九年级数学上册《证明(二)》同步练习1 北师大版
北师大版-九年级-数学-上册-第一章-特殊平行四边形-同步练习(含答案解析)

第一章特殊平行四边形评价检测(45分钟100分)一、选择题(每小题4分,共28分)1.矩形、菱形、正方形都具有的性质是( )A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直2.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是( )A.3B.4C.5D.73.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形4.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是( )A.2B.C.D.【变式训练】如图,在矩形ABCD中,E是BC的中点,∠BAE=30°,AE=2,则矩形ABCD的面积为.5.如图,已知菱形ABCD与△ABE,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.126.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为( )A.15B.20C.25D.307.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC的中点;②FG=FC;③S△FGC=.其中正确的是( )A.①②B.①③C.②③D.①②③二、填空题(每小题5分,共25分)8.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是.【易错提醒】平行四边形是中心对称图形,但不是轴对称图形,本题易误认为平行四边形既是轴对称图形又是中心对称图形.【知识归纳】特殊平行四边形的对称性(1)矩形、菱形、正方形既是轴对称图形又是中心对称图形.(2)矩形与菱形有两条对称轴,正方形有四条对称轴.(3)对角线的交点是它们的对称中心,过对称中心的任一条直线均把原图形分成面积相等的两部分.9.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,试添加一个条件: ,使得平行四边形ABCD是菱形.【解析】添加AC⊥BD,则对角线互相垂直的平行四边形是菱形;添加AD=DC,则一组邻边相等的平行四边形是菱形.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= .【变式训练】如图,顺次连接菱形ABCD的各边中点E,F,G,H.若AC=a,BD=b,则四边形EFGH的面积是.11.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F作FG⊥EF交BC于G,连接GH,当AD,AB满足时,四边形EFGH为矩形.12.如图,四边形ABCD与AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则= .三、解答题(共47分)13.(10分)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF 交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形.(2)若四边形BECF为正方形,求∠A的度数.【互动探究】四边形BECF的面积与△ABC的面积有什么关系?为什么?14.(12分)如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.(1)证明:四边形AECF是矩形.(2)若AB=8,求菱形的面积.15.(12分)(2014·新民市一模)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF.(2)若点O为CD的中点,求证:四边形DECF是矩形.16.(13分)(2013·青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点(1)求证:△ABM≌△DCM.(2)判断四边形MENF是什么特殊四边形,并证明你的结论.明)。
2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1.3正方形的性质与判定》同步练习题(附答案)一.选择题1.正方形具有而矩形不一定具有的性质是()A.对角线相等B.四个角都是直角C.对角线互相垂直D.两组对边分别平行2.下列说法正确的是()A.正方形既是矩形,又是菱形B.有一个内角是直角的四边形是矩形C.两条对角线互相垂直平分的四边形是正方形D.对角线互相垂直的四边形是菱形3.如图,已知四边形ABCD是平行四边形,下列结论正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是矩形C.当AC⊥BD时,四边形ABCD是菱形D.当∠ABC=90°时,四边形ABCD是正方形4.在正方形ABCD中,BF平分∠DBC交CD于F点,则∠DBF的度数是()A.15°B.22.5°C.30°D.45°5.如图,点E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE相交于点G,下列结论不正确的是()A.AF=BE B.AF⊥BEC.AG=GE D.S△ABG=S四边形CEGF6.如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE,则下列结论不一定正确的是()A.∠AFP=∠BPQB.EF∥QPC.四边形EFPQ是正方形D.四边形PQEF的面积是四边形ABCD面积的一半7.如图1是由一根细铁丝围成的正方形,其边长为1.现将该细铁丝围成一个三角形(如图2所示),则AB的长可能为()A.3.0B.2.5C.2.0D.1.58.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③AP=EF;④EF的最小值为2.其中正确结论有几个()A.1B.2C.3D.49.如图,在平面直角坐标系xOy中,P(4,4),A、B分别是x轴正半轴、y轴正半轴上的动点,且△ABO的周长是8,则P到直线AB的距离是()A.4B.3C.2.5D.210.如图四块同样大小的正方形纸片,围出一个菱形ABCD,一个小孩顺次在这四块纸片上轮流走动,每一步都踩在一块纸片的中心,则这个小孩走的路线所围成的图形是()A.平行四边形B.矩形C.菱形D.正方形二.填空题11.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,则此正方形的面积为.12.添加一个条件,使矩形ABCD是正方形,这个条件可能是.13.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是(只需添加一个即可)14.边长为4的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.15.如图,正方形ABCD内部有一个等边△ABE,则∠DAE=°.16.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,点D的坐标是(2,3),则点B的坐标是.17.如图,点D,E,F分别是△ABC三边的中点,连接AD,DE,DF,有下列结论:①四边形AEDF一定是平行四边形;②若∠BAC=90°,则四边形AEDF是矩形;③若AD平分∠BAC,则四边形AEDF是正方形;④若AD⊥BC,则四边形AEDF是菱形.其中正确的有.(填序号)三.解答题18.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且AB=4,CF=1.(1)求AE,EF,AF的长;(2)求证:∠AEF=90°.19.如图,在正方形ABCD中,PD=QC,求证:PB=AQ,BP⊥AQ.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长.参考答案一.选择题1.解:∵正方形的性质为:对边平行且相等,四条边相等,四个角为直角,对角线互相垂直平分,相等,且每条对角线平分一组对角,矩形的性质为:对边平行且相等,四个角为直角,对角线互相平分,相等,∴正方形具有而矩形不一定具有的性质是:对角线互相垂直,故选:C.2.解:A.正方形既是矩形,又是菱形,正确,符合题意;B.有一个内角是直角的四边形是矩形,错误,不符合题意;C.两条对角线互相垂直平分的四边形是正方形,错误,不符合题意;D.对角线互相垂直的四边形是菱形,错误,不符合题意.故选:A.3.解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项符合题意;D、∵四边形ABCD是平行四边形,又∵∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;故选:C.4.解:∵BD是正方形ABCD的对角线,∴∠DBC=45°.∵BF平分∠DBC,∴∠DBF=∠DBC=22.5°.故选:B.5.解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∵BF=CE,∴△ABF≌△BCE(SAS),∴AF=BE,∠BAG=∠CBE,∴选项A不符合题意;∵∠ABG+∠CBE=∠ABC=90°,∴∠BAG+∠ABG=90°,∴∠AGB=90°,∴AF⊥BE,∴选项B不符合题意;∵△ABF≌△BCE,∴S△ABF=S△BCE,∴S△ABF﹣S△BFG=S△BCE﹣S△BFG,∴S△ABG=S四边形CEGF,∴选项D不符合题意;∵无法证明AG=GE,∴选项C符合题意;故选:C.6.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AF=BP=CQ=DE,∴DF=CE=BQ=AP,∴△APF≌△DFE≌△CEQ≌△BQP(SAS),∴EF=FP=PQ=QE,∠AFP=∠BPQ,故A选项正确,不符合题意;∵EF=FP=PQ=QE,∴四边形EFPQ是菱形,∴EF∥PQ,故B选项正确,不符合题意;∵△APF≌△BQP,∴∠AFP=∠BPQ,∵∠AFP+∠APF=90°,∴∠APF+∠BPQ=90°,∴∠FPQ=90°,∴四边形EFPQ是正方形.故C选项正确,不符合题意;∵四边形PQEF的面积=EF2,四边形ABCD面积=AB2,若四边形PQEF的面积是四边形ABCD面积的一半,则EF2=AB2,即EF=AB.若EF≠AB,则四边形PQEF的面积不是四边形ABCD面积的一半,故D选项不一定正确,符合题意.故选:D.7.解:∵由一根细铁丝围成的正方形,其边长为1,∴该细铁丝的长度为4.∴AC+BC+AB=4,∴AC+BC=4﹣AB.∵AC+BC>AB,∴4﹣AB>AB,∴AB<2.∴AB的长可能为1.5,故选:D.8.