[精品]2019届高考数学一轮复习第四章三角函数与解三角形第六节正弦定理和余弦定理课后作业理64

合集下载

第四章 三角函数与三角形4-6正弦定理和余弦定理

第四章  三角函数与三角形4-6正弦定理和余弦定理

1 ③S= r(a+b+c)(r 为内切圆半径). 2 1 ④S= PP-aP-bP-c,其中 P= (a+b+c). 2 (6)在△ABC 中,A>B⇔a>b⇔sinA>sinB.

4.解斜三角形的类型 解斜三角形有下表所示的四种情况:
已知条件 一边和两角( 如a,B, C) 两边和夹角( 如a,b, C)
解析:(1)已知两角和一边只有一解,由B=30° ,C =105° 得,A=45° , asinB 4sin30° 由正弦定理得,b= = =2 2. sinA sin45° (2)已知两边和一边的对角,先判断解的情况: 3 2 ∵c<bsinC= ,∴无解. 2
BC AB 5 3 (3)由正弦定理 = 知, = ,∴sinA= sinA sinC sinA 1 2 2 , 2 ∵BC>AB,∴A>C,∴A=45° 或135° .
3 答案:60° ; 2

总结评述:解三角形时,找三边一角之间的 关系,常用余弦定理,两边两角之间的关系 常用正弦定理.
在锐角△ABC中,a、b、c分别为角A、B、C所对 的边,又c= 21,b=4,且BC边上的高h=2 3.则 (1)角C=________; (2)a=________.
解析:△ABC为锐角三角形,过A作AD⊥BC于D点, 2 3 3 sinC= = ,则C=60° . 4 2 1 又由余弦定理可知( 21) =4 +a -2· a·, 4· 2
A+B C tan(A+B)=-tanC; sin =cos ; 2 2
A+B A+B C C cos =sin ; tan =cot ; 2 2 2 2 tanA+tanB+tanC=tanA· tanB· tanC. (5)△ABC 的面积公式有: 1 ①S= a· 表示 a 边上的高); h(h 2 1 1 1 abc ②S= absinC= acsinB= bcsinA= ; 2 2 2 4R

