14噬菌体介导抗性基因的转移

14噬菌体介导抗性基因的转移
14噬菌体介导抗性基因的转移

Mobile Genetic Elements 3:4, e25847; July/August 2013; ? 2013 Landes Bioscience

coMMEntAry

AutophAGic punctuM

Commentary to: Muniesa M, Colomer-Lluch M, Jofre J. Potential impact of environmental bacteriophages in spreading antibiotic resis-tance genes. Future Microbiol 2013; 8:739–51; PMID:23701331; https://www.360docs.net/doc/fe3183532.html,/10.2217/fmb.13.32

Keywords: bacteriophages, transduction, lysogeny, horizontal gene transfer, antibiotic resistance

Abbreviations: ARG, antibiotic

resistance genes; MGE, mobile genetic elements

Submitted: 06/10/13Revised: 07/16/13Accepted: 07/22/13

Citation: Muniesa M, Colomer-Lluch M, Jofre J.

Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations?. Mobile Genetic Elements 2013; 3:e25847; https://www.360docs.net/doc/fe3183532.html,/10.4161/mge.25847*Correspondence to: Juan Jofre; Email: jjofre@https://www.360docs.net/doc/fe3183532.html,

E

nvironm ents without any contact with anthropogenic antibiotics show a great abundance of antibiotic resistance genes that use to be chrom osom al and are part of the core genes of the species that harbor them. Som e of these genes are shared with human pathogens where they appear in mobile genetic elements. Diversity of antibiotic resistance genes in non-contaminated environments is much greater than in human and animal patho-gens, and in environments contaminated with antibiotic from anthropogenic activities. This suggests the existence of some bottleneck effect for the mobiliza-tion of antibiotic resistance genes among different biom es. Bacteriophages have characteristics that m ake them suitable vectors between different biomes, and as well for transferring genes from biom e to biom e. Recent m etagenom ic stud-ies and detection of bacterial genes by genomic techniques in the bacteriophage fraction of different m icrobiota provide indirect evidences that the mobilization of genes mediated by phages, including antibiotic resistance genes, is far m ore relevant than previously thought. Our hypothesis is that bacteriophages m ight be of critical importance for evading one of the bottlenecks, the lack of ecological connectivity that modulates the pass of antibiotic resistance genes from natural environm ents such as waters and soils, to anim al and hum an m icrobiom es. This com m entary concentrates on the potential im portance of bacteriophages in transferring resistance genes from the environm ent to hum an and anim al body microbiomes, but there is no doubt Could bacteriophages transfer antibiotic resistance genes

from environmental bacteria to human-body associated bacterial populations?

Maite Muniesa, Marta Colomer-Lluch and Juan Jofre*

Department of Microbiology; University of Barcelona; Barcelona, Spain

that transduction occurs also in body microbiomes.Antibiotic Resistance in Pristine Environments Emergence and spread of resistance to antibiotics is hampering one of the major achievements of the history of medicine, which is the minimization of the effects of infectious diseases, mostly of those caused by bacteria. Traditionally, it was thought that the selective pressure caused by the overuse and misuse of antibiotics in human medicine and animal husbandry was the major, if not the unique, cause of this occurrence.1 In the last years, the num-ber of evidences about the ubiquity and abundance of antibiotic resistance genes in diverse environments has increased. These studies have shown that there is a great abundance of antibiotic resistance genes (ARG) in many environmental ecosystems barely in contact with human produced and released antibiotics, that suggests an important role of environmental micro-organisms as source and reservoirs of resistance genes.2 Thus, a controversial question about microbial resistance origin is whether it is the result of human activ-ity or rather a result of the joint evolution of antibiotic production and antibiotic resistance pathways that evolved during millions of years in the environment, or both.3–5 Indeed, antibiotic resistance seems to be very antique.6 The diversity of resis-tance determinants in different bacteria is larger in natural environments not con-taminated with antibiotic from anthropo-genic activities than in human pathogens 5

their extracellular phase they persist quite successfully in the environment and are quite resistant to natural and man gener-ated stressors.14 Most frequently they per-sist better than their hosts. Some of the families, as for example Siphoviridae, well known for holding phages able to trans-duce and being among the more abundant in nature, are also among the more resis-tant to environmental stressors. Their per-sistence in the environment is also much higher than that of free DNA, which is more sensitive to nucleases, temperature and radiation.These survival capabilities together with the fact that for transduction donor and recipient bacteria do not need to coincide in space and time make bacte-riophages especially suited for gene move-ment between different biomes.15Transduction has so far been con-sidered as a rare event occurring around once every 107–109 phage infections, but recent studies show that transduction might occur at frequencies several orders of magnitudes greater than previously thought.16 With these frequencies and the concentrations of phages and hosts found in many environments, gene transfer by transduction would take place an excep-tional number of times per second in any one place.Certain bacteriophages, known as poly-valent bacteriophages, have been reported to have a wide host range that crosses the boundaries of different taxa, even at the superior levels of taxonomical hierarchy, as for example between Gammaproteobacteria and Betaproteobacteria .17 Furthermore, transduction has also been described between bacteria belonging to differ-ent taxa.18 In addition, similar prophages have been detected in bacteria of differ-ent species of Clostridium and Bacillus spp 19 Considering those phages that har-bor MGEs, like conjugative plasmids, the polyvalence of some transducing phages would allow the transfer of the plasmids to bacterial hosts that could not be recipients if the transfer would take place by conju-gation. This would lead to simultaneous transmission of ARGs and even virulence

determinants, commonly found in mega-plasmids in vivo.Metagenomic analysis of viral com-munities has provided a huge amount

mechanisms: conjugation, free DNA transformation and transduction through bacteriophages. Phage transduction can be either specialized, when the bacterial DNA adjacent to the prophage attach-ment site of a temperate bacteriophage is moved to a recipient host cell, or gen-eralized transduction, that accounts for transfer of any gene of the host and can be done by temperate phages, like phage P22 of Salmonella , or virulent phages. Experimental detection of generalized transduction by virulent bacteriophages is quite challenging, and this may be the reason of the general thinking that transduction is only carried by temperate bacteriophages. The size of the DNA frag-ments that can be packaged into a bacte-riophage particle is limited by the size of the phage capsid, but can reach upwards of 100 kilobases (kb). Transduction by bacteriophages includes any sort of bacte-rial DNA, including linear chromosome fragments and all sorts of mobile elements such as plasmids, islands, transposons and insertion elements.10,11 An important char-acteristic of transduction is that it does not require “donor” and “recipient” cells to be present at the same place or even at the same time.Recently, the idea that bacteriophage transduction, either specialized or gener-alized, plays a role in this horizontal gene transfer from environmental to human and animal body associated biomes is gaining momentum. This change in the dominant belief is due to the following lines of indi-rect evidence; first, bacteriophages have been confirmed as the most abundant beings in many natural environments as oceans, lakes and soil and man-managed environment as for example sewage treat-ment plants, as well as in human body-associated biomes. In all these ecosystems, concentrations of bacteriophages use to overnumber those of bacteria by a factor most frequently ranging from 1 to 10.12 In many aquatic and terrestrial envi-ronments, as well as in body-associated microbiomes,12,13 the concentrations of bacteria and bacteriophages are high enough to guarantee a great frequency of bacteria-bacteriophages encounters that are needed for infection and subsequent transduction to occur. Second, due to the structural characteristics of phages in or in environments with anthropogenic influence.7 This seems to indicate the existence of bottlenecks controlling the transfer, spread and stability of antibiotic resistance genes already exiting in nature among bacteria from other biomes.

Many of the antibiotic resistance deter-minants present in clinical isolates are typically acquired through and located on mobile genetic elements (MGE), allowing their horizontal transfer to other strains (pathogens, commensal or even envi-ronmental) or even across bacteria from different taxa. In contrast, antibiotic resis-tance genes in naturally resistant environ-mental bacteria are typically mediated by a resistance gene belonging to the cell’s core genes. Examples of this type of natural resistance are the chromosomally encoded β-lactamases found in several species of the Enterobacteriaceae,8 many of them colonizing plants and soils, as for example in species of Rahnella and Ewingella . Such resistance genes are vertically inherited, shared by most isolates of the same spe-cies, often encoded by the chromosome and usually immobile. This maintenance and vertical transfer of antibiotic resis-tance genes in environments with no or very mild long lasting selective pressure appears to have minor fitness costs for the host bacteria than maintenance of and transfer by MGE.9

But the same genes have been found in pathogens and commensal bacteria of human and animal microbiomes after the introduction in clinics of a given antibi-otic. There, the presence of antibiotics will push the selection of the genes either alone or located in the genetic mobile platforms found in pathogens. Usually, conjugation mediated by plasmids has been considered as the main and virtually unique mode of horizontal transfer of antibiotic resistance genes.