解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠ABC=∠ADC=∠BCD=90°,∠PDC=∠DBC=45°,AB=BC=CD=AD=4,又∵PE⊥BC,PF⊥CD,∴∠PEC=∠PEB=∠PFC=∠PFD=90°=∠BCD,∴∠DPF=∠PDF=∠BPE=∠DBC=45°,∴PF=DF,PE=BE,即△PDF和△BPE均为等腰直角三角形,∴PD=PF,∵∠PEC=∠PFC=∠BCD=90°,∴四边形PECF是矩形,∴CE=PF=DF,PE=FC,∴PD=CE,故①正确;②由①知:PE=BE,且四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,故③正确;④由③得:EF=PC=AP,∴当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故④错误;综上,①②③正确.故选:C.9.解:方法一:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,设OB=a,OA=b,AB=c,P到直线AB的距离是h,∵△ABO的周长是8,∴a+b+c=8,∴a+b=8﹣c,∴a2+2ab+b2=64﹣16c+c2根据勾股定理得:a2+b2=c2,∴ab=32﹣8c,∵S△P AB=4×4﹣ab﹣4(4﹣b)﹣4(4﹣a)=2(a+b)﹣ab=2(8﹣c)﹣(32﹣8c)=16﹣2c﹣16+4c=2c,∵S△P AB=×c•h,∴2c=×c•h,∴h=4.∴P到直线AB的距离为4.方法二:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,∵P(4,4),∴四边形CODP是边长为4的正方形,∴PC=PD=OC=OD=4,∵A、B分别是x轴正半轴、y轴正半轴上的动点,∴将△P A′D沿P A′折叠得到△P A′E,延长A′E交y轴于点B,∴∠P A′D=∠P A′E,PE=PD,A′D=A′E,∠PDA′=∠PEA′=90°,∴PE=PC,在Rt△PEB和Rt△PCB中,,∴Rt△PEB≌Rt△PCB(HL),∴BE=BC,∵△A′BO的周长是8,∴A′O+BO+A′B=A′O+BO+BE+A′E=A′O+BO+BC+A′D=CO+DO=8,∴△A′BO符合题意中的△ABO,∴P到直线AB的距离PE=4,故选:A.10.解:如图,根据题意,顺次连接四个正方形的中心,所构成的图形是正方形,所以这个小孩走的路线所围成的图形是正方形.故选:D.二.填空题11.解:∵阴影部分是一个正方形,∴∠ACB=90°,∵∠B=45°,∴△ABC是等腰直角三角形,∴AC===2,∴正方形的面积为(2)2=8,故答案为:8.12.解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,故答案为:AB=AD(或AC⊥BD答案不唯一).13.解:条件为∠ABC=90°或AC=BD,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°或AC=BD,∴四边形ABCD是正方形,故答案为:∠ABC=90°或AC=BD.14.解:过C作CD⊥AB交AB延长线与D,如图:∵∠CBD=180﹣90°﹣60°=30°,∠D=90°,∴CD=BC=×4=2,∴△ABC的面积为AB•CD=×4×2=4,故答案为:4.15.解:∵四边形ABCD是正方形,∴∠DAB=90°,∵△ABE是等边三角形,∴∠DAE=∠DAB﹣∠EAB=90°﹣60°=30°,故答案为:30.16.解:∵四边形ABCD为正方形,∴AD=CD=BC=AB,∵点D的坐标是(2,3),∴AD=CD=BC=3,OC=2,∴OB=1,∴点B的坐标是(﹣1,0).故答案为:(﹣1,0).17.解:①∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC的中位线,∴ED∥AC,且ED=AC=AF;DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,故正确;②若∠BAC=90°,则平行四边形AEDF是矩形,故正确;③若AD平分∠BAC,则∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴不能判定四边形AEDF是正方形,故错误;④若AD⊥BC,则AD垂直平分BC,∴AB=AC,∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,故正确.故答案为:①②④.三.解答题18.(1)解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=90°,∵E为AB的中点,∴BE=CE=2,∴AE===2,EF===,AF===5;(2)证明:∵AE2+EF2=20+5=25,AF2=52=25,∴AE2+EF2=AF2,∴∠AEF=90°.19.证明:由题意可得:AD=AB=BC=DC,∠BAD=∠ADC=∠ABC=∠C=90°,∵PD=QC,∴AP=DQ,在△ADQ和△BAP中,,∴△ADQ≌△BAP(SAS),∴BP=AQ,∠APB=∠AQD,∵∠DAQ+∠AQD=90°,∴∠DAQ+∠APB=90°,∴BP⊥AQ,∴BP=AQ,BP⊥AQ.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)解:如图2,在Rt△ABC中,AB=2,∴AC=AB=4,∵CE=2,∴AE=4﹣2=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴CG=CE=2.。
北师大版九年级数学上册第一章特殊平行四边形《正方形的性质与判定》同步练习

正方形的性质与判定(典型题)第1课时正方形及其性质1.如图1,已知P是正方形ABCD的对角线BD上一点,且BP=BC,则∠ACP的度数是()图1A.45°B.22.5°C.67.5°D.75°2.正方形的一条对角线的长为4,则这个正方形的面积是()A.8 B.4 2C.8 2D.163.如图2,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.图24.如图,在正方形ABCD的外侧作等边三角形ADE,AC,BE交于点F,则∠BFC的度数为()A.45°B.55°C.60°D.75°5.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,Rt△FEG的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.23a2B.14a2C.59a2D.49a26.如图5,正方形ABCD的边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,F A⊥AE,交CB的延长线于点F,则EF的长为________.图57.如图6,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC相交于点G,连接AE,CF.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.图68.如图7,正方形ABCD绕点A逆时针旋转45°与正方形AEFG重合,EF与CD交于点M,得四边形AEMD,正方形ABCD的边长为2,则两正方形重合部分(阴影部分)的面积为()图7A.4 2-4 B.4 2+4 C.8-4 2 D.2+19.如图8,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG 绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()图8A.2+6B.3+1C.3+2D.3+610.如图9,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为________.图911.如图10所示,在正方形ABCD中,点E,F分别在边AD,CD上,且∠EBF=45°.(1)求证:EF=FC+AE;(2)若AB=2,求△DEF的周长.图1012.如图11,在正方形ABCD中,点E,F分别在BC,CD上移动,但点A到EF的距离AH始终保持与AB的长相等,则在点E,F移动的过程中:(1)∠EAF的大小是否发生变化?请说明理由;(2)△ECF的周长是否发生变化?请说明理由.图1113.如图12,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1,A2,A3,A4,…在射线ON上,点B1,B2,B3,B4,…在射线OM上……依此类推,则第n个正方形的周长C n=________.图1214.如图13①,在正方形ABCD中,E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图②,若E,F分别是边CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请做出判断并给予证明;(3)如图③,若E,F分别是边BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.参考答案1.B2.A3.证明:∵四边形ABCD是正方形,∴AB=BC,∠A=∠CBE=90°.∵BF⊥CE,∴∠BCE+∠CBG=90°.∵∠ABF+∠CBG=90°,∴∠BCE=∠ABF.在△BCE和△ABF中,∠BCE=∠ABF,BC=AB,∠CBE=∠A,∴△BCE≌△ABF(ASA),∴AF=BE.4.C5.D6.6 2[解析]7.解:(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,∴∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴△ABE≌△CBF,∴AE=CF.(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°.∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠GBE+∠BEF=80°.8.A9.A10.3211.解:(1)证明:将△ABE绕点B顺时针旋转90°得到△CBM,则BA=BC,AE=CM,BE=BM,∠ABE=∠CBM,∠A=∠BCM.∵四边形ABCD是正方形,∴∠A=∠ABC=∠BCD=90°,∴F,C,M三点共线,∠EBM=90°.∵∠EBF=45°,∴∠FBM=45°.在△BEF与△BMF中,BE=BM,∠EBF=∠MBF,BF=BF,∴△BEF≌△BMF,∴EF=FM=FC+CM=FC+AE.(2)由(1)知EF=FC+AE,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=2AB=4. 12.解:(1)∠EAF的大小不发生变化.理由如下:根据题意,知AB=AH,∠B=∠AHE=90°.又∵AE=AE,∴Rt△BAE≌Rt△HAE,∴∠BAE=∠HAE.同理,Rt△HAF≌Rt△DAF,∴∠HAF=∠DAF,∴∠EAF=12∠BAH+12∠HAD=12(∠BAH+∠HAD)=12∠BAD.又∵∠BAD=90°,∴∠EAF=45°,∴∠EAF的大小不发生变化.(2)△ECF的周长不发生变化.理由如下:C△ECF=EF+EC+FC.由(1),得Rt△BAE≌Rt△HAE,∴EB=HE.