高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理 第2课时 正、余弦定理的综

高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理 第2课时 正、余弦定理的综

第2课时 正、余弦定理的综合问题与三角形面积有关的问题(多维探究) 角度一 计算三角形的面积(1)(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b=6,a =2c ,B =π3,则△ABC 的面积为.(2)(2020·某某五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为.【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sinB =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.(2)因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32. 【答案】 (1)6 3 (2)32求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二 已知三角形的面积解三角形(2020·某某五市十校共同体联考改编)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且△ABC 的面积为32,则ab=,a +b =.【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cosC +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cosC =13,则C为锐角,所以sin C =223.由△ABC 的面积为32,可得12ab sin C =32,所以abc 是a ,b的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【答案】 933已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.(2020·某某市模拟考试)在△ABC 中,AC =5,BC =10,cos A =255,则△ABC的面积为( )A.52 B .5C .10D .102解析:选A.由AC =5,BC =10,BC 2=AB 2+AC 2-2AC ·AB cos A ,得AB 2-4AB -5=0,解得AB =5,而sin A =1-cos 2A =55,故S △ABC =12×5×5×55=52.选A. 2.(2020·某某市统一模拟考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若△ABC 的面积为3,周长为8,求a . 解:(1)由题设得a sin C =c cos A2,由正弦定理得sin A sin C =sin C cos A2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12. 又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.三角形面积或周长的最值(X 围)问题(师生共研)(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值X 围. 【解】 (1)由题设及正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值X 围是⎝⎛⎭⎪⎫38,32.求有关三角形面积或周长的最值(X 围)问题在解决求有关三角形面积或周长的最值(X 围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.(一题多解)(2020·某某市质量检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求△ABC 外接圆的直径; (2)求a +c 的取值X 围.解:(1)因为角A ,B ,C 成等差数列,所以2B =A +C , 又因为A +B +C =π,所以B =π3.根据正弦定理得,△ABC 的外接圆直径2R =bsin B =32sinπ3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知△ABC 的外接圆直径为1,根据正弦定理得, asin A =bsin B =csin C =1,所以a +c =sin A +sin C =sin A +sin ⎝⎛⎭⎪⎫2π3-A=3⎝⎛⎭⎪⎫32sin A +12cos A=3sin ⎝⎛⎭⎪⎫A +π6. 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎝ ⎛⎭⎪⎫A +π6≤1, 从而32<3sin ⎝⎛⎭⎪⎫A +π6≤3,所以a +c 的取值X 围是⎝⎛⎦⎥⎤32,3. 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac≥(a +c )2-3⎝ ⎛⎭⎪⎫a +c 22=14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值X 围是⎝⎛⎦⎥⎤32,3.解三角形与三角函数的综合应用(师生共研)(2020·某某省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ∈R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,△ABC 的面积为12,求a 的值.【解】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎝⎛⎭⎪⎫2x +π6+1.令2x +π6∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,解得x ∈⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z . (2)因为f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=2,所以sin ⎝⎛⎭⎪⎫2A +π6=1.因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由△ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ), 解得a =3-1.标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B .(1)求角C 的大小;(2)求3cos A +sin ⎝⎛⎭⎪⎫B +π3的最大值,并求出取得最大值时角A ,B 的值.解:(1)法一:在△ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B , 又A +B +C =π,则sin A =sin (π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0, 则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,于是3cos A +sin ⎝ ⎛⎭⎪⎫B +π3=3cos A +sin (π-A )=3cos A +sin A =2sin ⎝⎛⎭⎪⎫A +π3,因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎝⎛⎭⎪⎫A +π3的最大值为2,此时B =π2.[基础题组练]1.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos A =74,则△ABC 的面积等于( )A .37B.372C .9D .92解析:选B.因为cos A =74,则sin A =34,所以S △ABC =12×bc sin A =372,故选B. 2.在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27 B.7 C .2 2D .2 3解析:选D.由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C =12,故c =2 3.3.(2020·某某三市联考)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,sin A ∶sin B =1∶3,c =2cos C =3,则△ABC 的周长为( )A .3+3 3B .2 3C .3+2 3D .3+ 3解析:选C.因为sin A ∶sin B =1∶3,所以b =3a ,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以△ABC 的周长为3+23,故选C.4.(2020·某某师大附中4月模拟)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,△ABC 的面积S =52cos A ,则a =( ) A .1 B. 5 C.13D .17解析:选A.因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a A.5.(2020·某某市定位考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC B.6.在△ABC 中,A =π4,b 2sin C =42sin B ,则△ABC 的面积为.解析:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S △ABC =12bc sin A =12×42×22=2. 答案:27.(2020·某某某某五校协作体期中改编)在△ABC 中,A =π3,b =4,a =23,则B =,△ABC 的面积等于.解析:△ABC 中,由正弦定理得sin B =b sin Aa =4×sinπ323B 为三角形的内角,所以B=π2,所以c =b 2-a 2=42-(23)2=2, 所以S △ABC =12×2×23=2 3.答案:π22 38.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c2b,sinB =74,S △ABC =574,则b 的值为. 解析:由sin A sin B =5c 2b ⇒a b =5c 2b ⇒a =52c ,①由S △ABC =12ac sin B =574且sin B =74得12ac =5,②联立①,②得a =5,且c =2. 由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.答案:149.在△ABC 中,∠A =60°,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.解:(1)在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314. (2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2bc cos A 得72=b 2+32-2b ×3×12,解得b =8或b =-5(舍).所以△ABC 的面积S =12bc sin A =12×8×3×32=6 3.10.(2020·某某五校第二次联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A .(1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.解:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A , 即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32, 又A 为三角形的内角,所以A =π6.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S △ABC =12bc sin A ≤2+3,故△ABC 面积的最大值为2+ 3.[综合题组练]1.(2020·某某市诊断测试)在平面四边形ABCD 中,∠D =90°,∠BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B. 6C.7D .2 2解析:选C.如图,在△ACD 中,∠D =90°,AD =1,AC =2,所以∠CAD =60°.又∠BAD =120°,所以∠BAC =∠BAD -∠CAD =60°.在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =7,所以BC =7.故选C.2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a sin A +b sin B -c sin C sin B sin C =233a ,a =2 3.若b ∈[1,3],则c 的最小值为.解析:由a sin A +b sin B -c sin C sin B sin C =233a ,得a 2+b 2-c 22ab =33sin C .由余弦定理可知cos C =a 2+b 2-c 22ab ,即3cos C =3sin C ,所以tan C =3,故cos C =12,所以c 2=b 2-23b +12=(b -3)2+9,因为b ∈[1,3],所以当b =3时,c 取最小值3.答案:33.(2020·某某市学业质量调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为32ac cos B ,且sin A =3sin C . (1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长. 解:(1)因为S △ABC =12ac sin B =32ac cos B , 所以tan B = 3.又0<B <π,所以B =π3. (2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6. 由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714. 因为D 是AC 的中点,所以AD =7. 所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎝ ⎛⎭⎪⎫-714=13. 所以BD =13.4.(2020·原创题)在△ABC 中,sin A ∶cos B ∶tan A =12∶16∶15.(1)求sin C ;(2)若AB =8,点D 为△ABC 外接圆上的动点,求DA →·DC →的最大值.解:(1)由sin A ∶tan A =12∶15,得cos A =45,故sin A =35,所以由sin A ∶cos B =12∶16,得cos B =45,故sin B =35,于是sin C =sin(A +B )=sin A cos B +cos A sin B =2425. (2)在△ABC 中,由AC sin B =ABsin C,解得AC =5,由A ,B ,C ,D 四点共圆及题干条件,可知∠ADC =∠ABC 时DA →·DC →取得最大值, 设DA =m ,DC =n ,在△DAC 中,由余弦定理的推论得cos ∠ADC =m 2+n 2-522mn =45, 故85mn =m 2+n 2-25≥2mn -25, 解得mn ≤1252, 故DA →·DC →=45mn ≤45×1252=50, 当且仅当m =n =5102时,等号成立, 故DA →·DC →的最大值为50.。

高考数学一轮复习正弦定理余弦定理及解三角形课件理

高考数学一轮复习正弦定理余弦定理及解三角形课件理

基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7

7 14 .
基础诊断 考点突破
课堂总结

Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形

高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件

高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件

[对点练]
1.在△ ABC中,c-2ca
=sin
2B 2
(a,b,c分别为角A,B,C的对边),则
△ ABC的形状为( )
A.直角三角形
B.等边三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:由cos
B=1-2sin
2B 2
得sin
2B 2
=1-co2s
B ,所以c-2ca =1-co2s
AE sin sin
45° 30°

