6.在?ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形; (2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长. } 7.如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF, (1)求证:AE=CE; (2)求证:四边形ABDF是平行四边形; ; (3)若AB=2,AF=4,∠F=30°, 则四边形ABCF 的面积为.8.如图,在?ABCD中,E,F分别是AC上两点,BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF 为平行四边形. ~ 9.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE. 求证:(1)AE=CF;(2)AF∥CE. ~

最新菱形讲义(经典)

第一章特殊的平行四边形 一、菱形: 【知识梳理】 1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质 菱形是特殊的平行四边形,它具有平行四边形的所有性质,?还具有自己独特的性质: ①边的性质:对边平行且四边相等. ②角的性质:邻角互补,对角相等. ③对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④对称性:菱形是中心对称图形,也是轴对称图形. 菱形的面积等于底乘以高,等于对角线乘积的一半. 点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定 判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形. 【例题精讲】板块一、菱形的性质 例1.如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm. (1)求菱形ABCD的边长; (2)求菱形ABCD的高DM. 例2.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE 相交于点G,连接CG与BD相交于点H. 求证:(1)求∠BGD的度数。(2)求证:DG+BG=CG

例3.将两张宽度相等的长方形纸片叠放在一起得到如图29所示的四边形ABCD. (1)求证:四边形ABCD是菱形. (2)如果两张长方形纸片的长都是8,宽都是2,那么菱形ABCD的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由. 例4. 已知,菱形 ABCD 中,E、F分别是BC、CD上的点,若AE AF EF AB ===,求C ∠的度数. F E D C B A 跟踪练习: 1.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为() A.4 B.2.4 C.4.8 D.5 2.如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC和CD的中点,连接AE、EF、AF,则△AEF的周长为() A.23 B.33 C.43 D.3. 3.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口 与第二次折痕所成角的度数应为() A.15°或30° B.30°或45°

(完整版)矩形经典题型(培优提高)

矩形 知识归纳定义:有一个角是直角的平行四边形叫做矩形。性质: 1. 矩形的四个角是直角,对边相等 2. 矩形的对角线相等 3. 矩形所在平面内任意一点到其两对角线端点的平方和相等 4. 矩形既是轴对称图形,也是中心对称图形,其对称轴是任何一组对边中点的连线 5. 对边平行且相等 6. 对角线互相平分 判定: 1. 有一个角是直角的平行四边形是矩形 2. 对角线相等的平行四边形是矩形 3. 有三个角是直角的四边形是矩形 4. 四个内角相等的四边形是矩形 5. 关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形 6. 对于平行四边形,若存在一点到两对角线端点的距离的平方和相等,则此平行四边 形为矩形 7. 对角线互相平分且相等的四边形是矩形 8. 对角线互相平分且有一个内角是直角的四边形是矩形 例题讲解 例1:如图,在平行四边形ABCD中,E,F 为BC上两点,且BE=CF,AF=DE.求证:(1)△ ABF≌△ DCE; (2)四边形ABCD是矩形.

例2:如图,将一矩形纸片ABCD沿对角线AC折叠,使点 B 落在B‘处,AB'交CD于点E,已知∠ EAC=25°,求∠ B' CE的度数。 例3:如图,在矩形ABCD 中,E 是BC 上一点,F 是AB 上一点,EF=ED,且EF DE . (1) 求证:AE 平分∠ BAD. (2) 若CE=2,矩形ABCD 的周长为16 求BE与DF 的长. 例4:如图,矩形ABCD,延长CB到点E,使CE=CA,点 F 是AE 的中点. 求证: BF⊥DF。(提示:连接CF)

课堂练习 .选择题 ABCD 中, AE ,AF 三等分∠ BAD ,若 BE=2,CF=1,则最接近矩形面积的是 2. 如图,矩形 OABC 的顶点 A ,C 在坐标轴上,顶点 B 的坐标是( 4,2),若直线 y=mx ﹣1 3. 如图,矩形 ABCD 的边 AB=5cm ,BC=4cm 动点 P 从 A 点出发,在折线 AD ﹣DC ﹣CB 上 以 1cm/s 的速度向 B 点作匀速运动,则表示△ ABP 的面积 S (cm )与运动时间 t (s )之间的函数 1. C . 15 D . 16 恰好将矩形分成面积相等的两部分,则 m 的值为( A .1 B . 0.5 C . 0.75 D .2 如图,在矩 形