同理,HF=DF.∴C△ECF=EF+EC+FC=EB+DF+EC+FC=2BC,∴△ECF的周长不发生变化.13.2n+114.解:(1)相等互相平行(2)成立.证明:如图,过点G作GH⊥CB交其延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE.在△HGE与△CED中,∠GHE=∠DCE=90°,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED,∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.又∵GH∥BF且∠GHE=90°,∴四边形GHBF是矩形,∴FG=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=CE,∴FG=CE.(3)成立.FG=CE,FG∥CE.第2课时正方形的判定(典型题)1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是________.3.如图14,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.图14A.30°B.45°C.60°D.90°4.已知四边形ABCD各边的中点分别是E,F,G,H,如果四边形ABCD满足____________________,那么四边形EFGH是正方形.5.如图15,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.图156.如图16,在Rt△ABC中,∠BAC=90°,AD=CD,E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF,CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.图167.⑥如图17,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()图17A.7 B.8 C.7 2D.7 38.2017·宜昌如图18,正方形ABCD的边长为1,O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,请直接填空:ON________(填“可能”或“不可能”)过点D;(图①仅供分析)(2)如图②,在ON上截取OE=OA,过点E作EF垂直于直线BC,垂足为F,作EH⊥CD 于点H,求证:四边形EFCH为正方形.图189.如图19,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求出四边形EDFG面积的最小值.图1910.矩形的四个内角平分线围成的四边形是()A.正方形B.矩形C.菱形D.一般平行四边形11.如图0,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD的面积是18,则DP的长是________.图012.如图1,E是矩形ABCD的边BC的中点,P是边AD上的一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?并证明;(2)在(1)的条件下,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?图113.如图2,AC,BD是正方形ABCD的对角线,将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.(1)求证:△AED≌△GED;(2)求证:四边形AEGF是菱形;(3)若AC=1,求BC+FG的值.图214.如图3①,△ABC中,AD平分∠BAC交BC于点D,在线段AB上截取AE=AC,过点E作EF∥BC交AD于点F.连接DE,DF.(1)试判断四边形CDEF是何种特殊的四边形.(2)当AB>AC,∠ABC=20°时,四边形CDEF能是正方形吗?如果能,求出此时∠BAC 的度数;如果不能,请说明理由.(3)若AD平分∠BAC的外角交直线BC于点D,在直线AB上截取AE=AC,过点E作EF∥BC交直线AD于点F,如图②”,设∠ABC=x,其他条件不变,四边形CDEF能是正方形吗?如果能,求出此时∠BAC关于x的关系式;如果不能,试说明理由.图3参考答案1.D2.①③④3.D.4.对角线互相垂直且相等5.解:(1)证明:∵AF∥BC,∴∠EAF=∠EDB.∵E是AD的中点,∴AE=DE.在△AEF和△DEB中,∠EAF=∠EDB,AE=DE,∠AEF=∠DEB,∴△AEF≌△DEB(ASA),∴AF=BD.∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=12BC,∴AD=AF.(2)四边形ADCF是正方形.证明:∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形.∵AB=AC,AD是中线,∴AD⊥BC.又∵AD=AF,∴四边形ADCF是正方形.6.证明:(1)∵AD=CD,E是边AC的中点,∴DE⊥AC,∴DE是线段AC的垂直平分线,∴AF=CF,∴∠F AC=∠ACB.在Rt△ABC中,由∠BAC=90°,得∠B+∠ACB=90°,∠F AC+∠BAF=90°,∴∠B=∠BAF,∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵E是边AC的中点,∴AE=CE.在△AEG和△CEF中,∠AGE=∠CFE,∠AEG=∠CEF,AE=CE,∴△AEG≌△CEF(AAS),∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.又∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF,即F是边BC的中点.又∵AB=AC,∴AF⊥BC,即∠AFC=90°,∴四边形AFCG是正方形.7.C8.解:(1)不可能.理由如下:若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过点D,故答案为:不可能.(2)证明:∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°.又∠HCF=90°,∴四边形EFCH为矩形.∵∠MON=90°,∴∠EOF=90°-∠AOB.在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO.在△OFE和△ABO中,∠EOF=∠BAO,∠EFO=∠B,OE=AO,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB.又OF=CF+OC,AB=BC=BO+OC,∴CF=BO=EF,∴四边形EFCH为正方形.9.解:(1)证明:连接CD,如图①所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,AE=CF,∠A=∠DCF,AD=CD,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形.(2)过点D作DE′⊥AC于点E′,如图②所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=12BC=2,AB=42,点E′为AC的中点,∴2≤DE<22(点E与点E′重合时取等号),∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.10.A11.3212.解:(1)当矩形ABCD的长是宽的2倍时,四边形PHEF是矩形.证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD.∵E是BC的中点,∴AB=BE=EC=CD,则△ABE,△DCE均是等腰直角三角形,∴∠AEB=∠DEC=45°,∴∠AED=90°.在四边形PHEF中,∵∠PFE=∠FEH=∠EHP=90°,∴四边形PHEF是矩形.(2)当点P是AD的中点时,矩形PHEF变为正方形.理由如下:由(1)可得∠BAE=∠CDE=45°,∴∠F AP=∠HDP=45°.又∵∠AFP=∠DHP=90°,AP=DP,∴Rt△AFP≌Rt△DHP,∴PF=PH,∴矩形PHEF是正方形.13.解:(1)证明:由旋转可知DG=DC,∠DGH=∠DCB=90°. ∵AD=CD,∴AD=DG.又∵ED=ED,∴Rt△AED≌Rt△GED(HL).(2)证明:由(1)知△AED≌△GED,∴AE=EG,∠ADE=∠GDE=12∠BDA=22.5°,∴∠CDF=67.5°,∠CFD=67.5°,∴∠CDF=∠CFD,∴CF=CD.又∵AC=BD,CD=DG,∴AF=BG=EG.由旋转知∠H=∠DBC=45°.又∵∠DAC=45°,∴AF∥EG,∴四边形AEGF是平行四边形.又∵AE=EG,∴▱AEGF是菱形.(3)由(2)知四边形AEGF是菱形,∴AF=FG.由(2)知CF=CD,∴BC=CF,∴BC+FG=CF+AF=AC=1.。
北师大版九年级数学上册《1.3 正方形的性质与判定》 同步练习试题

1.3 正方形的性质与判定一.选择题1.下列说法错误的是()A.对角线互相垂直的平行四边形是矩形B.矩形的对角线相等C.对角线相等的菱形是正方形D.两组对边分别相等的四边形是平行四边形2.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=25°,则∠AED=()A.60°B.65°C.70°D.75°3.如图,两把完全一样的直尺叠放在﹣起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是()A.①②B.③④C.①②④D.①②③④4.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若△ABC为任意三角形,则四边形ADEG是平行四边形B.若∠BAC=90°,则四边形ADEG是矩形C.若AC=AB,则四边形ADEG是菱形D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形5.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE与BF相交于O;下列结论:(1)AE=BF;(2)AE⊥BF;(3)AD=OE;(4)S△AOB=S四边形DEOF.其中正确的有()A.4个B.3个C.2个D.1个二.填空题6.如图,平面内直线l1∥l2∥l3∥l4,且相邻两条平行线间隔均为1,正方形ABCD四个顶点分别在四条平行线上,则正方形的面积为.7.如图,正方形ABCD的边长为5,AG=CH=4,BG=DH=3,连接GH,则线段GH的长为.8.如图,在边长为2的正方形ABCD中,点E、F分别是边AB,BC的中点,连接EC,FD,点G、H分别是EC,FD的中点,连接GH,则GH的长度为.9.如图,已知正方形ABCD的边长为7,点E,F分别在AD、DC上,AE=DF=3,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.10.