2AB cos 15°
,因此CD=AD
sin
60°= cos
2×10 (45°-30°)
×sin 60°=10(3- 3 ).
答案:10(3- 3 )
备考第 2 步——突破核心考点,提升关键能力
考点1 利用正弦定理、余弦定理解三角形[自主演练]
1.△ ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin
答案:BC
4.在△ ABC中,内角A,B,C的对边分别为a,b,c,若a=4,b=5,b>c, △ ABC的面积为5 3 ,则c=________.
解析:由三角形面积公式,得12 ×4×5sin C=5 3 ,
即sin
C=
3 2
.又b>a,b>c,所以C为锐角,于是C=60°.
由余弦定理,得c2=42+52-2×4×5cos 60°,解得c= 21 .
3.(多选)在△ ABC中,角A,B,C所对的各边分别为a,b,c,若a=1,b= 2 ,
A=30°,则B等于( )
A.30°
B.45°
C.135°
D.150°
解析:根据正弦定理sina A =sinb B 得,

2019高三数学(文)一轮复习课件:第四章 三角函数 解三角形 4-6

2019高三数学(文)一轮复习课件:第四章 三角函数 解三角形 4-6
第 四 章
三角函数
解三角形
第六节
函数 y=Asin(ω x+φ )的图象及应用
高考概览 1.了解函数 y=Asin(ωx+φ)的物理意义;能画出 y=Asin(ωx +φ)的图象,了解参数 A,ω,φ 对函数图象变化的影响;2.了解 三角函数是描述周期变化现象的重要函数模型,会用三角函数解 决一些简单实际问题.
[解] 2π (1)∵T= =π,∴ω=2, ω 3 3 ,∴sinφ=- , 2 2
π π 又∵f =cos2× +φ = 4 4
π π 又- <φ<0,∴φ=- . 2 3
(2)由(1)得
π f(x)=cos2x- ,列表: 3
π 2x - 3 x f(x)
π - 3 0 1 2
0 π 6 1π 2 5 π 来自2 0π 2 π 3 -1
3 π 2 11 π 12 0
5 π 3 π 1 2
图象如图.
角度 2:图象变换 (2017· 全国卷Ⅰ)已知曲线 C1:y=cosx,C2:y=
2π sin2x+ ,则下面结论正确的是( 3
)
A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变, π 再把得到的曲线向右平移 个单位长度,得到曲线 C2 6 B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变, π 再把得到的曲线向左平移 个单位长度,得到曲线 C2 12
1 C.把 C1 上各点的横坐标缩短到原来的 倍,纵坐标不变, 2 π 再把得到的曲线向右平移 个单位长度,得到曲线 C2 6 1 D.把 C1 上各点的横坐标缩短到原来的 倍,纵坐标不变, 2 π 再把得到的曲线向左平移 个单位长度,得到曲线 C2 12 [思路引导] 先将三角函 进行图 → 数化同名 象变换

正弦定理与余弦定理(高三一轮复习)

正弦定理与余弦定理(高三一轮复习)

150°不符合题意,舍去.可得B=30°.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
5.(易错题)在△ABC中,若ab=ccooss AB,则△ABC的形状为( D )
A.等边三角形
B.直角三角形
C.等腰三角形
D.等腰或直角三角形
解析 因为ab=ccooss BA,所以由正弦定理可得ssiinn AB=ccooss AB,即sin Acos A=sin Bcos
— 10 —
3.(2023·江门检测)在△ABC中,已知a= 13,b=4,c=3,则cos A=( A )
12 A.2 B. 2
3 C. 2
D.-
2 2
解析 在△ABC中,已知a= 13,b=4,c=3,由余弦定理得cos A= 422+×342×-313=16+294-13=12.
数学 N 必备知识 自主学习 关键能力 互动探究
数学 N 必备知识 自主学习 关键能力 互动探究
— 16 —
针对训练 1.(2023·陕西渭南月考)在△ABC中,若AB=7,AC=5,∠ACB=120°,则BC =( B ) A.2 2 B.3 C.6 D. 6 解析 在△ABC中,由余弦定理得AB2=AC2+BC2-2AC×BC×cos∠ACB,故 49=25+BC2-2×5×BC× -12 ,即BC2+5BC-24=0,解得BC=3或BC=-8(舍 去).
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
2.在△ABC中,若AB=3,BC=3 2,∠B=45°,则△ABC的面积为( D )
A.2 2 B.4
7 C.2
9 D.2
解析 由题意,S△ABC=12AB·BC·sin∠B=12×3×3 2× 22=92.