How transfer occurs and which are the bottlenecks modulating the transfer of these natural chromosomal and non-mobile genes from environmental bacte-ria to mobile gene platforms of pathogens remains intriguing.

Bacteriophages: A Potential Vector Horizontal transfer among bacte-ria occurs by one of the three following

the importance of phages in the mobiliza-tion and spread of ARG among different microbiomes.

Easing the Bottlenecks

Among the bottlenecks found in the transferability of ARG from natural eco-systems to human bacterial pathogens, the lack of ecological connectivity emerges as the first one 30 This concept includes the need of spatial coincidence of microor-ganisms and the need of concurrence of microbes belonging to the same genetic exchange communities. Bacteriophages can facilitate evading restrictions of spatial concurrence of genes or bacteria from dif-ferent biomes, as stated earlier, and phages

resistance determinants using phages par-tially purified from the different microbial communities studied. This may be due to experimental challenges in the preser-vation and identification of the potential transductants.29

And finally, an increasing number of phages induced from pure cultures of lysogenic bacteria, most of them isolated in clinical studies, as well as a few isolated from natural samples, have been reported to transduce ARG.12,18

All the information summarized in this section reinforces, in our opinion, two ideas. The first one is that bacterio-phages play a role much more important than though up to now in horizontal gene transfer in nature, and the second is about

of information on the characteristics of the genetic material included in the viral particles that constitute the viral com-munities of the biomes of natural envi-ronments, anthropogenic environments such as wastewater treatments plants, and in the microbial communities asso-ciated with human and animal bodies. Bacteriophages are always the major frac-tion in these viral communities. A very important percentage, up to 50–60%, of the bacteriophage particles detected in all sort of environments contain bacterial genes. There is a clear correlation between the functional composition of viral and cellular metagenomes.20,21 The bacterial DNA seized by the viral particles in a number of biomes, in addition to the bac-terial genes implicated in all core cellular functions, contains prophages, MGE,22,23 and integrases, transposases and recombi-nases.24 All the bacterial genes and genetic elements contained in the viral communi-ties of most biomes studied indicate that both specialized and generalized transduc-tions occur frequently, but also that gener-alized transduction may predominate. As well, sequences corresponding to antibi-otic resistance genes have been detected in the viral communities of the human gut, human lungs and in an activated sludge wastewater treatment plants.23 Moreover, the presence of antibiotics, even at subin-hibitory concentrations, has been shown to increase the transfer of MGEs,25 and recently it has been shown that antibiotic treatment increase the number of bacte-rial antibiotic resistance genes within the phage genome.26 Therapeutic agents can promote the spread of antibiotic resistance genes by causing stress and through acti-vation of the SOS response.25,26

On the other hand, detection and quantification by qPCR of specific ARG in the bacteriophage populations of dif-ferent environments indicates that the numbers of these genes are quite high; with values only one order of magnitude lower than the numbers of genes found in the corresponding bacterial popula-tions.27,28 Additionally, DNA extracted from these bacteriophage particles suc-cessfully transforms bacteria for antibi-otic resistance,27 however, to the best of our knowledge, it has not been possible

to detect the transduction of antibiotic

Figure 1. proposed model for mobilization of ArGs from environmental biomes, where there is not a selective pressure by antibiotics, to biomes related to human and animal microbiota. the model proposes phages as the first mechanism for mobilization of ArG from environmental bac-teria, where ArG are located in the chromosome, to commensal bacteria or pathogens. After in-corporating the ArG, it would continue its mobilization within this biome through other elements (plasmids, transposons or also phages). Mutation of ArG at this stage would explain variations of ArGs found this biome. these ArGs, if they are maintained within the bacteria, and if the bacteria themselves can persist long enough, can plausibly be mobilized back to environmental bacteria. ArG: Antibiotic resistance genes. MGE: mobile genetic element. c: conjugation. t: transformation, Bt: bacteriophage transduction.

the general believe was that fitness costs caused by the acquisition of resistance determinants will lead, in the absence of selection, to the loss of the character in the population since resistant bacteria will be outcompeted by the susceptible ones.9 However, some recent information seems to indicate that this may not always be the case.28 In such circumstance, again, the potential role of bacteriophages in the transfer of these antibiotic resistance determinants between different biomes should not be dismissed.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

maintenance and entrance of an ARG in a proficient MGE will need of recombi-nation, point mutation and mobilization and transfer events. By sure, the pressure exerted by antibiotics will favor the pro-cess of incorporation of genes in MGE and their permanence in the body-associated microbiomes (Fig. 1). Then, the spread of resistant bacteria from animals to humans and vice versa will play an important role on the spread and maintenance in anthro-pogenic environments of these genes from environmental bacteria.

At this point, the questions of whether ARG with an initial chromosomal loca-tion in environmental bacteria can return to natural environments, mostly through sewage, and persist there in mobile genetic platforms remains to be elucidated. So far,

can also enlarge the genetic exchange communities because of the existence of multivalent bacteriophages.

In our opinion, the bacteriophage mediated transfer might be crucial in the mobilization and transfer of chromosom-ally located ARG of environmental bac-teria to human and animal pathogens. Most likely, the incorporation of the envi-ronmental ARG in animal and human microbiomes will be through commensal bacteria,31 because of their major abun-dance. From commensal ARG will move to pathogens belonging to the same genetic exchange community, for exam-ple between commensal and pathogenic Enterobacteriaceae . Once in a body-asso-ciated microbiome, where well-established genetic exchange communities exist, the

References

1. Levy SB, Marshall B. Antibacterial resistance world-wide: causes, challenges and responses. Nat Med 2004; 10(Suppl):S122-9; PMID:15577930; https://www.360docs.net/doc/fe3183532.html,/10.1038/nm1145

2. Martínez J L. Antibiotics and antibiotic resis-tance genes in natural environments. Science 2008; 321:365-7; PMID:18635792; https://www.360docs.net/doc/fe3183532.html,/10.1126/science.1159483

3. Stefani S. Analyzing possible intersections in the resistome among human, animal and environmental matrices [editorial]. Frontiers in Microbiol 2012; 3:1-2

4. Sengupta S, Chattopadhyay MK, Grossart HP. The multifaced roles of antibiotic resistance in nature. Frontiers in Microbiol 2013; 4:1-13

5. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012; 337:1107-11; PMID:22936781; https://www.360docs.net/doc/fe3183532.html,/10.1126/science.1220761

6. D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature 2011; 477:457-61; PMID:21881561; https://www.360docs.net/doc/fe3183532.html,/10.1038/nature10388

7. Tac?o M, Correia A, Henriques I. Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of bla(CTX-M)-like genes. Appl Environ Microbiol 2012; 78:4134-40; PMID:22492443; https://www.360docs.net/doc/fe3183532.html,/10.1128/AEM.00359-12

8. Poirel L, Naas T, Nordmann P. Diversity, epi-demiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother 2010; 54:24-38; PMID:19721065; https://www.360docs.net/doc/fe3183532.html,/10.1128/AAC.01512-08

9. Andersson DI, Levin BR. The biological cost of anti-biotic resistance. Curr Opin Microbiol 1999; 2:489-93; PMID:10508723; https://www.360docs.net/doc/fe3183532.html,/10.1016/S1369-5274(99)00005-310. Schmieger H, Schicklmaier P. Transduction of mul-tiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett 1999; 170:251-6; PMID:9919675; https://www.360docs.net/doc/fe3183532.html,/10.1111/j.1574-6968.1999.tb13381.x 11. Mann BA, Slauch J M. Transduction of low-copy number plasmids by bacteriophage P22. Genetics 1997; 146:447-56; PMID:9177996

12. Weinbauer MG. Ecology of prokaryotic virus-es. FEMS Microbiol Rev 2004; 28:127-81;

PMID:15109783; https://www.360docs.net/doc/fe3183532.html,/10.1016/j.fem-sre.2003.08.00113. Letarov A, Kulikov E. The bacteriophages in human- and animal body-associated microbial communities. J Appl Microbiol 2009; 107:1-13; PMID:19239553;

https://www.360docs.net/doc/fe3183532.html,/10.1111/j.1365-2672.2009.04143.x 14. ofre J . Indicators of Waterborne Enteric Viruses. In Human Viruses in Water (Series Perspectives in Medical Virology). Elsevier, Amsterdam. 2007;