如图,四边形ABCD为正方形,AB为边向正方形外作等边三角形ABE、CE与DB相交于点F,则∠AFD=度.11.如图,在正方形ABCD的外侧,作等边三角形ABE,则∠DEB的度数为度.12.如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.13.如图,四边形ABCD是一个正方形,E是BC延长线上的一点,且AC=EC,则∠DAE =.14.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.15.已知:正方形ABCD中,对角线AC、BD相交于点O,∠DBC的平分线BF交CD于点E,交AC于点F,OF=1,则AB=.三.解答题16.如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.(1)求证:四边形CDEF是菱形;(2)当∠ACB=度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长.17.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.18.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.19.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.20.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.21.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?参考答案一.选择题1.解:对角线互相垂直的平行四边形是菱形,故选项A错误;矩形的对角线相等,故选项B正确;对角线相等的菱形是正方形,故选项C正确;两组对边分别相等的四边形是平行四边形,故选项D正确;故选:A.2.解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.3.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形直尺的宽度相等,∴DE=DF,又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.当∠DAB=90°时,这个四边形是正方形,∴这个四边形一定是轴对称图形,故选:C.4.解:A、∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等),正确,故本选项不符合题意;B、∵四边形ABDI和四边形ACHG是正方形,∴∠DAI=45°,∠GAC=90°,∵∠BAC=90°,∴∠DAG=360°﹣45°﹣90°﹣90°=135°,∵四边形ADEG是平行四边形,∴四边形ADEG不是矩形,错误,故本选项符合题意;C、∵四边形ADEG是平行四边形,∴若要四边形ADEG是菱形,则需AD=AG,即AD=AC.∵AD=AB,∴当AB=AD,即AB=AC时,四边形ADEG是菱形,正确,故本选项不符合题意;D、∵当∠BAC=135°时,∠DAG=360°﹣45°﹣90°﹣135°=90°,即平行四边形ADEG是平行四边形,∵当AB=AD,即AB=AC时,四边形ADEG是菱形,∴四边形ADEG是正方形,即当∠BAC=135°且AC=AB时,四边形ADEG是正方形,正确,故本选项不符合题意;故选:B.5.解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠ADE=90°.∵CE=DF,∴AF=DE.在△ABF和△DAE中,,∴△ABF≌△DAE.∴AE=BF,故(1)正确.∵△ABF≌△DAE,∴∠AFB=∠AED.∵∠AED+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF,故(2)正确.∵△ABF≌△DAE,∴S△ABF=S△ADE.∴S△AOB=S△ABF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,即∴S△AOB=S四边形DEOF.如图所示:过点E作EG⊥AB,则EG=AD.∵HE>OE,GE>HE,∴GE>OE.∴AD>OE,故(3)错误.故选:B.二.填空题6.解:过C点作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠CED=∠BFC=90°.∵ABCD为正方形,∴∠BCD=90°.∴∠DCE+∠BCF=90°.又∵∠DCE+∠CDE=90°,∴∠CDE=∠BCF.在△CDE和△BCF中,∴△CDE≌△BCF(AAS),∴BF=CE=2.∵CF=1,∴BC2=12+22=5,即正方形ABCD的面积为5.故答案为:5.7.解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∵AG=CH=4,BG=DH=3,AB=5,∴AG2+BG2=AB2,∴∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE﹣BG=4﹣3=1,同理可得HE=1,在Rt△GHE中,GH===,故答案为:.8.解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=1,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∴△PDH≌△CFH(AAS),∴PD=CF=1,∴AP=AD﹣PD=1,∴PE==,∵点G,H分别是EC,FD的中点,∴GH=EP=.9.解:∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠ADF=90°,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=90°,∴∠BGF=90°,∵点H为BF的中点,∴GH=BF,又∵BC=CD=7,DF=3,∠C=90°,∴CF=4,∴BF===,∴GH=,故答案为:.10.解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形∴∠BEC=15°,∵∠FBE=∠DBA+∠ABE=105°,∴∠BFE=60°,在△CBF和△ABF中,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠F AB=15°+45°=60°.故答案为60.11.解:∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△ABE是等边三角形∴AE=AB,∠BAE=∠BEA=60°∴AD=AE,∠DAE=150°∴∠AED=∠ADE=(180°﹣∠DAE)=15°∴∠DEB=∠BEA﹣∠AED=60°﹣15°=45°故答案为:45.12.解:∵∠ADE=∠BCE=90°+60°=150°,AD=BC,DE=CE,∴△ADE≌△BCE,∴AE=BE,∴∠EAB=∠EBA.∵正方形中AD=DC,等边三角形中DC=DE,∴AD=DE,∵∠ADE=90°+60°=150°,∴∠DEA==15°,同理∠CEB=15°,∴∠AEB=60°﹣15°﹣15°=30°,∴∠EAB==75°.故答案为75°.13.解:∵四边形ABCD是正方形,∴∠ACB=45°,AD∥BC,∵AC=EC,∴∠E=∠CAE,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=∠ACB=22.5°,∵AD∥BC,∴∠DAE=∠E=22.5°.故答案为:22.5°.14.解:过E作EF⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,在Rt△COE和Rt△CFE中,∴Rt△COE≌Rt△CFE(HL),∴CO=FC,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴EF=DF=DC﹣CF=1﹣,∴DE==﹣1,另法:因为四边形ABCD是正方形,∴∠ACB=45°=∠DBC=∠DAC,∵CE平分∠ACD交BD于点E,∴∠ACE=∠DCE=22.5°,∴∠BCE=45°+22.5°=67.5°,∵∠CBE=45°,∴∠BEC=67.5°,∴BE=BC,∵正方形ABCD的边长为1,∴BC=1,∴BE=1,∵正方形ABCD的边长为1,∴AC=,∴DE=﹣1,故答案为:﹣1.15.解:如图作FH∥BC交BD于点H.∵四边形ABCD是正方形,∴∠OBC=∠OCB=45°,OB=OC,∠BOC=90°∵FH∥BC,∴∠OHF=∠OBC,∠OFH=∠OCB,∴∠OHF=∠OFH,∴OH=OF=1,FH==,∵BF平分∠OBC,∴∠HBF=∠FBC=∠BFH,∴BH=FH=,∴OB=OC=1+,∴BC=OB=2+.故答案为2+.三.解答题16.证明:(1)如图,连接EC,交BD于点O∵BE=BC,BD平分∠ABC∴EO=CO,BD⊥CE∴EF=FC,DE=CD,∵CF∥DE∴∠DFC=∠FDE,且EO=CO,∠FOC=∠DOE ∴△DOE≌△FOC(AAS)∴DE=CF∴EF=FC=CD=DE∴四边形EFCD是菱形(2)当∠ACB=120度时,四边形CDEF是正方形,理由如下:∵∠ACB=120°,BC=AC∴∠ABC=∠BAC=30°∵BD平分∠ABC∴∠DBC=15°,且BD⊥EC∴∠BCO=75°∴∠ACE=45°,∵四边形EFCD是菱形∴∠FCD=2∠ACE=90°∴四边形CDEF是正方形,∴∠ADE=90°如图,过点C作CP⊥AB于点P,∵BC=AC=6,∠ABC=30°,CP⊥AB∴CP=3,BP=CP=3,AB=2BP=6,∴AE=AB﹣BE=6﹣6∵∠A=30°,∠ADE=90°∴DE=AE=3﹣317.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BD,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.18.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==.19.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.20.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.∵△ACE是等边三角形,∴AE=CE.∴BE⊥AC.∴四边形ABCD是菱形.(2)从上易得:△AOE是直角三角形,∴∠AEB+∠EAO=90°∵△ACE是等边三角形,∴∠EAO=60°,∴∠AEB=30°∵∠AEB=2∠EAB,∴∠EAB=15°,∴∠BAO=∠EAO﹣∠EAB=60°﹣15°=45°.又∵四边形ABCD是菱形.∴∠BAD=2∠BAO=90°∴四边形ABCD是正方形.21.解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。
19年秋北师大版九年级数学上册《第二章一元二次方程》同步练习

第 30 题.