高中不等式所有知识及典型例题超全

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”); 若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2 )2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 a =b =c 时取等号); 6. 1n (a 1+a 2+……+a n )(a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x

最新平行四边形-矩形-菱形试题

平行四边形、菱形、矩形辅导练习题时间:60分钟 满分:100分一、复习平行四边形、矩形、菱形、有关的性质和判定方法。 (一)选择题(40分,每题5分) 1、矩形具有而一般平行四边形不具有的性质是(). A、对角线相等 B、对边相等 C、对角相等 D、对角线互相平 分 2、下列对矩形的判定:“(1)对角线相等的四边形是矩形;(2)对角线互相平分 且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是 直角的四边形是矩形;(5)四个角都相等的四边是矩形;(6)对角线相等,且有 一个直角的四边形是矩形;(7)一组邻边垂直,一组对边平行且相等的四边形是 矩形;(8)对角线相等且互相垂直的四边形是矩形”中,正确的个数有() A、3 个 B、4个 C、5个 D、6个 3、下列性质中,菱形具有而矩形不一定具有的性质是( ) A、对边平行且相等 B、对角线互相平分 C、内角和等于外角和 D、每一条对角线所在直线都是它的对 称轴 4、下列条件中,能判定一个四边形为菱形的条件是( ) A、对角线互相平分的四边形 B、对角线互相垂直且平分的四边 形 C、对角线相等的四边形 D、对角线相等且互相垂直的四边 形 5、已知四边形ABCD是平行四边形,下列结论中不一定正确的是( ) A、AB=CD B、AC=BD C、当AC⊥BD时,它是菱形 D、当∠ABC=90°时, 它是矩形 6、矩形的两条对角线所成的钝角是120°,若一条对角线的长为2,那么矩形的 周长为() A、6 B、5.8 C、2(1+ 3 ) D、5.2 7、如图,菱形ABCD的周长为8,两邻角的比为2∶1,则对角线的长分别为() A、4和2 B、1和2 3 C、2和2 3 D、2和 3 8、如图,矩形ABCD的对角线AC的中垂线与AD、BC分别交于F、E,则四边形AFCE 的形状最准确的判断是() A、平行四边形 B、菱形 C、矩形 D、正方形 第8题 (二)填空题(35分,每题5分) 9、已知一个菱形的面积为8 3 ㎝2,且两条对角线的比为1∶ 3 ,则菱形短的 对角线长为_________。 10、直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积为 ____________________。

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

矩形斜边中线定理典型题目(难题)

矩形典型例题 1.如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上不与A 、D 重合的一动点,PE⊥AC,PF⊥BD,E 、F 为垂足,则PE+PF 的值为__________ 2.已知:△AOB 中,AB=OB=2,△COD 中,CD=OC=3,∠ABO=∠DCO,连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点。 (1)如图(1),若A 、O 、C 三点在同一直线上,且∠ABO=60°,则△PMN 的形状是_____,此时BC AD =_____; (2)(初二不做)如图(2),若A 、O 、C 三点在同一直线上,且∠ABO=2α,证明△PMN∽△BAO,并计算 的值(用含α的式子表示); (3)在图(2)中,固定△AOB,将△COD 绕点O 旋转,直接写出PM 的最大值。

参考答案: 1.考点:矩形的性质 专题: 分析:连接OP ,过点A 作AG ⊥BD 于G ,利用勾股定理列式求出BD ,再利用三角形的面积求出AG ,然后根据△AOD 的面积求出PE+PF=AG . 解答:解:如图,连接OP ,过点A 作AG ⊥BD 于G , ∵AB=3,AD=4, ∴BD=22AD AB +=2243+=5, S △ABD =21AB ?AD=2 1BD ?AG , 即21×3×4=2 1×5×AG , 解得AG=512, 在矩形ABCD 中,OA=OD , ∵S △AOD = 21OA ?PE+21OD ?PF=2 1OD ?AG , ∴PE+PF=AG=5 12. 故PE+PF=512. 点评:本题考查了矩形的性质,勾股定理,三角形的面积,熟练掌握各性质并利用三角形的面积列出方程是解题的关键. 2.解:(1)等边三角形;1; (2)连接BM 、CN , 由题意,得BM⊥OA,CN⊥OD,∠AOB=∠COD=90°-α, ∵A、O 、C 三点在同一直线上, ∴B、O 、D 三点在同一直线上, ∴∠BMC=∠CNB =90°, ∵为BC 中点,