2019高考数学文一轮复习第4章三角函数与解三角形章末总结含解析

2019高考数学文一轮复习第4章三角函数与解三角形章末总结含解析

❶ 理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin x=tan x . ❷ 能利用单位圆中的三角函数线推导出 ±α,π±α 的正弦、余弦、正切的诱小值以及与 x 轴的交点等),理解正切函数在区间⎝-2,2⎭内的单调性..A.- B .- 9 9章末总结知识点考纲展示任意角的概念与弧度制、任意角的三角函数同角三角函 数的基本关 系式与诱导公式和与差的三 角函数公式简单的三角 恒等变换三角函数的 图象与性质函数 y = A sin(ω x +φ) 的图象及三 角函数模型 的简单应用正弦定理和 余弦定理解三角形应 用举例❶ 了解任意角的概念.❷ 了解弧度制的概念,能进行弧度与角度的互化.❸ 理解任意角三角函数(正弦、余弦、正切)的定义.cos xπ2导公式.❶ 会用向量的数量积推导出两角差的余弦公式.❷ 能利用两角差的余弦公式导出两角差的正弦、正切公式.❸ 能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍 角的正弦、余弦、正切公式,了解它们的内在联系.能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式, 但对这三组公式不要求记忆).❶ 能画出 y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性. ❷ 理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最⎛ π π⎫❶ 了解函数 y =A sin(ωx +φ)的物理意义;能画出函数 y =A sin(ωx +φ)的图象,了解参数 A ,ω,φ 对函数图象变化的影响.❷ 了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一 些简单实际问题.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关 的实际问题.一、点在纲上,源在本里 考点考题4(2017· 高考全国卷Ⅲ,T 4,5 分)已知 sin α-cos α=3,则 sin 2α=考源三角函数的基本关系( )7 2 9 92 7 C. D.必修 4 P 146A 组T 6(2)(2017· 高考全国卷Ⅱ,T 3,5 分)函数 f (x )=sin ⎝2x +3⎭的最小正周期A.4π B .2π C .πD. A. B .1 C. D. sin ⎝2x + 3 ⎭,则下面结论正确的是( 分别为 a ,b ,c 已知△. ABC 的面积为 .1.(必修 4 P 146A 组 T 6(3)改编)已知 sin 2θ= ,则 sin 4θ+cos 4θ 的值为()3A . 9C . 9三角函数 的周期三角函数 值域三角函数 图象正余弦定理与面积公式 的应用⎛ π⎫为( )π 21 π π(2017· 高考全国卷Ⅲ,T 6,5 分)函数 f (x )=5sin(x +3)+cos(x -6)的最大值为( )6 3 15 5 5(2017·高考全国卷Ⅰ,T 9,5 分)已知曲线 C 1:y =cos x ,C 2:y =⎛ 2π⎫ )A .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把π得到的曲线向右平移6个单位长度,得到曲线 C 2B .把C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把 π得到的曲线向左平移12个单位长度,得到曲线 C 21C .把 C 1 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得π到的曲线向右平移6个单位长度,得到曲线 C 21D .把 C 1 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得π到的曲线向左平移12个单位长度,得到曲线 C 2(2017· 高考全国卷Ⅱ,T 16,5 分△) ABC 的内角 A ,B ,C 的对边分 别为 a ,b ,c ,若 2b cos B =a cos C +c cos A ,则 B =________.(2017· 高考全国卷Ⅲ,T 15,5 分△) ABC 的内角 A ,B ,C 的对边分 别为 a ,b ,c .已知 C =60°,b = 6,c =3,则 A =________.(2017· 高考全国卷Ⅰ,T 17,12 分△) ABC 的内角 A ,B ,C 的对边 a 23sin A(1)求 sin B sin C ;必修 4 P 35 例2(2)必修 4 P 143A 组T 5必修 4 P 55 练习T 2(2)必修 5 P 18 练习T 3 必修 5 P 10A 组 T 2(1)必修 5 P 20B 组T 1(2)若 6cos B cos C =1,a =△3,求 ABC 的周长.二、根置教材,考在变中 一、选择题24 92 35 B.7 D.解析:选D.因为sin2θ=,所以sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-sin22θ=1-×=.故选D.2.(必修4P147A组T12改编)已知函数f(x)=sin⎝x+6⎭+sin⎝x-6⎭+cos x+a的最大值为解析:选A.f(x)=sin x cos+cos x sin+sin x cos-cos x sin+cos x+a=3sin x+cos x3.(必修4P69A组T8改编)已知tanα=3,则sin⎝2α+4⎭的值为(10B.-2A.2C.D.-sin2α+cos2α1+tan2α1+32522⎛34⎫π⎫cos2α-sin2α1-tan2α1-324=-,所以sin⎝2α+4⎭=-=-⎛52⎝55⎭sin2α+cos2α1+tan2α1+322.选B.4.(必修4P58A组T2(3)改编)如图是y=A sin(ωx+φ)⎝ω>0,-2<φ<2⎭的部分图象,则A.y=2sin⎝x+6⎭B.y=2sin⎝2x-6⎭C.y=2sin⎝x+3⎭D.y=2sin⎝2x+6⎭解析:选D.由题图知=-⎝-12⎭=.所以T=π,所以ω==2.当x=-时,y=0,⎧⎪A sin⎛-π+φ⎫=0,所以φ=,A=2.所以y=2sin⎝2x+6⎭.故选D.⎝6⎭π⎛π⎫当x=0时,y=1.所以⎨⎪⎩A sinφ=12132 147299⎛π⎫⎛π⎫1,则a的值为()A.-1C.1B.0D.2ππππ6666π+a=2sin(x+6)+a,所以f(x)max=2+a=1.所以a=-1.选A.⎛π⎫10)721072102sinαcosα2tanα2×33解析:选B.因为tanα=3,所以sin2α====,cos2α===(sin2α+cos2α)=210⎛ππ⎫其解析式为()⎛π⎫⎛π⎫⎛π⎫⎛π⎫Tπ⎛π⎫π2ππ464T1265.