时,关于 的方程 是一元二次方程.
第 31 题. 某 种洗 衣机的包装箱外形是长方体,其高为 1.2 米,体积
为 1.2 立方米,底面是正方形,则该包装箱的底面边长为
米.
5
1.答案: 2.答案:C
3.答案:A 4.答案:(1) ,二次项系数为: ,一次项系数 ,常数项为 . (2) ,二次项系数为 2,一次项系数为 ,常数项为 . 5.答案:C 6.答案:
第 7 题. 关于 的方程 是一元二次方程,求 的值.
第 8 题. 方程 化为一般形式后,二次项系数是
,一次项系数是
,常
数项是
.
第 9 题. 若 是一元二次方程,则不等式 的解集是
.
第 10 题. 下列方程中,不是整式方程的是(
)
A.
B.
C.
D.
第 11 题. 若方程 是关于 的一元二次方程,则 的取值范围是(
第 14 题. 把下列方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系 数和常数项: (1) ; (2) (3) .
第 15 题. 不解方程,估计方程 的根的大小(精确到 0.1)
第 16 题. 下列方程中属于一元二次方程的是(
)
A. .
B. .
C. .
D. .
第 17 题. 关于 的一元二次方程 中,二次项系数、一次项系数、常数项分别是(
3. 一元二次方程 7x2-2x=0 的二次项、一次项、常数项依次是
A. 7x2,2x,0
B. 7x2,-2x,无常数项
C. 7x2,0,2x
D. 7x2,-2x,0
4. 方程 x2- =( - )x 化为一般形式,它的各项系数之和可能是
北师大版九年级数学上册第一章 1.2矩形的性质与判定 同步练习题

北师大版九年级数学上册第一章 1.2矩形的性质与判定同步练习题第1课时矩形的性质1.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DAE=(B)A.10° B.20° C.30° D.45°2.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠COD=60°,AB=3,则AC的长是(A)A.6 B.8 C.10 D.123.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,则△ABE的周长等于(C)A.4.83 B.4 2C.22+2 D.32+24.如图,在矩形ABCD中,O是两对角线的交点,AE⊥BD,垂足为E.若OD=2OE,AE=3,则DE的长为(B)A.2 3 B.3 C.4 D.3+15.如图,在矩形ABCD中,EG垂直平分BD于点G.若AB=4,BC=3,则线段EG的长度是(B)A.32B.158C.52D .3 6.如图,点O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若OM =3,BC =10,则OB7.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 至F ,使CF =12BC.若EF =13,则线段AB 的长为26.8.如图,在矩形ABCD 中,AB =3,BC =4,AC 为对角线,∠DAC 的平分线AE 交DC 于点E ,则CE 的长为53.9.如图,在矩形ABCD 中,AB =3,AD =4,P 为AD 上一动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为125.10.如图,在矩形ABCD 中,AB =4,BC =6,将△ABE 沿着AE 折叠至△AB′E.若BE =CE ,连接B′C,则B′C 的长为185.11.如图,在矩形ABCD 中,AD =AE ,DF ⊥AE 于点F.求证:AB =DF.证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B =90°. ∴∠AEB =∠DAF. ∵DF ⊥AE ,∴∠AFD =∠B=90°.在△ABE 和△DFA 中,⎩⎪⎨⎪⎧∠AEB=∠DAF,∠B =∠AFD,AE =DA ,∴△ABE ≌△DFA(AAS). ∴AB =DF.12.如图,BE ,CF 是锐角△ABC 的两条高,M ,N 分别是BC ,EF 的中点.若EF =6,BC =24.(1)求证:∠ABE=∠ACF;(2)判断EF 与MN 的位置关系,并证明你的结论; (3)求MN 的长.解:(1)证明:∵BE,CF 是△ABC 的两条高, ∴∠ABE +∠A=90°,∠ACF +∠A=90°. ∴∠ABE =∠ACF. (2)MN 垂直平分EF. 证明:连接EM ,FM ,∵BE ,CF 是△ABC 的两条高,M 是BC 的中点, ∴EM =FM =12BC.∵N 是EF 的中点,∴MN ⊥EF. ∴MN 垂直平分EF. (3)∵EF=6,BC =24,∴EM =12BC =12×24=12,EN =12EF =12×6=3.在Rt △EMN 中,MN =EM 2-EN 2=122-32=315.13.如图,在矩形ABCD 中,AB =3,BC =4.M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM≌△CDN;(2)若G 是对角线AC 上的点,∠EGF =90°,求AG 的长.解:(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,AB ∥CD. ∴∠MAB =∠NCD.在△ABM 和△CDN 中, ⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD,AM =CN ,∴△ABM ≌△CDN(SAS). (2)连接EF ,交AC 于点O.在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA=∠FOC,∠EAO =∠FCO,AE =CF ,∴△AEO ≌△CFO(AAS).∴EO =FO ,AO =CO.∴O 为EF ,AC 的中点. ∵∠EGF =90°,∴OG =12EF =12AB =32.在Rt △ABC 中,AC =AB 2+BC 2=5, ∴OA =52.∴AG =OA -OG =1或AG =OA +OG =4. ∴AG 的长为1或4.14.如图,在矩形ABCD 中,∠BAC =30°,对角线AC ,BD 交于点O ,∠BCD 的平分线CE 分别交AB ,BD 于点E ,H ,连接OE.(1)求∠BOE 的度数;(2)若BC =1,求△BCH 的面积; (3)求S △CHO ∶S △BHE .解:(1)∵四边形ABCD 是矩形, ∴AB ∥CD ,AO =CO =BO =DO.∴∠DCE =∠BEC.∵CE 平分∠BCD,∴∠BCE =∠DCE=45°. ∴∠BCE =∠BEC=45°.∴BE =BC.∵∠BAC =30°,AO =BO =CO ,∴∠OBA =30°. ∴∠BOC =60°. ∴△BOC 是等边三角形. ∴BC =BO =BE.∴∠BOE =180°-30°2=75°.(2)过点H 作HF⊥BC 于点F.∵△BOC 是等边三角形,∴∠FBH =60°. ∴BH =2BF ,FH =3BF.∵∠BCE =45°,∴CF =FH =3BF. ∴BC =3BF +BF =1.∴BF=3-12. ∴FH =3-32.∴S △BCH =12BC·FH=3-34.(3)过点C 作CN⊥BO 于点N , ∵BC =3BF +BF =BO =BE , ∴OH =OB -BH =3BF -BF. ∵∠CBN =60°,CN ⊥BO , ∴CN =32BC =3+32BF. ∵S △CHO ∶S △BHE =(12OH·CN)∶(12BE·BF),∴S △CHO ∶S △BHE =3-32.第2课时 矩形的判定1.已知▱ABCD ,下列条件中,不能判定这个平行四边形为矩形的是(B) A .∠A =∠B B .∠A =∠C C .AC =BD D .AB ⊥BC2.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是(D)A .四边形AEDF 是平行四边形B .若∠BAC=90°,则四边形AEDF 是矩形C .若AD =EF ,则四边形AEDF 是矩形 D .若AD 平分∠BAC,则四边形AEDF 是矩形3.如图,在▱ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是(A)A .OM =12AC B .MB =MOC .BD ⊥AC D .∠AMB =∠CND4.如图,在▱ABCD 中,在不添加任何辅助线的情况下,请添加一个条件∠A =90°,使平行四边形ABCD 是矩形.5.