17:227-49

15. Sano E, Carlson S, Wegley L, Rohwer F. Movement of viruses between biomes. Appl Environ Microbiol 2004; 70:5842-6; PMID:15466522; http://dx.doi.

org/10.1128/AEM.70.10.5842-5846.200416. Kenzaka T, Tani K, Nasu M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J 2010; 4:648-59; PMID:20090786; https://www.360docs.net/doc/fe3183532.html,/10.1038/ismej.2009.14517. ensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, et al. Prevalence of

broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli , and Pseudomonas aerugi-nosa. Appl Environ Microbiol 1998; 64:575-80; PMID:9464396

18. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. Bacteriophage-mediated transduction of antibi-otic resistance in enterococci. Lett Appl Microbiol 2011; 52:559-64; PMID:21395627; https://www.360docs.net/doc/fe3183532.html,/10.1111/j.1472-765X.2011.03043.x 19. Shan , Patel KV, Hickenbotham PT, Nale Y,

Hargreaves KR, Clokie MR. Prophage carriage and diversity within clinically relevant strains of Clostridium difficile. Appl Environ Microbiol 2012; 78:6027-34; PMID:22706062; https://www.360docs.net/doc/fe3183532.html,/10.1128/AEM.01311-12

20. Dinsdale EA, Edwards RA, Hall D, Angly F,

Breitbart M, Brulc JM, et al. Functional metagenom-ic profiling of nine biomes. Nature 2008; 452:629-32; PMID:18337718; https://www.360docs.net/doc/fe3183532.html,/10.1038/nature06810

21. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV. New dimensions of the virus world discov-ered through metagenomics. Trends Microbiol 2010; 18:11-9; PMID:19942437; http://dx.doi.

org/10.1016/j.tim.2009.11.00322. Parsley LC, Consuegra EJ , Kakirde KS, Land AM,

Harper WF J r., Liles MR. Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. Appl Environ Microbiol 2010; 76:3753-7; PMID:20382816; https://www.360docs.net/doc/fe3183532.html,/10.1128/AEM.03080-09

23. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J,

Salamon P, et al. Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci 2004; 271:565-74; PMID:15156913; https://www.360docs.net/doc/fe3183532.html,/10.1098/rspb.2003.2628

24. Cantalupo PG, Calgua B, Zhao G, Hundesa A, Wier

AD, Katz JP, et al. Raw sewage harbors diverse viral pop-ulations. MBio 2011; 2:e00180-11; PMID:21972239; https://www.360docs.net/doc/fe3183532.html,/10.1128/mBio.00180-1125. Beaber J W, Hochhut B, Waldor MK. SOS

response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004; 427:72-4; PMID:14688795; https://www.360docs.net/doc/fe3183532.html,/10.1038/nature02241

26. Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic

treatment expands the resistance reservoir and eco-logical network of the phage metagenome. Nature 2013; 499:219-22; PMID:23748443; https://www.360docs.net/doc/fe3183532.html,/10.1038/nature12212

27. Colomer-Lluch M, J ofre J , Muniesa M. Antibiotic

resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One 2011; 6:e17549; PMID:21390233; https://www.360docs.net/doc/fe3183532.html,/10.1371/jour-nal.pone.0017549

28. Colomer-Lluch M, Imamovic L, J ofre J , Muniesa

M. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poul-try. Antimicrob Agents Chemother 2011; 55:4908-11; PMID:21807968; https://www.360docs.net/doc/fe3183532.html,/10.1128/AAC.00535-11

29. Muniesa M, Colomer-Lluch M, J ofre J . Potential

impact of environmental bacteriophages in spread-ing antibiotic resistance genes. Future Microbiol 2013; 8:739-51; PMID:23701331; https://www.360docs.net/doc/fe3183532.html,/10.2217/fmb.13.32

30. Martínez J L. Bottlenecks in the transferability of

antibiotic resistance from natural ecosystems to human bacterial pathogens. Front Microbiol 2011; 2:265; PMID:22319513

31. van den Bogaard AE, Stobberingh EE. Epidemiology

of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents 2000; 14:327-35; PMID:10794955; https://www.360docs.net/doc/fe3183532.html,/10.1016/S0924-8579(00)00145-X

浅析非病毒载体基因转移技术的现状和展望

浅析非病毒载体基因转移技术的现状和展望 摘要:目前基因治疗已经成为科学家治疗多种难治性疾病的一种新手段,基因导入技术是基因治疗的核心也是最基本的技术。目前研究较多的基因导入技术共分为两大类:一,病毒载体基因导入法;二,非病毒载体基因导入法。前者转染效率高,但存在安全性和免疫原性等问题。因此,近年来人们对非病毒类载体系统给予了更多的关注。 关键词:非病毒载体基因转移技术现状和展望 非病毒载体基因转移方法又分为物理方法和化学方法。物理方法如:注射法、基因枪法、电穿孔法、超声波法等都是借助物理力量穿透细胞膜达到基因转移的目的;化学方法则是借助天然的或者人工合成的化合物辅助完成基因转移。尽管近年来在非病毒基因转移领域中取得了显著成效,但总体而言,非病毒载体相对于病毒载体来说转移基因的效率要低,在体内的基因转移尤其如此。现在把目前较常用的非病毒载体基因转移方法的优势和局限综述如下。 1 物理方法 就是基于物理力量造成细胞膜的瞬间缺损,从而使质粒DNA进入细胞内的方法。如基因枪法、电穿孔法、超声波法等,还有近年来发现的激光相关辅助方法。 注射法 直接将质粒DNA注射入组织细胞中达到基因转移的目的。有学者成功地将裸露的质粒DNA注射入肌肉、肝脏、皮肤等组织,但基因表达水平较低。注射法中,细胞表面的某些受体起了一定的作用,它们能够特异或者非特异性地结合DNA并且介导DNA的内吞,但这些受体的详细作用机制不甚清楚。由于注射法有其独特优点如:方法简单,不需特殊试剂且毒性低而受到欢迎。此外,借助显微操作系统进行的显微注射法是目前国际上公认的制备转基因和基因剔除动物模 型的首选。 基因枪法 基因枪法是一种全新的基因导入技术,它以压缩气体(氦或氮)转换成的气体冲击波为动力,把附着于高速微弹上的DNA直接射入细胞、组织和细胞器,基因枪导入的基因被证明可在广泛类型的细胞中得到瞬时的、高效率的表达。基因枪法是皮肤、黏膜以及手术局部暴露组织较理想的基因转移方法,因而基因枪被认为是将来DNA疫苗的良好免疫工具。但是基因枪法用于基因治疗还需要进一步改进,如通过对微弹颗粒表面结构的改良使其可以结合更多的DNA或者使结合

基因转移技术

基因转移技术 什么是基因转移技术? 基因转移技术是将特定的外源基因信息转入到受体细胞或生物并使其表达的一种基因工程技术。基因转移技术已广泛用于基因的结构和功能分析、基因表达与调控、基因治疗与转基因动物模型建立等研究方向。 基因转移方法有哪几类? 一、化学转染 1.磷酸钙法 该技术通过将磷酸盐溶液和含有DNA的氯化钙溶液进行缓慢混合,形成DNA-磷酸钙共沉淀复合物。复合物能粘附于细胞膜上,通过细胞内吞作用进入细胞浆中。 优点:实验室中转染哺乳动物细胞最广泛使用的方法。试剂易获得,成本低,可用于瞬时转染和稳定转染。 缺点:重复性差,转染效率低。对基因和细胞的选择要求较高。 2.DEAE-葡聚糖法 DEAE-葡聚糖是最早开发的转染试剂之一。它是一种可溶的聚阳离子碳水化合物,通过与带负电的DNA结合形成聚集物。携带正电荷的复合物与带负电荷的细胞膜结合,通过细胞内吞作用进入细胞中。与磷酸钙转染过程中形成的复合物颗粒相比,其粒径更小。 优点:该试剂价格便宜,并且过程简便、效率较高。一般常用于瞬时转染,DNA使用量较少。 缺点:不适用于稳定转染。 3.脂质体法 脂质体分为单层脂质体和多层脂质体。常用的阳离子脂质体与带负电的DNA结合,形成DNA-阳离子脂质体复合物,从而吸附到带负电的细胞膜表面,通过细胞内吞作用进入细胞。脂质体介导的基因转移的效率可以通过整合病毒蛋白来提高,从而促进病毒包膜和细胞膜之间的主动融合。这种融合粒子被称为病毒体。 优点:能够在活体内应用,毒性低、重复性好。适用性广,在很多细胞中能得到有效的瞬时转染和稳定转染效果。 缺点:试剂难以自制,商品较为昂贵,转染效果在不同细胞类型中差异较大。