(必修5P18练习T1(1)改编△)在锐角ABC中,a=2,b=3,S△ABC=22,则c=() A.2B.3解析:选 B.由已知得 ×2×3×sin C =2 2,所以 sin C = .由于 C <90°,所以 cos C= 1-sin 2C = .由余弦定理得 c 2=a 2+b 2-2ab cos C =22+32-2×2×3× =9,所以 c =3,A . 3 C . 即 3a cos A =b · +c · =a ,所以 cos A = ,又 0<A <π.所以 sin A = .又 b =2,所以 a sin B =b sin A =2× = .故选 C.cos 80° sin 80° cos 80°sin 80°cos 80°cos 80°- sin 80°⎭ 4sin (60°-80°) 2⎝ 2 1 sin 160° sin 160° =-4sin 20°=-4.( c 4解析:由题意得⎨2 ⎪ C .4D. 171 2 22 31 13 3故选 B.6.(必修 5 P 18 练习 T 3 改编△)已知 ABC 三内角 A 、B 、C 的对边分别为 a ,b ,c ,3a cos A =b cos C +c cos B ,b =2,则 a sin B =()434 2 32 B. 2D .6 2解析:选 C.因为 3a cos A =b cos C +c cos B ,a 2+b 2-c 2 a 2+c 2-b 22ab 2ac1 2 23 32 2 4 23 3二、填空题3 17.(必修 4 P 146A 组 T 5(1)改编)sin 80°- =______.解析:⎛ 3 1 ⎫ 2= =2sin 20°答案:-4 8. 必修 5 P 20A 组 T 11(3)改编△) ABC 的三内角 A ,B ,C 的对边分别为 a ,b , .A =120°,a =7,△S ABC = 153,则 b +c =________.⎧⎪1bc sin 120°=15 34,⎪⎩b 2+c 2-2bc cos 120°=72⎧bc =15即⎨ ,所以 b 2+c 2+2bc =64.所以 b +c =8.⎪⎩b 2+c 2+bc =49答案:82 1 π9.(必修 4 P 56 练习 T 3 改编)关于函数 f (x )=3sin(2x -4)的下列结论:①f (x )的一个周期是-8π;②f (x )的图象关于 x = 对称;③f (x )的图象关于点⎝2,0⎭对称;- ,上单调递增;④f (x )在⎝2 2⎭⑤f (x )的图象可由 g (x )= cos x 向右平移 个单位得到.解析:f (x )的最小正周期 T = =4π.所以 f (x )的一个周期为-8π.①正确.f ⎝2⎭=0,故②错误.③正确.由 2k π- < x - <2k π+ ,k ∈Z ,得4k π- <x <4k π+ π. - , - , .故④正确.令 k =0 得,- <x < π.⎝ 2 2⎭ ⎝ 2 2 ⎭x +g (x )= cos x = sin ⎝2 2⎭x +π) ,(=sin⎦⎣2 x - = sin x -,f (x )= sin ⎝2 4⎭ ⎣2⎝ 2⎭⎦所以 g (x )的图象向右平移 -(-π)= π 即可得到 f (x )的图象.故⑤错误,即①③④正确.(2)将函数 f (x )的图象向左平移 个单位,再将所得图象上各点的横坐标伸长为原来的 3 倍,纵坐标不变,得到函数 y =g (x )的图象,若 α 为锐角,g (α)= - 2,求 cos α.ωx - ·解:(1)f (x )=4sin cos ωx -2 2cos 2ωx = 2(sin 2ωx -cos 4⎭ cos ωx =2 2sin ωx ·⎝ 2ωx - - 2,2ωx )- 2=2sin4⎭⎝由于 f (x )在 x = 处取得最值,因此 2ω· - =k π+ ,k ∈Z ,所以 ω=2k + ,π2⎛π ⎫⎛ π π⎫2 1 π3 2 8其中正确的结论有____________(填上全部正确结论的序号).2π1 2⎛π⎫π 1 π π2 2 4 2π 3 2 2π 3 ⎛ π π⎫ ⎛ π 3π⎫2 22 1 2 ⎛1 π⎫3 2 3 2 ⎡1 ⎤ 3 2 ⎛1 π⎫ 2 ⎡1⎛ π⎫⎤ 3 3 π 32 2答案:①③④三、解答题π π10.(必修 4 P 147A 组 T 10 改编)已知函数 f (x )=4sin(ωx -4)·cos ωx 在 x =4处取得最值,其中 ω∈(0,2).(1)求函数 f (x )的最小正周期;π3643⎛ π⎫⎛ π⎫ π π π π 34 4 4 2 2因为 ω∈(0,2),所以 ω= ,因此,f (x )=2sin ⎝3x -4⎭- 2,所以 T = .个 单 位 , 得 到h (x ) = 2sin ⎣3⎝x +36⎭-4⎦ - 2 = 2sin ⎝3x -6⎭- 2的图象,再将 h (x )图象上各点的横坐标伸长为原来的 3 倍,纵坐标不变,得到 g (x )=2sin ⎝x -6⎭-⎛ 故 g (α)=2sin ⎝α-6⎭- 2= - 2,可得 sin ⎝α-6⎭= ,因为 α 为锐角,所以- <α- < ,因此 cos ⎝α-6⎭=⎛2⎫2= 5, π π⎫ π⎫ π⎫ π π 5 3 2 1 15-2 故 cos α=cos ⎝α-6+6⎭=cos ⎝α-6⎭cos -sin ⎝α-6⎭sin = ⎛ ⎛ ⎛ 6 6 3 2 3 2 6①+②得 m 2= ,所以 m = 6,即 BC = 6.sin ∠ACE sin ∠EAC sin ∠BCE sin ∠CBE 且 BC = ,所以 = = .所以 BE = 6AE ,所以 AE = ( 6-1).32⎛ π⎫ 2π 3(2) 将 函 数 f (x ) 的 图 象 向 左 平 移 π 36 ⎡ ⎛ π ⎫ π⎤⎛ π⎫⎛ π⎫2的图象,π⎫ 4 3⎛ π⎫ 2 3π π π6 6 3⎛ π⎫ 1-⎝3⎭ 3× - × = .11.(必修 5 P 20A 组 T 13 改编)D 为△ABC 的边 BC 的中点.AB =2AC =2AD =2. (1)求 BC 的长;(2)若∠ACB 的平分线交 AB 于 E ,求 △S ACE . 解:(1)由题意知 AB =2,AC =AD =1. 设 BD =DC =m .在△ADB 与△ADC 中, 由余弦定理得AB 2=AD 2+BD 2-2AD · B D cos ∠ADB , AC 2=AD 2+DC 2-2AD · D C cos ∠ADC . 即 1+m 2-2m cos ∠ADB =4,① 1+m 2+2m cos ∠ADB =1.②3 22(2)在△ACE 与△BCE 中,由正弦定理得AE EC BE EC= , = ,由于∠ACE =∠BCE ,AC AE AC 6sin ∠BAC sin ∠CBABE BC 6252AB ·AC 2×2×1=- ,所以 sin ∠BAC = ,= ×1× ( 6-1)× = .AB 2+AC 2-BC 2 22+12-( 6)2又 cos ∠BAC = =1 154 41所以 △S ACE =2AC · AE ·sin ∠BAC1 2 15 3 10- 15 2 5 4 20。