如图,已知MN∥PQ,EF 与MN ,PQ 分别交于A ,C 两点,过A ,C 两点作两组内错角的平分线,交于点B,D,则四边形ABCD是矩形.6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,有下列四个条件:①AB=BE;②DE⊥DC;③∠ADB=90°;④CE⊥DE.如果添加其中一个条件就能使四边形DBCE成为矩形,那么正确的条件是①③④(填序号).7.如图,在△ABC中,D是AB边的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.当△ABC满足AC=BC(答案不唯一)时(请添加一条件),四边形BDCF 为矩形.8.如图,在▱ABCD中,AB=6,BC=10,对角线AC⊥AB,点E,F分别是边BC,AD上的点,且BE=DF.当BE的长度为3.6时,四边形AECF是矩形.9.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B,C,D为顶点的四边形是矩形,则点D的坐标为(5,3)或(-3,2)或(3,1).410.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,∠BAC≠60°,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC时,四边形AEFD是菱形;④当∠BAC=90°时,四边形AEFD是矩形.其中正确的结论是①②③.(填序号)11.已知:如图,▱ABCD 的两条对角线相交于点O ,BE ⊥AC ,CF ⊥BD ,垂足分别为E ,F ,且BE =CF.求证:▱ABCD 是矩形.证明:∵BE⊥AC,CF ⊥BD , ∴∠OEB =∠OFC=90°. 在△BEO 和△CFO 中, ⎩⎪⎨⎪⎧∠OEB=∠OFC,∠BOE =∠COF,BE =CF ,∴△BEO ≌△CFO(AAS). ∴OB =OC.∵四边形ABCD 是平行四边形, ∴OB =12BD ,OC =12AC.∴BD =AC. ∴▱ABCD 是矩形.12.如图,已知AB∥DE,AB =DE ,AC =FD ,∠CEF =90°.求证: (1)△ABF≌△DEC; (2)四边形BCEF 是矩形.证明:(1)∵AB∥DE, ∴∠A =∠D. ∵AC =FD , ∴AC -CF =DF -CF , 即AF =CD.在△ABF 和△DEC 中, ⎩⎪⎨⎪⎧AF =DC ,∠A =∠D,AB =DE ,∴△ABF ≌△DEC(SAS). (2)∵△ABF≌△DEC, ∴EC =BF ,∠ECD =∠BFA. ∴∠ECF =∠BFC.∴EC∥BF. ∴四边形BCEF 是平行四边形. ∵∠CEF =90°, ∴四边形BCEF 是矩形.13.如图,在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,以BD 为边作等边△BDE.求证:AB =EF ,且四边形AEBF 是矩形.证明:∵在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,∴∠AFB =90°,AF =BD ,∠CBD =30°. ∵△BDE 是等边三角形, ∴BE =BD ,∠DBE =60°.∴AF =BD =BE ,∠EBF =∠AFB=90°. ∴AF ∥BE. 又∵AF=BE ,∴四边形AEBF 是平行四边形. 在△ABF 和△EFB 中, ⎩⎪⎨⎪⎧AF =EB ,∠AFB =∠EBF,BF =FB ,∴△ABF ≌△EFB(SAS). ∴AB =EF.∴四边形AEBF 是矩形.14.如图,在▱ABCD 中,BC =12 cm ,∠ABC =60°,AC ⊥AB ,O 是AC ,BD 的交点,点E ,F 分别从点O 同时出发,沿射线OA 和OC 方向移动,速度都是1 cm/s.(1)求证:在整个运动过程中,四边形BEDF 始终是平行四边形;(2)设点E 和点F 同时运动的时间为t s ,当t 为何值时,四边形BEDF 是矩形?解:(1)证明:∵四边形ABCD 是平行四边形, ∴OB =OD.由题意,得OE =OF ,∴四边形BEDF 始终是平行四边形.(2)在Rt △ABC 中,∵∠BAC =90°,∠ABC =60°,BC =12, ∴∠ACB =30°,AB =12BC =6,AC =3AB =6 3.∴OA =OC =3 3.∴BO =AB 2+AO 2=62+(33)2=37. ∵当EF =BD 时,四边形BEDF 是矩形, ∴OE =OB ,即t =37.∴当t =37时,四边形BEDF 是矩形.第3课时 矩形的性质与判定的运用1.下列关于矩形的说法,正确的是(C) A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线相等且互相平分 D .矩形的对角线互相垂直且平分2.如图,已知在四边形ABCD 中,AB =DC ,AD =BC ,连接AC ,BD 交于点O.若AO =BO ,AD =3,AB =2,则四边形ABCD 的面积为(C)A .4B .5C .6D .73.如图,在矩形COED 中,点D 的坐标是(1,3),则CE4.如图,在四边形ABCD中,已知对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.5.如图,在菱形ABCD中,AC,BD交于点O,AC=6,BD=8.若DE∥AC,CE∥BD,则OE 的长为5.6.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于点E,MF⊥AC于点F,点N为EF的中点,则MN的最小值为2.4.7.如图,在矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处.若A′恰好在矩形的对称轴上,则AE的长为1或38.如图,在矩形ABCD中,AB=4 cm,AD=12 cm,点P从点A出发,向点D以每秒1 cm 的速度运动,Q从点C出发,以每秒4 cm的速度在B,C两点之间做往返运动,两点同时出发,点P到达点D为止(同时点Q也停止),这段时间内,当运动时间为2.4_s或4_s或7.2_s 时,P,Q,C,D四点组成矩形.9.如图,在▱ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.解:(1)证明:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2.∴∠ABC=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.解:(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC.∵CF∥AE,∴四边形AECF 是平行四边形. ∵AE ⊥BC ,∴四边形AECF 是矩形. (2)∵四边形ABCD 是菱形, ∴AD =AB =BC =CD =5. ∵AE =4,∠AEB =90°, ∴EB =AB 2-AE 2=3. ∴EC =EB +BC =8. ∴AC =AE 2+EC 2=4 5. ∵在Rt △AEC 中,AO =CO , ∴OE =12AC =2 5.11.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,∠A =∠ADC ,E ,F 分别为AD ,CD 的中点,连接BE ,BF ,延长BE 交CD 的延长线于点M.(1)求证:四边形ABCD 为矩形;(2)若MD =6,BC =12,求BF 的长度.(结果可保留根号)解:(1)证明:∵在四边形ABCD 中,AB ∥CD ,AB =CD , ∴四边形ABCD 是平行四边形. ∴∠A +∠ADC=180°. ∵∠A =∠ADC,∴∠A =90°. ∴四边形ABCD 是矩形. (2)∵AB∥CD,∴∠ABE =∠M. ∵E 为AD 的中点,∴AE =DE.在△ABE 和△DME 中, ⎩⎪⎨⎪⎧∠AEB=∠DEM ,∠ABE =∠M,AE =DE ,∴△ABE ≌△DME(AAS). ∴AB =DM =CD =6. ∵F 为CD 的中点, ∴CF =12CD =3.∵四边形ABCD 是矩形, ∴∠C =90°.在Rt △BCF 中,BF =BC 2+CF 2=122+32=317.12.如图,在▱ABCD 中,E 是AD 上一点,连接BE ,F 为BE 的中点,且AF =BF. (1)求证:四边形ABCD 为矩形;(2)过点F 作FG⊥BE,交BC 于点G.若BE =BC ,S △BFG =5,CD =4,求CG 的长度.解:(1)证明:∵F 为BE 的中点,AF =BF ,∴AF =BF =EF. ∴∠BAF =∠ABF,∠FAE =∠AEF.在△ABE 中,∠BAF +∠ABF+∠FAE+∠AEF=180°, ∴∠BAF +∠FAE=90°,即∠BAE =90°. 又∵四边形ABCD 为平行四边形, ∴四边形ABCD 为矩形.