遗传学

名词解释 等位基因:同源染色体上相对位置上的决定同种性状的基因。 性状:生物的形态、结构,生理功能过程的特征。 分离:(在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。) 自由组合:控制两对性状的两对等位基因,位于不同对的同源染色体上,在形成配子时,每对同源染色体上的等位基因分离,而非同源染色体上的非等位基因自由组合。 外显率:一定基因型的群体中表现出预期表型性状的比率。 表现度:具有相同基因型的个体之间基因表达的变化程度称为表现度。 完全显性:两个不同的等位基因同时存在时,只有一个的表型效应得以完全显现。共显性:一对等位基因的两个成员在杂合体中都表达的遗传现象称为并显性遗传。 不完全显性:由一对等位基因决定的相对性状中,显性是不完全的。 连锁:位于同一染色体上的基因伴同遗传的现象。 交换:由于同源染色体相互间发生互换而使原来在同一染色体上的基因不再伴同遗传的现象。 顺序四分子:脉孢菌减数分裂的4个产物保留在一起,且以直线方式排列在子囊中,称为四分子。 F因子:细菌细胞中,独立于染色体之外,能够自我复制的环状DNA,分子量为 转化:没有噬菌体作介导,细胞从周围介质中吸收裸露的DNA由DNA直接转入受体细胞的过程。 接合:是指通过细胞的直接接解,遗传信息从供体单向转移到受体的过程。 转导:就是以病毒作为载体将遗传信息从一个细菌细胞传递到另一个细菌细胞。转导又可分为普遍性转导和局限性转导。 F’因子:从染色体上完整地游离下来形成F+菌株,但是偶尔也会出现不规则的环出,形成F因子携带一段相邻的细菌染色体。这种带有插入细菌基因的环状F 因子是一个复制子,这种新的F因子称为F’因子。 性导:利用F’因子将供体细胞的基因导入受体形成部分二倍体的过程称作性导。数量性状:所有能够度量的性状都可称为数量性状。 显性说:基因的杂合状态是产生杂种优势的根本原因,等位基因间不存在显隐性关系,基因处于杂合态时比两个纯合态的作用大,杂合座位越多,优势就越大。超显性说:杂种优势是对生长发育有利的显性基因相互补充的结果,杂合态中隐性有害基因被显性有利基因的效应所掩盖,杂种显示出优势。 母体影响:由于母体中核基因的某些产物积累在卵母细胞的细胞中,使子代表型不由自身的 基因型所决定而出现与母体表型相同的遗传现象,则称母体影响。母体影响有两种:一种是 短暂的,另一种是持久的。 短暂的母体影响: 持久的母体影响:

脂质体制备方法

微脂体(又称脂质体)及其制备方法一二 微脂体(又称脂质体) 微脂体起源于1960 年代中期,Bangham博士等人首先提出,在磷酸脂薄膜上加入含盐分的水溶液后,再加以摇晃,会使脂质形成具有通透性的小球;196 8年,Sessa 和Weissmann 等人正式将此小球状的物体命名为微脂体(liposo me)并做出明确的定义: 指出微脂体是由一到数层脂质双层膜(lipid bilayer) 所组成的微小的囊泡,有自行密合(self-closing)的特性。微脂体由脂双层膜包裹水溶液形成,由于构造的特性,可同时作为厌水性(hydrophobic)及亲水性(hydrophilic)药品的载体,厌水性药品可以嵌入脂双层中,而亲水性药品则可包覆在微脂体内的水溶液层中。如同细胞膜,微脂体的脂质膜为脂双层构造,由同时具有亲水性端及厌水性端的脂质所构成,脂双层由厌水性端相对向内而亲水性端面向水溶液构成,组成中的两性物质以磷酸脂质最为常见。微脂体的形成是两性物质在水溶液中,依照热力学原理,趋向最稳定的排列方式而自动形成。微脂体的性质深受组成脂质影响,脂质在水溶液的电性,决定微脂体是中性或带有负电荷、正电荷。此外,磷酸脂碳链部分的长短,不饱和键数目,会决定微脂体的临界温度(transition temperature, Tc),影响膜的紧密度。一般来说,碳链长度越长临界温度越高,双键数越多则临界温度越低,常见的DPPC(dipalmitoylp hosphatidylcholine)与DSPC(distearoylphosphatidylcholine)的临界温度分别是42℃与56℃,而Egg PC(egg phosphatidylcholine)与POPC(palmitoyl oleoyl phosphatidylcholine)的Tc 则低于0℃。临界温度影响微脂体包裹及结合药物的紧密度,当外界温度高于Tc时,对膜有通透性的药物,较容易通过膜;此外,当外界温度处于临界温度时,微脂体脂质双层膜中的脂质,会因为流动性不一致而使微脂体表面产生裂缝,造成内部药物的释出。在磷脂质内加入胆固醇,会对微脂体性质产生下列影响:增加微脂体在血液中的安定性,较不易发生破裂;减少水溶性分子对微脂体脂膜的通透性;增加微脂体的安定性,使其在血液循环中存在的时间较长。 微脂体可依脂双层的层数或是粒子大小,加以命名或分类: (1) Multilamellar vesicle(MLV)是具有多层脂双层之微脂体,粒子大小介于100-1000 nm,特色是粒子内具多层脂质膜,一般而言,干燥后的脂质薄膜,

高考生物大复习 现代生物科技四十三 3.4 胚胎工程与生物技术的安全性和伦理问题课时提升作业(选修3)

胚胎工程与生物技术的安全性和伦理问题 (40分钟100分) 1.(12分)下图是某科研小组设计的用“精子介导基因转移法”培育转基因山羊(2n)的流程图。据图回答下列问题:世纪金榜导学号77982494 (1)“精子介导基因转移法”是利用精子易于与外源基因结合的能力,通过图中的①过程,将精子作为外源基因的________,由________的精子经过②过程,将外源基因送入卵母细胞。 (2)进行②过程的卵母细胞应处于____________期,此时细胞中含________个染色体组。 (3)③过程中的卵裂期有机物种类________,有机物总量________。 (4)④过程的实质是__________________。 【解析】(1)图中过程①为将外源基因导入精子,以精子作为外源基因的载体,由获能的精子将外源基因导入卵母细胞。 (2)②为体外受精,卵母细胞需培养至MⅡ中期才能进行受精作用,此时细胞中只有1个染色体组。 (3)③过程中的卵裂期细胞分裂、生长所需的营养物质来自受精卵的细胞质,有机物总量将逐渐减少,有机物种类增多。 (4)④为胚胎移植,其实质是早期胚胎在生理环境相同的条件下空间位置的转移。 答案:(1)载体获能(2)减数第二次分裂中 1 (3)增多减少 (4)早期胚胎在生理环境相同的条件下空间位置的转移 2.(12分)(2017·福州模拟)科学家通过诱导黑鼠体细胞去分化获得诱导性多能干细胞(iPS),继而利用iPS 细胞培育出与黑鼠遗传特性相同的克隆鼠。流程如下:世纪金榜导学号77982495

(1)从黑鼠体内获得体细胞后,对其进行的初次培养称为____________,培养的细胞在贴壁生长至铺满培养皿底时停止分裂,这种现象称为____________。 (2)图中2-细胞胚胎可用人工方法从灰鼠子宫内获得,该过程称为________;也可从灰鼠体内取出卵子,通过____________后进行早期胚胎培养获得。 (3)图中重组囊胚通过____________技术移入白鼠子宫内继续发育,暂不移入的胚胎可使用________方法保存。 (4)小鼠胚胎干细胞(ES细胞)可由囊胚的____________分离培养获得。iPS细胞与ES细胞同样具有发育的全能性,有望在对人类iPS细胞进行定向____________后用于疾病的治疗。 【解析】(1)原代培养指将动物组织用酶处理成单个细胞后进行的初次培养。接触抑制指贴壁的细胞分裂生长到表面相互接触时,细胞就会停止分裂增殖的现象。(2)将早期胚胎从母体子宫中冲洗出来叫冲卵。 (3)暂不进行胚胎移植的胚胎可放入-196℃的液氮中保存。(4)iPS细胞与ES细胞一样,可通过定向诱导分化修补某些功能异常的细胞来治疗疾病。 答案:(1)原代培养接触抑制(2)冲卵体外受精(或核移植) (3)胚胎移植冷冻(或低温) (4)内细胞团诱导分化 【易错提醒】冲卵与排卵不同 (1)冲卵:从供体的子宫内把胚胎冲洗出来,而不是把卵子冲洗出来。 (2)排卵:指卵子从卵泡中排出,卵子不是卵细胞,而是初级卵母细胞或次级卵母细胞。 3.(12分)(2017·威海模拟)人组织纤溶酶原激活物(htPA)是一种重要的药用蛋白,可在转htPA基因母羊的羊乳中获得。流程如下: 世纪金榜导学号