高考数学一轮复习 第四章 三角函数、解三角形4.6正、余弦定理及其应用举例教学案 理 新人教A

高考数学一轮复习 第四章 三角函数、解三角形4.6正、余弦定理及其应用举例教学案 理 新人教A

4.6 正、余弦定理及其应用举例考纲要求1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题..2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1.正弦定理和余弦定理定理正弦定理余弦定理内容__________=2R.(R为△ABC外接圆半径)a2=__________;b2=__________;c2=__________变形形式①a=____,b=______,c=____;②sin A=____,sin B=__________,sin C=__________;③a∶b∶c=__________;④a+b+csin A+sin B+sin C=asin A.cos A=__________;cos B=__________;cos C=__________.解决的问题①已知两角和任一边,求另一角和其他两条边.②已知两边和其中一边的对角,求另一边和其他两个角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.2.仰角和俯角在视线和水平线所成的角中,视线在水平线__________的角叫仰角,在水平线______的角叫俯角(如图①).3.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).4.方向角相对于某一方向的水平角(如图③).图③(1)北偏东α°:指北方向向东旋转α°到达目标方向.(2)东北方向:指北偏东45°或东偏北45°.(3)其他方向角类似.5.坡角和坡比坡角:坡面与水平面的夹角(如图④,角θ为坡角).图④坡比:坡面的铅直高度与水平长度之比(如图④,i为坡比).1.(广东高考)在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=( ).A.4 3 B.2 3 C. 3 D.322.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ).A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形3.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是( ).A.5海里/时B.5 3 海里/时C.10海里/时D.10 3 海里/时4.如图,为了测量隧道AB的长度,给定下列四组数据,无法求出AB长度的是( ).A.α,a,b B.α,β,aC.a,b,γD.α,β,γ5.△ABC中,若a=32,cos C=13,S△ABC=43,则b=__________.一、利用正弦、余弦定理解三角形【例1-1】 (辽宁高考)在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cos B的值;(2)边a,b,c成等比数列,求sin A sin C的值.【例1-2】△ABC中,A,B,C所对的边分别为a,b,c,tan C=sin A+sin Bcos A+cos B,sin(B-A)=cos C.(1)求A,C;(2)若S△ABC=3+3,求a,c.方法提炼应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.A为锐角A为钝角或直角图形关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的个数 无解 一解 两解 一解 一解 无解请做演练巩固提升1 二、三角形形状的判定【例2-1】 △ABC 满足sin B =cos A sin C ,则△ABC 的形状是( ). A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形【例2-2】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 方法提炼判断三角形的形状的基本思想是:利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.提醒:1.在△ABC 中有如下结论sin A >sin B a >b .2.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形;当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形;3.当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形. 请做演练巩固提升2三、与三角形面积有关的问题【例3】 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积. 方法提炼1.正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理选用,有时还需要交替使用;在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理联系起来.2.解三角形过程中,要注意三角恒等变换公式的应用. 请做演练巩固提升5四、应用举例、生活中的解三角形问题【例4-1】 某人在塔的正东沿着南偏西60° 的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.【例4-2】 如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.方法提炼1.测量距离问题,需注意以下几点:(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型; (2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解; (3)应用题要注意作答.2.测量高度时,需注意:(1) 要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理; (3)注意铅垂线垂直于地面构成的直角三角形.3.测量角度时,要准确理解方位角、方向角的概念,准确画出示意图是关键. 请做演练巩固提升6忽视三角形中的边角条件而致误【典例】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错解:由1+2cos(B +C )=0,知cos A =12,∴A =π3.根据正弦定理a sin A =b sin B 得:sin B =b sin A a =22,∴B =π4或3π4.以下解答过程略.错因:忽视三角形中“大边对大角”的定理,产生了增根. 正解:∵在△ABC 中,cos(B +C )=-cos A ,又∵1+2cos(B +C )=0,∴1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B,得sin B =b sin A a =22. ∴B =π4或3π4.∵a >b ,∴B =π4.∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 答题指导:1.考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.2.解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件. 1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( ).A .-12B .12C .-1D .12.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且a cos B =b cos A ,则△ABC 的形状为__________. 3.(福建高考)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =__________.4.(陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =______.5.(山东高考)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sin B(tan A+tan C)=tan A tanC.(1)求证:a,b,c成等比数列;(2)若a=1,c=2,求△ABC的面积S.6.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.