(2)连接EG ,过点E 作EH⊥BC,垂足为H ,∵F 为BE 的中点,FG ⊥BE ,∴BG =GE. ∵S △BFG =5,CD =EH =4, ∴S △BGE =12BG·EH=10.∴BG =GE =5.在Rt △EGH 中,GH =GE 2-EH 2=3. ∴BH =5+3=8.在Rt △BEH 中,BE =BH 2+EH 2=4 5. ∴CG =BC -BG =BE -BG =45-5.13.已知:如图,在▱ABCD 中,AB >AD ,∠ADC 的平分线交AB 于点E ,作AF⊥BC 于点F ,交DE 于点G ,延长BC 至H 使CH =BF ,连接DH.(1)补全图形,并证明四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB ,AG ,BF 之间的数量关系,并证明.解:(1)补全图形如图所示. 证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵CH =BF ,∴FH =BC.∴AD=FH. ∴四边形AFHD 是平行四边形. ∵AF ⊥BC ,∴四边形AFHD 是矩形. (2)猜想:AB =BF +AG.证明:延长FH 至M ,使HM =AG ,连接DM.∵AB∥CD,∴∠AED=∠EDC.∵DE平分∠ADC,∴∠ADE=∠EDC.∴∠AED=∠ADE.∴AE=AD.∵AE=AF,∴AF=AD.∵AF=DH,∴AD=DH.又∵∠GAD=∠DHM=90°,∴△DAG≌△DHM(SAS).∴∠ADE=∠HDM,∠AGD=∠M.∴∠EDC=∠HDM.∴∠GDH=∠CDM.∵AF∥DH,∴∠AGD=∠GDH.∴∠CDM=∠M.∴CD=CM=CH+HM. ∵AB=CD,CH=BF,HM=AG,∴AB=BF+AG.。
北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案一、选择题1.如图,在矩形ABCD中,两条对角线AC、BD相交于点O,若OB=5.则AC=()A.10 B.8 C.5√3D.52.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则AB的长度为()A.1 B.√2C.√3D.23.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC 的度数是()A.18°B.36°C.45°D.72°4.如图,在矩形ABCD中E,F分别是AD,CD的中点,连接BE,BF,且G,H分别是BE,BF的中点,已知BD=20,则GH的长为( )A.4B.5C.8D.105.如图∠BAC=90°,AB=6,AC=8,P为边BC上一动点(点P不与点B,C重合),PE⊥AB于点E,PF⊥AC 于点F,则EF的最小值为()A.4 B.4.8C.5.2D.66.如图,在矩形纸片ABCD中AB=10,AD=6点E为AD边上一点,将△ABE沿BE翻折,点A恰好落在CD边上点F处,则AE长为()A.83B.72C.103D.1347.如右图,A,B为5×5的正方形网格中的两个格点,称四个顶点都是格点的矩形为格点矩形,则在此图中以A,B为顶点的格点矩形共可以画出()A.1个B.2个C.3个D.4个8.如图,在矩形ABCD中,AB=10,BC=6,点M是AB边的中点,点N是AD边上任意一点,将线段MN绕点M顺时针旋转90°,点N旋转到点N',则△MBN'周长的最小值为()A.15 B.5+5√5C.10+5√2D.18二、填空题9.在矩形ABCD中AB=2,对角线AC与BD相交于点 O,若∠BAO=60°,则边BC的长为.10.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°若AB=3cm,则AC=cm.11.如图所示的长方形纸条ABCD,将纸片沿MN折叠,MB与DN交于点K,若∠1=70°,则∠KNC=°12.如图,在矩形ABCD中AB=2AD=6,点P为AB边上一点,且AP≤3,连接DP,将ΔADP沿DP折叠,点A落在点M处,连接CM,BM,当ΔBCM为等腰三角形时,BP的长为.13.如图,在矩形ABCD中AB=8,BC=12,E为BC上一点,CE=4,M为BC的中点.动点P,Q从E出发,分别向点B,C运动,且PE=2QE.若PD和AQ交于点F,连接MF,则MF的最小值为.三、解答题14.如图,折叠长方形纸片ABCD的一边,使点D落在BC边的D′处AB=6cm,BC=10cm求CE的长.15.如图,在矩形ABCD中,点E在BC边上,点F在CD边上,且AB=4,BE=3,EF=6,AF=√61求三角形AEF的面积.16.如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,且AE=CG,BF=DH,连接EG、FH.(1)求证:△AEH≌△CGF;(2)若EG=FH,∠AHE=35°,求∠DHG的度数.17.如图,四边形ABCD中∠DAB=45°,AB=8,AD=3√2,E为AB中点,且CD⊥DE,连接CE.(1)求DE的长度;(2)若∠BEC=∠ADE,求BC的长度.18.已知:如图,四边形ABCD的对角线AC,BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点。
北师大版九年级数学上册 2.5 一元二次方程的根与系数的关系 同步练习题(含答案,教师版)

北师大版九年级数学上册第二章2.5 一元二次方程的根与系数的关系同步练习题一、选择题1.已知x1,x2是一元二次方程x2+2x-k-1=0的两根,且x1x2=-3,则k的值为(B) A.1 B.2 C.3 D.42.若一元二次方程x2-2x-1=0的两根分别为x1,x2,则1x1+1x2的值为(B)A.1 B.-2 C.3 D.-43.已知关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1,x2.若b+2c=0,则1x1+1x2+x1x2x1+x2的值为(D).A.52B.-32C.32D.-524.若一元二次方程x2-3x-2=0的两根分别是m,n,则m3-3m2+2n=(A)A.6 B.5 C.3 D.45.对于任意实数a,b,定义:a◆b=a2+ab+b2.若方程(x◆2)-5=0的两根记为m,n,则m2+n2=(D).A.3 B.4 C.5 D.66.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为(A).A.1 B.2 C.3 D.4二、填空题7.已知关于x的一元二次方程x2-2kx-8=0的一个根是2,则此方程的另一个根是-4.8.已知关于x的方程x2+mx-2n=0的两根之和为-2,两根之积为1,则m+n的值为32.9.写一个以5,-2为根的一元二次方程(化为一般形式)x2-3x-10=0.10.已知m,n是一元二次方程x2-2x-3=0的两根,则m+n+mn=-1.11.若x1+x2=3,x21+x22=5,则以x1,x2为根的一元二次方程是x2-3x+2=0.12.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n 的值是452或2.13.已知a ,b 是方程x 2+2x -5=0的两个实数根,则a 2b +ab 2的值为10.14.已知关于x 的方程kx 2-3x +1=0有两个实数根,分别为x 1和x 2.当x 1+x 2+x 1x 2=4时,k =1.15.若方程2x 2+4x -3=0的两根为x 1,x 2,则1x 21+1x 22=289.三、解答题16.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值: (1)x 21+x 22;解:x 21+x 22=(x 1+x 2)2-2x 1x 2 =32-2×(-1) =11.(2)1x 1+1x 2. 解:1x 1+1x 2=x 1+x 2x 1x 2=3-1=-3.17.已知关于x 的一元二次方程x 2-2(a -1)x +a 2-a -2=0有两个不相等的实数根x 1,x 2.(1)若a 为正整数,求a 的值;(2)若x 1,x 2满足x 21+x 22-x 1x 2=16,求a 的值.解:(1)∵关于x 的一元二次方程x 2-2(a -1)x +a 2-a -2=0有两个不相等的实数根, ∴Δ=[-2(a -1)]2-4(a 2-a -2)>0.解得a <3. ∵a 为正整数, ∴a =1或2.(2)∵x 21+x 22-x 1x 2=16, ∴(x 1+x 2)2-3x 1x 2=16.∵x 1+x 2=2(a -1),x 1x 2=a 2-a -2, ∴[2(a -1)]2-3(a 2-a -2)=16. 解得a 1=-1,a 2=6. 又由(1)知a <3, ∴a =-1.18.