脂质体介导IL22

脂质体介导I L22、TNF2α联合基因转导体内抗肝细胞癌的实验研究① 李东复 申吉子② 闫 峻② 邵国光 (吉林大学第二医院消化内科,长春130041) 周晓琦 杨春荣 (吉林大学第二医院电诊科,长春130041) 中国图书分类号 R73517 R73013 文献标识码 A 文章编号 10002484X(2003)0720483204 [摘 要] 目的:探讨脂质体介导I L22cDNA、T NF2αcDNA联合基因转导体内抗肿瘤效果。方法:建立裸鼠肝癌动物模型,在荷瘤部位将脂质体包裹的I L22cDNA和T NF2αcDNA直接注入瘤体中,观察肿瘤大小变化,并检测此2种基因在肿瘤组织中的表达情况。结果:I L22基因和T NF2α基因联合治疗组肿瘤生长明显受到抑制,抗肿瘤效果显著优于单纯治疗组和对照组。结论:I L22和T NF2α基因联合治疗组对肿瘤生长抑制效果明显优于单纯治疗组与对照组,荷瘤鼠生存期明显延长(P<0105)。 [关键词] 肝细胞癌;脂质体;细胞因子基因;基因转导 Combined I L22cDNA with TNF2αcDNA genetherapy for hepatocellular carcinoma LI Dong2Fu,SHEN Ji2Zi,Y AN Jun et al.Second Hospital,Jilin Univer sity,Changchun130041,China [Abstract] Objective:T o explore antitum or effects of combined interleukin22(I L22)gene and tum or necrosis factor(T NF2α)gene therapy in nude mice m odel with hepatocellular carcinoma.Methods:Nude mice m odel with hepatocellualr carcinoma was established with BelH7402 cell line.Plasmid vector was used to trans fect BelH7402and nude mice m odel with the gene for human I L22or T NF2αalone or in combination by lipofectamine reagent and tum or size in nude mice m odel with BelH7402carcinoma was measured before and after treatment to evaluate the response of the different treatment and control groups.R esults:Tum or and BelH7402trans fected with I L22or T NF2αgene by lipos ome mediated were success ful.G rowth rates of BelH7402trans fected with I L22or T NF2αgene were not significantly changed,growth rate of tum or in nude mice m odel was significantly inhibited in combined I L22and T NF2αgenetherapy group as compared with the other groups(P<0105).Conclu2 sion:C ombination of the tw o genes in genetherapy may be additive of synergistic in antitum or effect. [K ey w ords] Hepatocellular carcinoma;Cellular factor gene;G ene trans fection;G enetherapy 肝癌基因治疗的方法已发展有免疫基因疗法、抑癌基因疗法、反义基因疗法和自杀基因疗法。近年来又出现前药转换基因疗法、多药耐药基因疗法和反基因策略等。但是这一新的治疗手段在技术上还存在许多问题,如缺乏高效和定向的载体系统;病毒载体应用中可能产生有传染性的野生型病毒,有可能随机整合于宿主基因,从而使癌基因活化或抑癌基因失活;基因进入人体后的可控性尚难定论,某些基因的过度表达可能会产生毒副作用;所以至今为止体内型转基因治疗尚不能在临床上应用。因此,当前重要的是发展经济有效、安全易行的基因运载体系,使目的基因能达到肿瘤部位,并且表达的产物能受机体控制,使基因治疗能够按照要求用于临床,成为肝脏肿瘤的一种有效治疗方法。本文脂质体介导I L22cDNA、T NF2αcDNA联合基因转导体内抗肝细胞癌的实验研究,旨在探讨联合基因 ①吉林省科技厅基金资助项目 ②研究生 作者简介:李东复(1956年-),男,主任医师,教授,主要从事肝病免疫学研究。 转导持续基因产物表达的抗肿瘤效应,为肝癌基因治疗的临床应用提供理论与实验依据。 1 材料与方法 111 主要材料与试剂 BelH7402人肝癌细胞,本校免疫学教研究室冻存;脂质体Lipofectamine由联星生物工程试剂公司提供;I L22、T NF2α检测试剂盒由深圳晶美公司提供;质粒型真核表达载体BMG Neo、pcDNA3由上海第二军医大学免疫学教研室、本院中心实验室提供;人I L22cDNA、人T NF2αcDNA由外周血制备;裸小鼠,6~8周龄,由北京大学医学部实验动物中心提供。 112 体外基因转导与表达细胞培养 亲本肝癌细胞BelH7402及I L22、T NF2α基因转导细胞株均培养于含10%小牛血清I M DM培养基中待用。 113 I L22cDNA、T NF2αcDNA真核表达载体构建 质粒提取、酶切,连接按《分子克隆》有关章节进行。人I L22cDNA插入到BMG Neo的XhoI位点,人T NF2αcDNA插入到pcDNA3HindⅢ与BamHI位点,提取BMG Neo2hI L22,pcDNA3hT NF酶切后,018%琼脂糖凝胶电泳鉴定。

脂质体转染原理步骤

外源基因进入细胞主要有四种方法:电击法、磷酸钙法和脂质体介导法和病毒介导法。电击法是在细胞上短时间暂时性的穿孔让外源质粒进入;磷酸钙法和脂质体法是利用不同的载体物质携带质粒通过直接穿膜或者膜融合的方法使得外源基因进入细胞;病毒法是利用包装了外源基因的病毒感染细胞的方法使得其进入细胞。但是由于电击法和磷酸钙法的实验条件控制较严、难度较大;病毒法的前期准备较复杂、而且可能对于细胞有较大影响;所以现在对于很多普通细胞系,一般的瞬时转染方法多采用脂质体法。 学习和掌握外源基因导入真核细胞的主要方法—脂质体介导的转染。了解外源基因进入的一般性方法,观测外源蛋白的表达(绿色荧光蛋白),为染色准备实验材料。 上图所示是脂质体介导转染的示意图,它显示了外源质粒进入细胞的一般过程。 外源基因进入细胞主要有四种方法:电击法、磷酸钙法和脂质体介导法和病毒介导法。电击法是在细胞上短时间暂时性的穿孔让外源质粒进入;磷酸钙法和脂质体法是利用不同的载体物质携带质粒通过直接穿膜或者膜融合的方法使得外源基因进入细胞;病毒法是利用包装了外源基因的病毒感染细胞的方法使得其进入细胞。但是由于电击法和磷酸钙法的实验条件控制较严、难度较大;病毒法的前期准备较复杂、而且可能对于细胞有较大影响;所以现在对于很多普通细胞系,一般的瞬时转染方法多采用脂质体法。 本次实验采用的脂质体是promega公司的TransFast脂质体试剂,它是一种阳离子脂质体和中性脂质体的混合物,是对于本次实验中采用的293T细胞优化的转染试剂。 293T细胞 MyoD表达质粒和EGFP表达质粒 DMEM培养基 链霉素/青霉素(双抗)

PBS(磷酸盐缓冲溶液) 酒精灯 废液缸 血球计数板 涡旋振荡器 35mm培养皿 转染管 细胞传代 (2) 弃掉培养皿中的培养基,用1ml的PBS溶液洗涤两次。 (5) 用Tip头多次吹吸,使细胞完全分散开。 细胞转染 1)转染试剂的准备 2)选择合适的混合比例(1:1-1:2/脂质体体积:DNA质量)来转染细胞。在一个转染管中加入合适体积的无血清培养基。加入合适质量的MyoD或者EGFP的DNA,震荡后在加入合适体积的转染试剂, 再次震荡。 7)加入混合液,将细胞放回培养箱中培养一个小时。 第二次细胞传代 在转染后24小时,观察实验结果并记录绿色荧光蛋白表达情况。 再次进行细胞传代,按照免疫染色合适的密度

北京市朝阳区2020届高三一模生物试题(解析版)