参考答案基础梳理自测知识梳理1.asin A=bsin B=csin Cb2+c2-2bc·cos A c2+a2-2ca·cos B a2+b2-2ab·cos C①2R sin A2R sin B2R sin C②a2R b2Rc2R③sin A∶sin B∶sin Cb2+c2-a22bcc2+a2-b22caa2+b2-c22ab2.上方下方基础自测1.B 解析:由正弦定理得BCsin A=ACsin B,即32sin 60°=ACsin 45°,解得AC=2 3.2.B 解析:∵cos2B2=a+c2c,∴2cos2B2-1=a+cc-1,∴cos B=ac,∴a2+c2-b22ac=ac,∴c2=a2+b2.3.C 解析:如图,A,B为灯塔,船从O航行到O′,OO′BO=tan 30°,OO′AO=tan 15°,∴BO=3OO′,AO=(2+3)OO′.∵AO-BO=AB=10,∴OO′·[(2+3)-3]=10,∴OO′=5,∴船的速度为512=10海里/时.4.D 解析:利用余弦定理,可由a,b,γ或α,a,b求出AB;利用正弦定理,可由a,α,β求出AB,当只知α,β,γ时,无法计算AB.5.2 3 解析:由cos C=13,得sin C=223,∴S△ABC=12ab sin C=12×32×b×223=43.∴b=2 3.考点探究突破【例1-1】解:(1)由已知2B=A+C,A+B+C=180°,解得B=60°,所以cos B=12.(2)方法一:由已知b2=ac,及cos B=12,根据正弦定理得sin2B=sin A sin C,所以sin A sin C=1-cos2B=34.方法二:由已知b2=ac,及cos B=12,根据余弦定理得cos B=a2+c2-ac2ac,解得a=c,所以B=A=C=60°,故sin A sin C=34.【例1-2】解:(1)因为tan C=sin A+sin Bcos A+cos B,即sin Ccos C=sin A+sin Bcos A+cos B,所以sin C cos A+sin C cos B=cos C sin A+cos C sin B,即sin C cos A-cos C sin A=cos C sin B-sin C cos B,得sin(C-A)=sin(B-C).所以C-A=B-C,或C-A=π-(B-C)(不成立),即2C=A+B,得C=π3,所以B+A=2π3.又因为sin(B-A)=cos C=12,则B-A=π6或B-A=5π6(舍去),得A=π4,B=5π12.(2)S△ABC=12ac sin B=6+28ac=3+3,又asin A=csin C,即a22=c32,得a=22,c=2 3.【例2-1】 A 解析:∵sin B=cos A·sin C,∴b=b2+c2-a22bc·c.∴b2+a2=c2.∴△ABC为直角三角形,选A.【例2-2】解:(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bc cos A,故cos A=-12,A=120°.(2)由①得,sin2A=sin2B+sin2C+sin B sin C.又sin B+sin C=1,故sin B=sin C=12.因为0°<B<90°,0°<C<90°,故B=C.所以△ABC是等腰钝角三角形.【例3】解:(1)由余弦定理及已知条件,得a2+b2-ab=4,又因为△ABC的面积等于3,所以12ab sin C=3,得ab=4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意得sin(B +A )+sin(B -A)=4sin A co s A ,即sin B cos A =2sin A cos A .当cos A =0时,A =π2,B =π6,a =433,b =233.所以△ABC 的面积 S =12ab sin C =12×433×233×32=233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a .解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =12×233×433×32=233.综上知,△ABC 的面积为233.【例4-1】 解:依题意画出图,某人在C 处,AB 为塔高,他沿CD 前进,CD =40米,此时∠DBF =45°,从C 到D 沿途测塔的仰角,只有B 到测试点的距离最短,即BE ⊥CD 时,仰角才最大,这是因为tan∠AEB =ABBE,AB 为定值,BE 最小时,仰角最大.在△BCD 中,CD =40,∠BCD =30°,∠DBC =135°. 由正弦定理,得CDsin∠DBC =BDsin∠BCD,∴BD =40sin 30°sin 135°=20 2.在Rt△BED 中,∠BDE =180°-135°-30°=15°,BE =BD sin 15°=202×6-24=10(3-1).在Rt△ABE 中,∠AEB =30°,∴AB =BE tan 30°=103(3-3)(米).∴所求的塔高为103(3-3)米.【例4-2】 解:作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130,EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理,cos∠DEF =DE 2+EF 2-DF 22DE ×EF=1302+1502-102×2982×130×150=1665.演练巩固提升1.D 解析:根据正弦定理a sin A =bsin B=2R 得,a =2R sin A ,b =2R sin B ,∴a cos A =b sin B 可化为sin A cos A =sin 2B .∴sin A cos A +cos 2B =sin 2B +cos 2B =1.2.等边三角形 解析:∵(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab . ∴a 2+b 2-c 2=ab .∴cos C =a 2+b 2-c 22ab =12.∴C =π3.∵a cos B =b cos A ,∴sin A cos B =sin B cos A . ∴sin(A -B )=0. ∴A =B .故△ABC 为等边三角形. 3. 2 解析:如图:由正弦定理得ACsin B =BCsin A ,即ACsin 45°=3sin 60°,即AC 22=332,故AC = 2.4.2 解析:∵b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4, ∴b =2.5.(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sinB ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C , 又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sinC .由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)解:因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-(2)22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74,故△ABC 的面积S =12ac sin B =12×1×2×74=74.6.解:(1)解法一:设相遇时小艇的航行距离为s 海里,则s =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300.故当t =13时,s min =103,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.解法二:若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向,如图,设小艇与轮船在C 处相遇.在Rt△OAC 中,OC =20cos 30°=103,AC =20sin 30°=10. 又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇,由题意,可得(vt )2=202+(30t )2-2·20·30t ·cos(90°-30°).化简,得v 2=400t 2-600t +900=400⎝ ⎛⎭⎪⎫1t -342+675. 由于0<t ≤12,即1t ≥2,所以当1t=2时,v 取得最小值1013,即小艇航行速度的最小值为1013海里/时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【创新方案】2017届高考数学一轮复习 第四章 三角函数与解三角形 第六节 正弦定理和余弦定理课后作业 理[全盘巩固]一、选择题1.