(精典整理)平行四边形、矩形、菱形、正方形知识点总结

O A 平行四边形、矩形、菱形、正方形知识方法总结 一. 平行四边形、矩形、菱形、正方形的性质: 平行四边形 矩形 菱形 正方形 图形 一般 性质 1.边: 且 ; 2.角: ; ; 3.对角线 ; 1.边: 且 ; 2.角: ; ; 3.对角线 ; 1.边: 且 ; 2.角: ; ; 3.对角线 ; 1.边: 且 ; 2.角: ; ; 3.对角线 ; 面积 二. 判断(识别)方法小结: (1) 识别平行四边形的方法:(从边、角、对角线3方面) ①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; ④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形。 (2) 识别矩形的方法:(从定义、特殊元素(角、对角线)3方面) ①有一个角是直角的平行四边形是矩形;( t R ⊕∠Y 一个 ) ②对角线相等的平行四边形是矩形; ( ⊕Y 对角线 =) ③有三个角是直角的四边形是矩形; (3t R ∠个 ) ④对角线相等且互相平分的四边形是矩形。( ⊕对角线互相平分对角线 =)

(3) 识别菱形的方法:(从定义、特殊元素(边、对角线)3方面) ①有一组邻边相等的平行四边形是菱形; ( =⊕Y 一组邻边 ) ②对角线互相垂直的平行四边形是菱形; ( ⊕⊥Y 对角线 ) ③四边都相等的四边形是菱形; (4= 边) ④对角线互相垂直平分的四边形是菱形。( ⊕⊥对角线互相平分对角线 ) (4) 识别正方形的方法:(从边、角、对角线3方面) 抓本质:矩形+菱形 ①有一组邻边相等且有一个角是直角的平行四边形是正方形;( = Rt ∠⊕⊕Y 一组邻边一个 ) ②对角线互相垂直且相等的平行四边形是正方形; ( ⊕⊕⊥=Y 对角线 对角线) ③有一组邻边相等的矩形是正方形; ( =⊕ 矩形一组邻边 ) ④对角线互相垂直的矩形是正方形; ( ⊕⊥矩形对角线 ) ⑤有一个角是直角的菱形是正方形; ( Rt ∠⊕菱形一个 ) ⑥对角线相等的菱形是正方形; (⊕=菱形 对角线) ⑦对角线互相垂直平分且相等的四边形是正方形。 ( ⊕⊕⊥=对角线互相平分对角线 对角线) 小结:把以上识别方法的编号分别填入下图中的每一条带方向的线上:(如平行四边形的第一种识别方法的编号为 (1) ①,其他方法类似) 三、其他性质: 1、平行四边形、矩形、菱形、正方形(平行四边形系列图形):都具有的 (1)与面积有关的:任意一条对角线分得的两部分面积___________;两条对角线分得的四部分面积________。 ?推广:若一条直线过平行四边形(系列图形)对角线的交点,则直线被一组对边截下的 线段以对角线的交点为中点,且这条直线二等分平行四边形(系列图形)的面积。