北京市朝阳区2020届高三一模 1.下图为细胞膜的结构模式图,说法正确的是( ) A. 磷脂双分子层是细胞膜的基本支架,③为疏水端,④为亲水端 B. 细胞癌变时,细胞表面发生变化,①减少使细胞的黏着性降低 C. 同种生物不同细胞的细胞膜上①、②、⑤的种类和数量完全相同 D. 性激素、甘油等小分子物质从A 侧运输到B 侧需要有②或⑤参与 『答案』B 『解析』 『分析』 据图分析可知,图示为细胞膜结构图,①表示糖蛋白,②⑤表示蛋白质,③④分别表示磷脂亲水头部和疏水的尾部,A 侧面为细胞膜的外侧,B 为内侧。 『详解』A 、磷脂由亲水的③头部和疏水的④尾部构成,A 错误; B 、癌细胞的表现发生了变化,由于细胞膜上的①糖蛋白等物质减少,使得癌细胞彼此之间的黏着性低,容易在体内分散和转移,B 正确; C 、膜的功能主要由蛋白质承担,故不同功能的细胞,其细胞膜上蛋白质的种类和数量不完全相同,C 错误; D 、性激素、甘油从A 侧运输到B 侧(进入细胞)的方式为自由扩散,不需要②或⑤的参与,D 错误。 故选B 『点睛』本题主要考查细胞膜的结构和功能,意在考查考生识图和理解能力,明确流动镶嵌模型是解答本题的关键。 2.下列有关生物多样性的叙述,正确的是( ) A. 群落演替过程中生物多样性一般会逐渐降低 B. 建立动植物园是保护生物多样性最有效的措施 。

C. 湿地能调节气候,体现了生物多样性的直接价值 D. 生物多样性包括基因多样性、物种多样性、生态系统多样性 『答案』D 『解析』 『分析』 1.生物多样性是指生物圈内所有的植物、动物和微生物,它们所拥有的全部基因以及各种各样的生态系统共同构成的。 2.生物多样性的价值有:直接使用价值、间接使用价值和潜在使用价值。 『详解』一般情况下,群落演替过程中生物种类增多,生物多样性增加,A错误。建立自然保护区是保护生物多样性最有效的措施,B错误。湿地能调节气候,是属于生物多样性在生态上的功能,属于生物多样性的间接使用价值,C错误。生物多样性包括基因多样性、物种多样性、生态系统多样性,D正确。 3.有一种变异发生在两条非同源染色体之间,它们发生断裂后片段相互交换,仅有位置的改变,没有片段的增减。关于这种变异的说法错误的是() A. 这种变异使染色体结构改变,在光学显微镜下可见 B. 该变异一定导致基因突变,为生物进化提供原材料 C. 该变异可导致染色体上基因的排列顺序发生变化 D. 该变异是可遗传变异的来源,但不一定遗传给后代 『答案』B 『解析』 『分析』 根据题干分析,“该类型的变异是两条非同源染色体发生断裂后相互交换,仅有位置的改变,没有染色体片段的增减”,属于染色体结构变异中的易位,据此分析作答。 『详解』A、由以上分析可知,该变异属于染色体结构变异,在显微镜下可以观察,A正确;BC、该变异属于染色体结构变异中的易位,可导致染色体上基因的排列顺序发生变化,但易位通常不会造成基因突变,B错误,C正确; D、可遗传变异包括突变(基因突变和染色体变异)和基因重组,故该变异属于可遗传变异,但不一定能遗传给后代,D正确。 故选B。 『点睛』本题考查染色体结构变异的相关知识,意在考查考生的识记能力、审题能力和理解

植物基因转化常用方法(植物遗传,农杆菌、病毒介导和基因枪转化法)

一. 植物遗传转化的方法 植物遗传转化技术可分为两大类:一类是直接基因转移技术,包括基因枪法、原生质体法、脂质体法、花粉管通道法、电激转化法、PEG介导转化方法等,其中基因枪转化法是代表。另一类是生物介导的转化方法,主要有农杆菌介导和病毒介导两种转化方法,其中农杆菌介导的转化方法操作简便、成本低、转化率高,广泛应用于双子叶植物的遗传转化。 二.农杆菌介导的基因转化方法 (一)农杆菌的Ti质粒与T-DNA的整合机制 几乎所有双子叶植物都容易受到土壤农杆菌感染,而产生根瘤。它是一种革兰氏阴性土壤杆菌(A. tumefaciens)。其致瘤特性是由Ti(tumor-inducing)质粒介导的。农杆根瘤菌之所以会感染植物根部是因为植物根部损伤部位分泌出酚类物质乙酰丁香 酮和羟基乙酰丁香酮,这些酚类物质可以诱导Vir(Virulence region)基因的启动表达,Vir基因的产物将Ti质粒上的一段T-DNA单链切下,而位于根瘤染色体上的操纵子基因产物则与单链T-DNA结合,形成复合物,转化植物根部细胞。T-DNA上有三套基因,其中两套基因分别控制合成植物生长素与分裂素,促使植物创伤组织无限制地生长与分裂,形成冠瘿瘤。第三套基因合成冠瘿碱,冠瘿碱有四种类型:章鱼碱(octopine)、胭脂碱(nopaline)、农杆碱(agropine)、琥珀碱(succinamopine),使农杆菌生长必需的物质。 1. Ti质粒的结构 在发现根瘤农杆菌诱发冠瘿瘤的本质是Ti质粒后,Ti质粒便成为冠瘿瘤形成基因鉴定与分析的主要研究对象。 Ti质粒大约在160~240kB之间。其中T-DNA大约在15kb-30kb。Vir基因区在36kb 左右。除此之外,Ti质粒上还存在Con区(region encoding conjugation)和Ori区(origin of replication)。

2020北京朝阳高三一模生物含答案

2020北京朝阳高三一模 生物 (考试时间90分钟满分100分) 第一部分(共30分) 本部分共15小题,每小题2分,共30分。在每小题给出的四个选项中,只有一项符合题目要求。 1.下图为细胞膜的结构模式图,说法正确的是 A.磷脂双分子层是细胞膜的基本支架,③为疏水端,④为亲水端 B.细胞癌变时,细胞表面发生变化,①减少使细胞的黏着性降低 C.同种生物不同细胞的细胞膜上①、②、⑤的种类和数量完全相同 D.性激素、甘油等小分子物质从A侧运输到B侧需要有②或⑤参与 2.下列有关生物多样性的叙述正确的是 A.群落演替过程中生物多样性一般会逐渐降低 B.建立动植物园是保护生物多样性最有效的措施 C.湿地能调节气候,体现了生物多样性的直接价值 D.生物多样性包括遗传多样性、物种多样性、生态系统多样性 3.有一种变异发生在两条非同源染色体之间,它们发生断裂后片段相互交换,仅有位置的改变,没有片段的增 减。关于这种变异的说法错误的是 A.这种变异使染色体结构改变,在光学显微镜下可见 B.该变异一定导致基因突变,为生物进化提供原材料 C.该变异可导致染色体上基因的排列顺序发生变化

D.该变异是可遗传变异的来源,但不一定遗传给后代 4.右图是人体缩手反射的反射弧结构,方框甲、乙代表神经中枢。当手被尖锐的物体刺痛时,先缩手后产生痛 觉。对此生理过程的分析正确的是 A.缩手反射的反射弧为A→B→C→D→E B.图中甲是低级神经中枢,乙是高级神经中枢 C.未受刺激时,神经纤维D处的电位是膜内为正、膜外为负 D.由甲发出的传出神经末梢释放的神经递质一定能引起乙的兴奋 5.下列关于人体免疫的叙述,正确的是 A.T细胞受到抗原刺激后可直接转变为效应T细胞 B.浆细胞产生的抗体可消灭宿主细胞内的结核杆菌 C.记忆细胞在二次免疫过程中产生更快更强的反应 D.人体内的吞噬细胞只能参与非特异性免疫的过程 6.下列关于细胞的叙述,正确的是 A.都能进行细胞呼吸但不一定发生在线粒体中 B.都能合成蛋白质但合成场所不一定是核糖体 C.都具有细胞膜但不一定具有磷脂双分子层 D.都具有细胞核但遗传物质不一定是DNA 7.下列与人们饮食观念相关的叙述中,正确的是 A.胆固醇会引起血管粥样硬化,不要摄入 B.谷物不含糖类,糖尿病患者可放心食用 C.食物中含有的核酸可被消化分解 D.过量摄入蛋白质类不会使人长胖 8.眼皮肤白化病(OCA)是一种与黑色素(合成时需要酪氨酸酶)合成有关的疾病,虹膜、毛发及皮肤呈现白色症状。 该病的两种类型OCA1(I型)与OCA2(II型)均是隐性突变造成的,有关该病的介绍如下表。有一对患病的夫妇生下了两个正常的孩子。下列说法不正确的是