已知x 1,x 2是一元二次方程4kx 2-4kx +k +1=0的两个实数根,求使x 1x 2+x 2x 1-2的值为整数的实数k 的整数值.解:根据题意,得Δ=(-4k)2-4×4k(k+1)≥0,且k≠0,解得k <0. ∵x 1+x 2=1,x 1x 2=k +14k ,∴x 1x 2+x 2x 1-2=(x 1+x 2)2-2x 1x 2x 1x 2-2 =(x 1+x 2)2x 1x 2-4=1k +14k-4 =-4k +1.∵k 为整数,且-4k +1为整数,∴k +1=±1,±2,±4. 又∵k<0,∴k =-5,-3,-2.19.已知关于x 的方程3x 2+2x -m =0没有实数解,求实数m 的取值范围. 解:∵3x 2+2x -m =0没有实数解, ∴Δ=4-4×3×(-m)<0,解得m <-13.故实数m 的取值范围是m <-13.20.已知实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0,求m n +n m 的值.解:若m≠n,∵实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0, ∴m ,n 是方程3x 2+6x -5=0的两根. ∴m +n =-2,mn =-53.∴m n +n m =m 2+n 2mn =(m +n )2-2mn mn (-2)2-2×(-53)-53=-225. 若m =n ,则m n +nm =1+1=2.综上可知,m n +n m 的值为-225或2.21.已知关于x 的一元二次方程x 2-2x +m -1=0. (1)当m 取何值时,方程有两个不相等的实数根? (2)若方程的两根都是正数,求m 的取值范围;(3)设x 1,x 2是这个方程的两个实数根,且1+x 1x 2=x 21+x 22,求m 的值. 解:(1)∵方程有两个不相等的实数根,∴Δ=(-2)2-4(m -1)=-4m +8>0.∴m<2. ∴当m <2时,方程有两个不相等的实数根.(2)设x 1,x 2是这个方程的两个实数根,则x 1>0,x 2>0,∴x 1x 2=m -1>0.∴m>1. ∵方程的两根都是正数,∴Δ≥0.∴m ≤2.∴m 的取值范围是1<m≤2. (3)由题意可得x 1+x 2=2,x 1x 2=m -1. ∵1+x 1x 2=x 21+x 22,∴1+x 1x 2=(x 1+x 2)2-2x 1x 2, 即1+m -1=22-2(m -1).解得m =2.22.已知k 为非负实数,关于x 的方程x 2-(k +1)x +k =0和kx 2-(k +2)x +k =0. (1)求证:前一个方程必有两个非负实数根;(2)当k 取何值时,上述两个方程有一个相同的实数根? 解:(1)证明:x 2-(k +1)x +k =0,Δ=[-(k +1)]2-4k =k 2-2k +1=(k -1)2≥0,∴方程x 2-(k +1)x +k =0的根为x =(k +1)±(k -1)22.∴x 1=k ,x 2=1. ∵k 为非负实数,∴方程x 2-(k +1)x +k =0必有两个非负实数根. (2)方程kx 2-(k +2)x +k =0中,∵k ≥0,当k≠0时,Δ=(k +2)2-4k 2=(k +2+2k)(k +2-2k)=(3k +2)(2-k). ∵k >0,∴3k +2>0.∴要使(3k +2)(2-k)≥0,需满足2-k≥0, 即k≤2,且k≠0.当k =0时,x =0.∴k ≤2时,方程有实数根.当相同的根是k 时,把x =k 代入方程kx 2-(k +2)x +k =0,得k 3-(k +2)k +k =0, 解得k =0或k =1+52或k =1-52.∵k 为非负实数,∴k =0或1+52.满足k≤2. 当相同的根是1时,把x =1代入方程kx 2-(k +2)x +k =0,得k -(k +2)+k =0,解得k =2.满足k≤2.∴当k =2或0或1+52时,上述两个方程有一个相同的实数根.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第一章证明(二)
班级姓名得分
一、选择题(36分)
1.以下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.5,6,7
2.已知命题:全等三角形的面积相等,则其逆命题是()A.不全等三角形的面积不相等
B.面积不相等的两个三角形不全等
C.面积相等的两个三角形全等
D.全等三角形的面积相等
3.对于直角三角形,下列条件不能判定它们全等的是()A.一锐角和一直角边对应相等
B.斜边和一锐角对应相等
C.两个锐角对应相等
D.两条直角边对应相等
4.△ABC的边AB的垂直平分线经过点C,则有()A.AB=AC B.AB=BC C.AC=BC D.∠B=∠C
5.△ABC中,边AB、AC的中垂线交于点O,则有()A.O在△ABC 内部 B.O在△ABC 的外部
C.O在BC边上D.OA=OB=OC
6.已知D是△ABC的边BC上的一点,点B和C到AD的距离相等,那么线段AD是△ABC的
()A.BC的垂直平分线 B.角平分线 C.中线 D.高线
7.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.不能确定
8.点D到△ABC的两边AB、AC的距离相等,则点D在()A.BC的中线上B.BC边的垂直平分线上
C.BC边的高线上D.∠A的平分线所在的直线上
9.如果三角形的一个角的平分线也是中线,则该三角形是()
A.直角三角形 B.锐角三角形 C.等腰三角形 D.任意三角形
10.若一等腰三角形的腰长为4cm,腰上的高为2cm,则等腰三角形的顶角为()
A.30° B.150° C.30°或150° D.以上都不对
11.若三角形中的一条边是另一条边的2倍,且有一个角为30°,则这个三角形是()
A.直角三角形 B.锐角三角形 C.钝角三角形上 D.以上都不对
12.下列定理中逆定理不存在的是()
A.等边三角形的三个内角都是60°
B.在同一个三角形中,如果两边相等,那么它们所对的角也相等
C.同位角相等,两直线平行
D.全等三角形的对应角相等
二、填空题(36分)
13.若一个等腰三角形的腰长为4,底边上的高为2,则此等腰三角形的顶角为。
14.直角三角形两直角边分别是5cm,12cm,,则其斜边上的高为 cm。
15.有一个三角形的两边长为3,4,要使这个三角形是直角三角形,则第三边的长应为。
16.“等腰三角形的两个底角相等”这个命题的逆命题是。
17.用反证法证明“三角形中最多有一个是直角或钝角”时应假设。
中?答:
(填“能”或“不能”)。
19.如图,在△ABC中,∠C=90°,DE是AB的中垂线,分别交AB、BC于点D、E,若∠B=30°,
BC=10,则CE= 。
20.已知,如图,AB=CD,CE=DF,请添加一个条件:
,使△ACE≌△BDF。
21.已知,如图,在△ABC中,∠C=90°,∠A的的平分线AD分
对边BC 为BD:DC=3:2,且BC=15cm ,则点D 到AB 边的距离 为 cm 。
22.在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于D ,交
AC 于点E ,如图所示,若△ABC 与△BEC 的周长分别为
30cm 和18cm ,则△ABC 的腰长为 。
23.已知32
+42
=52
,52
+122
=132
,72
+242
=252
,那么在112
+a 2
=c 2
中,a= 。
24.△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所得的锐角为
50°,则△ABC 的底角∠B 为 。
三、解答题(28分) 25.作图题(8分)
(1)如图,一个三角形状的水池,现要在水池内安装一个喷水头,且喷水头到池边的距离都
要相等,请用尺规找出喷水池的位置点P 。
(2)先用圆规画一个圆,然后在圆弧上确定三个点A 、B 、C ,作线段AB 、BC 的垂直平分线,
你能发现什么结论?
26.(5分)已知,如图,D 是△ABC 的BC 边的中点,DE ⊥AC ,DF ⊥AB ,垂足分
别为E 、F ,且DE=DF 。
求证:△ABC 是等腰三角形
27.(5分)如图,在△ABC 中,AB=AC ,D 、E 在BC 上,且AD=AE ,求证:BD=CE 。
C
28.(10分)(1)如图,有四个直角三角形,在提供的三角形中,只有一刀剪下一个与原
三角形相似的三角形,请在图上画出四种不同的裁剪方法(标出必要的记号)。
方法(一) 方法(二) 方法(三) 方法(四) (2)根据(1)的某种剪法,作为解决下列问题的突破口,先按裁剪法构图(作辅助线),
后解决问题。
问题:在四边形ABCD 中,AB=2,CD=1,∠A=60°,∠B=∠D=90°,
求BC 和AD 。
D
C
B
A。