《菱形》典型例题

菱形 例1 如图,在菱形ABCD 中,E 就是AB 得中点,且,求: (1)得度数;(2)对角线A C得长;(3)菱形A BCD 得面 例2 已知:如图,在菱形ABCD 中,于于 F 。求证:AE=AF 例4 如图,中,,、在直线上,且。 求证:. 例5 如图,在△中,,为得中点,四边形就是平行四边形.求证:与互相垂直平分 例6、如图,在就是△AB C中,∠ACB =90°,B C得垂直平分线DE 交BC 于D,交AB 于E,点 F 在直线DE 上,AF=CE 。 (1)说明,四边形ACEF 就是平行四边形;(5分) (2)当∠B 得大小满足什么条件时,四边形ACEF 就是菱形?说明理由、(4分) 例7、如图,△ABC 中,点O 就是AC 边上一动点,过点O作直线MN ∥BC,设MN 交∠BC A得平分线于E,交∠BCA 得外角平分线于点F . (1)说明:EO=O F (2)当点O 运动到时,四边形BE FC 可能就是菱形不?并说明理由. (3)当点O 运动到何处时,四边形AECF 就是矩形?并说明理由. (4)在(3)得条件下,当△ABC 满足什么条件时,四边形A ECF 就是正方形?并说明理由、 巩固练习 1、梯形ABCD 中,AD ∥BC,BD 平分∠ABC,∠C=60°,当AB=C D=4时,梯形A BCD 得周长 2、在等腰梯形A BC D中,AB ∥CD, 对角线A C平分∠BA D,∠B =60 o,CD=2cm,则梯形ABCD 得面积为 3.如图,梯形ABCD 中,AD ∥BC ,A C为对角线,AE ⊥BC 于E ,AB ⊥AC ,若 ∠AC B=30°,BE =2。则EC =___________、 5。在梯形ABCD 中,AD∥BC ,AB =AC ,若∠D =110°,∠A C D =30°,则∠BAC 等于 7.直角梯形一腰长16 cm,该腰与一个底所成得角为30°,那么另一腰长________ cm 。 9、如图,等腰梯形ABCD 中,AD ∥B C,AB =D C,AC ⊥BD ,过D 点作DE ∥A C交BC 得延长线于E 点。 ⑴求证:四边形ACED 就是平行四边形; ⑵若AD =3,BC =7,求梯形ABCD 得面积、 菱形得测试题 一. 填空题 1. 若平行四边形ABC D就是菱形,则与AD 2. 如图,菱形ABCD 中,对角线AC,BD 相交于点O,如果∠A=60o,对角线BD =7cm,则菱形 得周长=___cm 3. 若菱形得两条对角线长分别为6cm 与8cm,则菱形得面积就是___,周长就是___、 4. 若菱形得高为3cm,较小得内角就是30o,则菱形得边长为___,面积为___。 5。 已知菱形得周长为20cm,两条对角线得比为3 :4,则菱形得面积为___c m。 二. 选择题 1。 菱形具有其它平行四边形不一定具有得性质( ) A 。对边平行 B 。对角相等 C 、对角线互相平分 D。对角线互相垂直 2、 在菱形AB CD 中,AEBC 于E,AFCD 于F,且E,F分别就是BC,CD 得中点,那么 C D E A B F O F E C D B N M A E

中考数学矩形菱形正方形经典例题超赞

中考数学 1、矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______. 2、一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为_______________ 3、在△ABC中, AM是中线, ∠BAC=90?, AB=6cm, AC=8cm, 那么AM的长为____________. 4、在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC= 。 5、如图所示,在正方形ABCD中,M是BC上一点,连结AM,作AM的垂线GH交于G,交CD于H,若AM=10cm,则GH=________ 6、如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长是________. 7如图,△ABC中,∠ACB==90?,点D、E分别为AC、AB的中点,点F在BC延长线上,且∠CDF=∠A,求证:四边形DECF是平行四边形; 9知:如图,在△ABC中,∠BAC≠90°∠ABC=2∠C,AD⊥AC,交BC或CB的延长线D。试说明:DC=2AB. 、平行四边形ABCD,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形 10、平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB ⊥PD,垂足为P。求证:四边形ABCD为矩形 11、已知:如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形. (6题) (5题) (7题) (8题)

12、如图,△ABC中,点O是AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F, (1)求证:OE=OF; (2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论。 13.若菱形的周长为24 cm,一个内角为60°,则菱形的面积为______ cm2。 14.已知:菱形的周长为40cm,两条对角线长的比是3:4。求两对角线长分别是。 15、P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点 F,PF=3cm, 则P点到AB的距离是_____ cm 16菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点 M、N分别是边AB、BC的中点,则PM+PN的最小值是_______. 17.:如图,AD平分∠BAC,DE∥AC交AB于E, DF∥AB交AC于F. 求证:四边形AEDF是菱形; 18如图,边长为a的菱形A B C D中,∠D A B=60°,E为A D上异于A、D 两点的一动点,F是C D上一动点,且A E+C F=a.(1)证明:不论E、F怎样移动,△B E F都是等边三角形;(2)求出△B E F的面积的最小值 19、如图,Rt△ABC中,∠ACB=900,∠BAC=600,DE垂直平分BC,垂足为D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形。 20如图,在△A B C中,∠B A C=90°,A D⊥B C于D,C E平分∠A C B,交 A D于G,交A B于E,E F⊥ B C于F,求证:四边形A E F G是菱形.

相关文档
最新文档