基因工程复习资料

基因工程复习资料 生物技术在制药行业的应用:基因工程制药、细胞工程制药、酶工程制药、发酵工程制药。 基因工程:基因工程是在分子水平上进行的遗传操作,是指将一种或多种生物体的基因分离出来或人工合成基因,按照人们的愿望,进行严密的设计和体外加工重组,转移到另一种生物体的细胞内,使之能在受体细胞中遗传表达并获得新的遗传性状而形成新的生物类型的生物技术。(又称遗传工程) 基因工程流程:分、切、接、转、筛、表。 基因工程的四大要素(或基本条件):目的基因、载体、工具酶、受体。 基因工程的突出特点:打破物种间基因交流的界限。 连接酶:T4连接酶(辅助因子为ATP,高等生物,实验采用)和大肠杆菌连接酶(辅助因子为NAD+,低等生物)。 基因工程诞生的理论基础:证明生物的遗传物质是DNA(20世纪40年代)、明确了DNA的双螺旋结构和半保留复制机制(20世纪50年代)、明确了遗传信息的传递方式(20世纪60年代)。 基因工程诞生的技术突破:工具酶(限制性内切酶和DNA连接酶)的发现与应用(基因操作的剪刀,针线)、载体的发现(发现了运载工具)、逆转录酶的发现(便于真核生物基因的获取,因其常有内含子,不便于操作)。 基因工程诞生的元年:1973年的DNA体外重组和大肠杆菌转化实验。 基因工程制药:利用重组DNA技术,结合发酵工程、细胞工程、酶工程等现代生物技术研制预防和治疗人类、动物重大疾病的蛋白质药物、核酸药物,以及生物制品的一门技术。 工具酶:工具酶是指基因工程操作中所使用的核酸酶类。 核酸酶:核酸酶是指对核酸片段可以进行操作(核酸的扩增、核酸的切割、核酸的连接)的一类酶。 工具酶:限制性内切酶、连接酶、聚合酶、修饰酶。 胰蛋白酶:动物细胞消散需要胰蛋白酶。 限制性核酸内切酶的限制作用:指一定类型的细菌可以通过限制酶的作用,破坏入侵的噬菌体DNA,导致噬菌体的寄主幅度受到限制;这是维护宿主遗传稳定的保护机制。 限制性核酸内切酶的修饰作用:指寄主本身的DNA,由于在合成后通过甲基化酶的作用得以甲基化,使DNA得以修饰,从而免遭自身限制性酶的破坏;这是宿主细胞识别自身遗传物质和外来遗传物质的作用

脂质体介导转染N2a细胞的优化方法

脂质体介导转染N2a细胞的优化方法 赵云鹤1,王若楠2,杨桂姣1,陆利1 1山西医科大学人体解剖学教研室,山西省太原市 030001;2山西医科大学七年制临床医学系,山西省太原市 030001 Optimization of N2a cell transfection mediated by liposome Zhao Yun-he1, Wang Ruo-nan2, Yang Gui-jiao1, Lu Li1 1Department of Anatomy, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China; 2Seven-year Program of Clinical Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China 摘要 背景:阳离子脂质体介导的细胞转染具有结果可靠、可重复性强的特点,但面临一个共同的缺点,就是转染效率常较低。 目的:探讨阳离子脂质体转染N2a细胞(小鼠神经胶质瘤细胞)的优化方法。 方法:采用24孔培养板,1.5 μL阳离子脂质体Lipofectamine? LTX介导,通过贴壁法和悬浮法,将500 ng带有绿色荧光蛋白(GFP)基因的重组质粒pcDNA3-GFP转入N2a细胞,倒置荧光显微镜观察细胞内绿色荧光蛋白表达情况,并比较二者转染效率。采用悬浮转染法,将500 ng质粒DNA分别用1.0,1.5,2.0,2.5 μL Lipofectamine? LTX进行转染,探讨最适脂质体和DNA比例。 结果与结论:1.5 μL脂质体/500 ng DNA,悬浮法转染效率显著高于贴壁法转染效率(P < 0.01);1.0,1.5,2.0,2.5 μL Lipofectamine? LTX对500 ng质粒DNA的转染效率分别为(76.60±3.85)%,(80.00±4.17)%,(88.00±5.89)%,(54.96±4.23)%,提示脂质体2.0 μL与质粒DNA 500 ng的转染效率最高。 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程 全文链接: 关键词:组织构建;组织工程;脂质体;贴壁转染;悬浮转染;N2a细胞;绿色荧光蛋白;Abstract: BACKGROUND: Cationic liposome-mediated cell transfection is reliable and repeatable. However the transfection efficiency is often low. OBJECTIVE: To study the optimized methods for gene transfection mediated by

肉桂地链霉菌接合转移体系的构建及nsdA基因中断对其次级代谢的影响

农业生物技术学报 Journal of Agricultural Biotechnology 2007,15(6):1042~1047 *通讯作者。 Author for correspondence.研究员, 主要从事微生物发酵工程研究。E-mail:. 收稿日期: 2007-04-03 接受日期: 2007-05-07 ·研究论文 · 肉桂地链霉菌接合转移体系的构建 及 基因中断对其次级代谢的影响 陈 芬 1 ,熊 伟 2 ,闵 勇 1 ,范与庆 1 ,梁运祥 1 , 吕和平 3 ,邢仁昌 3 ,郑应华 1,3 * (1. 华中农业大学农业微生物国家重点实验室,武汉 430070; 2.清华大学生物科学与技术系,北京100084; 3. 北京生物医药研究所,北京 100091) 摘要: 以 pSET152 和 pHL212 为出发质粒, 通过供体大肠杆菌 ( ) ET12567 (pUZ8002) 和 S17-1 属间接合转 移肉桂地链霉菌 ( ), 构建并优化了肉桂地链霉菌的接合转移系统。利用 PCR 介导的基因置换技术 快速构建了肉桂地链霉菌 (negative regulator of differentiation)基因 中断载体, 通过接合转移导入肉桂地链霉 菌工业菌株 BIB2005, 筛选得到 1 株遗传稳定表型为 的接合子 BIB309。PCR 分析结果显示, 该接合子即为 中 断突变株。与出发工业菌株相比, 在摇瓶水平上 中断突变株BIB309莫能菌素产能提高了 2.7倍。 关键词: 肉桂地链霉菌; 接合转移; 基因; 基因中断 中图分类号: S188 文献标识码: A 文章编号: 1006-1304(2007)06-1042-06 Construction of the Conjugal Transfer System of and Effect of PCR-mediated Gene Disruption on Its Secondary Metabolism CHEN Fen 1 , XIONG Wei 2 , MIN Yong 1 , FAN Yu-qing 1 , LIANG Yun-xiang 1 , LV He-ping 3 , XING Ren-chang 3 , ZHENG Ying-hua 1,3 * Intergeneric transfer of plasmid vectors pSET152and pHL212from donor ET12567(pUZ8002)and S17-1to were demonstrated and optimized.The gene disruption structure was constructed by PCR-targeting system and then introduced into BIB2005through intergeneric conjugal transfer.After PCR analysis, the screened conjugant BIB309was confirmed to be the https://www.360docs.net/doc/fe3183532.html,pared with the start strain,the yield of monensin of the mutant BIB309increased 270percent in the level of flask. ?conjugal transfer? gene?PCR-mediated gene disruption 肉桂地链霉菌 ( ) 是 一种具有复杂形态分化的革兰氏阳性土壤细菌, 在 不同培养基与培养条件下表现不同产孢和生长特 性。 其次级代谢产物是莫能菌素 (monensin ), 是一类 五环单羧酸多醚结构的脂溶性抗生素,其体外抗球 虫活性极强,在农业和畜牧业生产中具有广泛的应 用(Day ,1973)。目前莫能菌素生物合成基因簇 的克隆及序列分析工作已基本完成 (Leadlay ., 2001), 序列分析结果显示莫能菌素生物合成基因簇 与大环内酯类抗生素生物合成基因簇十分相似, 大 小约为 97kb , 其基因簇以 mon 命名, G+C %含量高 达 72%(Andrew ,2006)。整个生物合成基因簇 含有 34 个完整的 ORFs , 其中的 20 个 ORFs 与莫能 菌素的生物合成密切相关(Markiyan ,2003)。 近年来,接合转移作为一种基因转移工具已在 多种链霉菌中成功应用(Trieu-Cuot ,1987)。介 导大肠杆菌与链霉菌接合转移的载体一般都含有一 段 760bp 来源于 IncP 群质粒 RK2 上的 序列,