(2016·兰州模拟)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2a sin B ,则A =( ) A .30° B .45° C .60° D .75°2.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b =( )A.53B.107C.57D.5214 3.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 4.(2016·渭南模拟)在△ABC 中,若a 2-b 2=3bc 且A +Bsin B=23,则A =( )A.π6 B.π3 C.2π3 D.5π65.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( ) A.π6 B.π4 C.π3 D.3π4二、填空题6.在△ABC 中,若b =2,A =120°,三角形的面积S =3,则三角形外接圆的半径为________.7.(2015·广东高考)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.8.(2016·昆明模拟)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________. 三、解答题9.(2015·安徽高考)在△ABC 中,∠A =3π4,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.10.(2016·太原模拟)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求A 的值.[冲击名校]1.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为( )A.32 B.332C. 3 D .2 3 2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-43 D .-343.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2A +sin 2B +sin A sin B =sin 2C ,则a +bc的取值范围为________.4.在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2b -c )sin B +(2c -b )sin C . (1)求角A 的大小;(2)若a =10,cos B =255,D 为AC 的中点,求BD 的长.答 案 [全盘巩固]一、选择题1.解析:选A 因为在锐角△ABC 中,b =2a sin B ,由正弦定理得,sin B =2sin A sin B ,所以sin A =12,又0<A <90°,所以A =30°.2.解析:选C 因为cos A =35,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫352=45,所以sin C =sin[180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin45°=57.3.解析:选B 由题意可得12AB ·BC ·sin B =12,又AB =1,BC =2,所以sin B =22,所以B =45°或B =135°.当B =45°时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B =1,此时AC =AB =1,BC =2,易得A =90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B = 5.A +sinB ==32,所以A =π6. 5.解析:选C 根据正弦定理:a sin A =b sin B =c sin C =2R ,得c -b c -a =sin A sin C +sin B =a c +b ,即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3.二、填空题6.解析:由面积公式,得S =12bc sin A ,代入得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =22+22-2×2×2cos120°=12,故a =23,由正弦定理,得2R =a sin A =2332,解得R =2.答案:27.解析:在△ABC 中,∵sin B =12,0<B <π,∴B =π6或B =5π6.又∵B +C <π,C =π6,∴B =π6,∴A =π-π6-π6=2π3.∵asin A =b sin B ,∴b =a sin Bsin A=1. 答案:18.解析:如图,在△ABD 中,由正弦定理,得sin ∠ADB =AB sin BAD=2×323=22.由题意知0°<∠ADB <60°,所以∠ADB =45°,则∠BAD=180°-∠B -∠ADB =15°,所以∠BAC =2∠BAD =30°,所以∠C =180°-∠BAC -∠B =30°,所以BC =AB =2,于是由余弦定理,得AC =AB 2+BC 2-2AB ·BC cos 120°=22+22-22×2×⎝ ⎛⎭⎪⎫-12= 6.答案: 6 三、解答题9.解:设△ABC 的内角∠BAC ,B ,C 所对边的长分别是a ,b ,c , 由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC =(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,又由正弦定理得sin B =b sin ∠BAC a =3310=1010, 由题设知0<B <π4,所以cos B =1-sin 2B =1-110=31010. 在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD , 所以∠ADB =π-2B , 故由正弦定理得AD =AB ·sin B π-2B =6sin B 2sin B cos B =3cos B=10.10.解:(1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A ,∴sin(B +A )+sin(B -A )=4sin A cos A ,∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433,∴b 2=a 2+c 2.∵C =π3,∴A =π6.综上所述,A =π2或A =π6.[冲击名校]1.解析:选C 由正弦定理得(2+b )(a -b )=(c -b )c ,即(a +b )(a -b )=(c -b )c ,即b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3.2.解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,所以结合三角形的面积公式与余弦定理,得ab sin C=2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2Csin 2C +cos 2C=4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C. 3.解析:由正弦定理得a 2+b 2-c 2=-ab ,∴由余弦定理得cos C =a 2+b 2-c 22ab =-12,∴C =2π3.由正弦定理得a +b c =sin A +sin B sin C =233·(sin A +sin B ),又A +B =π3,∴B =π3-A ,∴sin A +sin B =sin A +sin ⎝ ⎛⎭⎪⎫π3-A =sin ⎝ ⎛⎭⎪⎫A +π3.又0<A <π3,∴π3<A +π3<2π3,∴sin A +sin B ∈⎝ ⎛⎦⎥⎤32,1,∴a +b c ∈⎝⎛⎦⎥⎤1,233.答案:⎝⎛⎦⎥⎤1,2334.解:(1)因为2a sin A =(2b -c )sin B +(2c -b )sin C ,由正弦定理得2a 2=(2b -c )b +(2c -b )c ,整理得2a 2=2b 2+2c 2-2bc ,由余弦定理得cos A =b 2+c 2-a 22bc =2bc 2bc =22,因为A ∈(0,π),所以A =π4. (2)由cos B =255,得sin B =1-cos 2B =1-45=55,所以cos C =cos[π-(A +B )]=-cos(A +B )=-⎝⎛⎭⎪⎫22×255-22×55=-1010. 由正弦定理得b =a sin Bsin A=10×5522=2,所以CD =12AC =1,在△BCD 中,由余弦定理得BD 2=(10)2+12-2×1×10×⎝ ⎛⎭⎪⎫-1010=13,所以BD =13.。

相关文档
最新文档