遗传期末整理

平衡致死系:用另一个致死基因来“平衡”,条件是两个致死基因间不发生交换(倒位区内),且位于各别的同源染色体上。可用于保存致死基因(即永久杂种)和常染色体上基因突变的检出。 部分二倍体:在细菌的交配过程中,由供体提供部分基因组,受体提供全套基因组,构成的二倍体。 表型模写:是一种由非诱变因素引发的表型改变现象,这种表型改变与基因突变的效应十分相似;比如,果蝇的突变体(vgvg)为残翅,幼虫经过一定的高温处理,成体的翅膀接近于野生型,但基因型仍为vgvg。 抑制基因:指某一突变基因的表型效应由于第二个突变基因的出现而恢复正常时,称后一突变基因为前者的抑制基因。 抑制因子突变:回复突变发生在另一个座位上,但掩盖了原来的突变型表型;与真正的回复突变区别是:突变型×野生型→子代仍然有突变型出现。 条件致死突变:在一定条件下表现致死效应,但在其它条件下能够存活的类型。 复制错误或渗入错误:DNA复制过程中核苷酸配对发生错误的现象。 隔裂基因或重叠基因:编码顺序由若干非编码区域隔开,使可读框不连续的基因称为隔裂基因。 遗传漂变:在小群体里,形成的子一代配子与合子的基因型频率会产生偶然的变化,如中性基因甚至是不利基因可以保留下来,而有利基因被淘汰。 普遍性转导 转导颗粒:是一种携带有外源DNA片段的杂合病毒颗粒,其中的DNA可以全部是外源的,也可以部分是外源的,前者是烈性噬菌体感染宿主后形成的,后者是温和噬菌体感染宿主后形成的。 狭义遗传率:群体遗传变异包括基因的加性效应、显性效应和上位效应,而纯合体之间只有加性效应的差别,因此,加性方差占总方差的比率是真实的遗传率。 Hfr菌株:即高频重组菌株,这种菌株具有整合状态存在的F因子,与F-交配,重组子频率提高1000倍,但F-细菌很少转变为F+ 四分子分析:一次减数分裂的四个子细胞称为四分子,对四分子进行遗传学分析称为四分子分析。 准减数分裂: 母性影响:正反交情况下,子代某些性状相同于雌性亲本,其中由于母体中核基因的某些产物积累在卵母细胞的细胞质中,使子代表型不由自身的基因型所决定而出现与母体表型相同的遗传现象。又叫前定作用 异源多倍体:指不同物种杂交产生的杂种后代经过染色体加倍形成的多倍体。 判断 以烈性噬菌体为媒介转移外源基因的过程称为普遍性转导。 猫叫综合症属于常染色体数目异常疾病。 T2噬菌体的DNA是环状双链DNA。 三倍体无籽西瓜的种子来源于♀2n×♂4n。 F1红眼(♀) 与P红眼(♂)交配称为回交。 果蝇2号染色体上基因突变的检测通常用平衡致死系法。 游离的5-溴尿嘧啶(5-BU)以酮式结构进入DNA分子,可引发渗入错误。 连锁现象是Bateson和Punnett最先发现的。

脂质体介导哺乳动物细胞转染的改良方法

脂质体介导哺乳动物细胞转染的改良方法① 尹晓光 吴秀丽② 万 敏② 王艳媚② 王丽颖②③ 于永利 (吉林大学基础医学院免疫教研室,长春130021) 中国图书分类号 R392133 文献标识码 A 文章编号 10002484X(2007)0320260203 [摘 要] 目的:提高脂质体介导的细胞转染效率。方法:在传统的脂质体生化转染过程中,介入了简单的物理转染技术,并应用有限稀释克隆技术和共聚焦荧光显微镜检测技术,对转染细胞进行了早期克隆筛选,用流式细胞术对转染细胞表达GFP的阳性率进行检测。结果:流式细胞术检测显示,通过改良法获得转染pc DNA32GFP2PS A质粒的B16、R M1和E L4细胞,表达报告蛋白GFP的阳性百分率(26%、24%和40%)高于传统法转染的细胞(16%、16%和18%)。改良法转染的B16、R M1和E L4经过克隆筛选、液氮冻存、水浴复苏和体外连续培养2周后,外源基因报告蛋白GFP表达的阳性百分率分别为77%、69%和83%。在转染流程上,通过改良法获得单克隆转染细胞株的时间明显缩短。结论:改良的脂质体转染方法结合细胞克隆技术,能在最短时间内获得高表达外源基因的转染细胞株。 [关键词] 脂质体;改良方法;pc DNA2GFP2PS A;共聚焦显微镜;流式细胞术 The m od i f i ed m ethod of L i pofecti n m ed i a ted tran sfer to mamma l cell YI N X iao2Guang,WU X iu2L i,WAN M in,WAN G Yan2M ei,WAN G L i2Ying,YU Yong2L i.D epart m ent of M olecular B iology B asic M edical School,J ilin U niversity,Changchun130021,China [Abstract] O bjecti ve:To i m p r ove L i pofectin mediated transfecti on efficiency.M ethods:Glass dr opper2mediated transfecti on was app lied t o enhance traditi onalL i pofectin mediated gene transfer t o ma mmal cell in culture.Conf ocalm icr oscopy was used t o screen2 ing the GFP exp ressed of transfect cell strain had been cl oned by li m ited diluti on method.The stability of the GFP exp ressed in trans2 fecti on cell was deter m ined by fl ow cyt ometry.Results:The percentage of GFP positive cells transfected by modified method was higher than that transfected by traditi onalmethod.The percentage of GFP positive cells strain of B16,R M1and E L4transfected pc DNA32GFP2 PS A p las m id by modified method was77%,69%and83%.The modified li pofectin2mediated gene transfer method could effectively enhance both of the percentage and stability of GFP exp ressed by transfect cell,and shorten the ti m e of obtaining transfect cell strain. Conclusi on:The modified method can obtain cell strain that stably and str ongly exp ressing exogenous gene in the shortest ti m e. [Key words] L i pofectin;Modified method;pc DNA32GFP2PS A;Confocal m icr oscopy;Fl ow cyt ometry 在分子生物学和免疫学研究中,将外源基因转入哺乳动物细胞中是个非常重要的实验步骤。阳离子脂质体转染技术近年发展较快,由于具有操作方法简单、可携带大片段DNA、试剂商品化和安全性好等优点,已被大多实验室采用,但不足之处是转染效率较低[1]。本实验对传统的脂质体转染过程进行改良,在脂质体介导的生化转染过程中,通过玻璃滴管介导的机械外力作用,增强脂质体/DNA复合物进入细胞的能力,结合早期克隆筛选和检测,能在短时间内获得稳定表达目的基因的转染细胞。 1 材料与方法 111 材料 pc DNA3(I nvitr ogen公司);pc DNA32 ①本文为国家“973”资助项目(2002AA214141) ②吉林大学基础医学院分子生物学教研室,长春130021 ③通讯作者,E2mail:wlying@https://www.360docs.net/doc/fe3183532.html, 作者简介:尹晓光(1964年-),男,博士; 指导教师:于永利(1955年-),男,教授,博士生导师,主要从事基因疫苗的设计与功能研究。GFP2PS A载体由本研究室提供;L i pofectin(I nvitr o2 gen);G418(Gibco);I M DM完全培养基(含10%小牛血清的I M DM培养基)和含500或800μg/m l G418的I M DM完全培养基。 112 方法 11211 细胞培养 C57BL/6小鼠的前列腺癌细胞系R M1、胸腺淋巴瘤细胞系E L4和黑色素瘤细胞系B16均来自本实验室的传代细胞,细胞用I M DM完全培养基在37℃、5%CO 2 条件下培养。 11212 转染试剂的制备 按说明书操作,即配制好的1m l转染试剂中含990μl I M DM培养基、10μl L i pofectin和1μg质粒DNA。 11213 转染 传统法转染在6孔培养板内完成,具体参照文献[2]。改良法转染在10m l玻璃离心管内进行,转染当天镜下观察并选择处于旺盛生长阶段的细胞用于转染。B16和R M1贴壁生长细胞用胰酶/EDT A消化(EL4悬浮细胞用滴管吹匀)呈单细胞后计数,取1×105~5×105个细胞置于离心管 ? 6 2 ?中国免疫学杂志2007年第23卷

相关文档
最新文档