总体特征数的估计(均值、方差、标准差)

合集下载

平均数方差与标准差

平均数方差与标准差

方案三 方差
方案二 用“点线图”
. . . .极差 ..
.甲
. . .. . . 4
5
6
7
8
9 10

极差
3
二、方差与标准差
设一组样本数据 x1, x2, , xn ,其平均数为 x ,
则称
s2
1 n
n i 1
( xi
x)2
为这个样本的方差;
其算术平方根 s
1 n
n i 1
( xi
x)2为样本的标准差
C. Sy=3 Sx
D. Sy= 3 Sx
10
7、某班有50名学生,某次数学考试的成绩经计算得到的平均分
数是70分,标准差是s,后来发现记录有误,某甲得70分却误记
为40分,某乙得50分却误记为80分,更正后重新计算得标准差为
s1,则s与s1之间的大小关系是(

A、s=s1
B、s<s1
C、s>s1
8
4、某人5次上班途中的时间(单位:分钟)分别为x,y,10,11,9。
已知这组数据的平均数为10,方差为2,则|x-y|的值为( )
A、1
B、2
C、3
D、4
9
5、一组数据中的每一个数据都减去80,得一组新数据, 若求得新数据的平均数为1.2,方差为4.4.则原来数据的 平均数和方差分别为( )
问题3:在一次射击选拔比赛中,甲、乙两名运动员各射击10次,
命中环数如下﹕ 甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8, 6,7,7
观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如 果你是教练,你会选哪位运动员去参加正式比赛?

总体方差(标准差)的估计

总体方差(标准差)的估计

总体方差(标准差)的估计
教学要求:理解方差和标准差的意义,会求样本方差和标准差。

教学过程:
看一个问题:甲乙两个射击运动员在选拔赛中各射击20次,成绩如下:
一、方差和标准差计算公式: 样本方差:s 2=n
1〔(x 1—x )2
+(x 2—x )2+…+(x n —x )2〕
样本标准差:s=
])()
()
[(n
12
2
22
1-
-
-
-++-+-x x x x x x n
方差和标准差的意义:描述一个样本和总体的波动大小的特征数。

标准差大说明波动
大。

一般的计算器都有这个键。

例一、要从甲乙两名跳远运动员中选拔一名去参加运动会,选拔的标准是:先看他们的平均成绩,如果两人的平均成绩相差无几,就要再看他们成绩的稳定程度。

为此对两人进行了15次比赛,得到如下数据:(单位:cm ):
如何通过对上述数据的处理,来作出选人的决定呢?
x 甲
≈ x


s 甲≈ s 乙≈
说明:总体平均数描述一总体的平均水平,方差和标准差描述数据的波动情况或者叫稳定程度。

二、练习:
根据以上数据,说明哪个波动小?
根据上述样本估计,哪个总体的波动较小?
问谁射击的情况比较稳定?
三、作业:
哪种小麦长得比较整齐?
哪种水稻的产量比较稳定?。

样本平均数、标准差对总体平均数、标准差的估计

样本平均数、标准差对总体平均数、标准差的估计

称为样本平均值。通常我们用ξ来估计总体平均值。
1 ξ = n
ξ
i 1
n
i
知识探究 在初中我们学习过n个数的方差为
其中,
1 x n
x
i 1
n
1 ( xi x) n i 1
n
2
i
它表示这些数据偏离平均数的大小,也就是反应数据的 偏差程度。方差越大,说明这组数据的波动越大。 同样,对于总体ξ,放映所有个体与总体均值之间偏差 程度的数字特征,称为总体方差。记为D(ξ), D(ξ)越大,说 明个体与总体均值的偏差越大。总体方差是总体的有一个重 要数字特征。 对于总体ξ,从中随机地抽取一个容量为n的样本( ξ1, ξ2,……, ξ n),则称
样本平均数、标准差对总体平均数、标准差的估计
情景导入 我们想了解20,000多名学生的一次语文考试平均成绩, 将他们的的数学成绩全部加在一起,再除以考生总数,十分 麻烦,这时,就可以采用样本估计总体的方法。 知识探究 总体中所有个体的平均数叫做总体均值(或总体数学期 望),如果总体用ξ表示,则E(ξ)表示总体均值,总体均值是 总体的一种药的数学特征。 从总体ξ中随机的抽取以容量为n的样本( ξ1,ξ2,……, ξ n),则
1 s ( ξ i ξ ) n 1 i 1
2
为样本方差。
n
2
样本( ξ1,ξ2, 样本方差为:
, ξ n)的一次观测值为

( x1 , x2 ,
, x n)
n 1 2 s2 ( x x ) i n 1 i 1 我们将样本方差的算术根
称为样本标准差。 通常,我们用它来估计总体标准差。
解:(1)
这10名学生的平均身高:

总体期望值和方差的估计

总体期望值和方差的估计

12.2 总体期望值和方差的估计●知识梳理 1.平均数的计算方法(1)如果有n 个数据x 1,x 2,…,x n ,那么x =n1(x 1+x 2+…+x n )叫做这n 个数据的平均数,x 读作“x 拔”.(2)当一组数据x 1,x 2,…,x n 的各个数值较大时,可将各数据同时减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,那么,x =x ' +a .(3)加权平均数:如果在n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(f 1+f 2+…+f k =n ),那么x=nf x f x f x kk +++ 2211.2.方差的计算方法(1)对于一组数据x 1,x 2,…,x n ,s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]叫做这组数据的方差,而s 叫做标准差.(2)公式s 2=n1[(x 12+x 22+…+x n 2)-n x 2].(3)当一组数据x 1,x 2,…,x n 中的各数较大时,可以将各数据减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a .则s 2=n1[(x 1′2+x 2′2+…+x n ′2)-n 2x '].3.总体平均值和方差的估计人类的长期实践和理论研究都充分证明了用样本的平均数估计总体平均值,用样本方差估计总体方差是可行的,而且样本容量越大,估计就越准确.●点击双基1.描述总体离散型程度或稳定性的特征数是总体方差,以下统计量估计总体稳定性的是 A.样本均值xB.样本方差C.样本最大值D.样本最小值 解析:统计学的基本思想是用样本来估计总体.因此选B. 答案:B2.甲、乙两人在相同的条件下,射击10次,命中环数如下: 甲:8,6,9,5,10,7,4,8,9,5; 乙:7,6,5,8,6,9,6,8,7,7.根据以上数据估计两人的技术稳定性,结论是 A.甲优于乙 B.乙优于甲C.两人没区别D.两人区别不大解析:x 甲=101(8+6+…+5)=7.1,x 乙=101(7+6+…+7)=6.9.s 甲2=101[(8-7.1)2+…+(5-7.1)2]=3.69, s 乙2=101[(7-6.9)2+…+(7-6.9)2]=1.29.∴乙优于甲. 答案:B3.样本a 1,a 2,a 3,…,a 10的平均数为a ,样本b 1,b 2,b 3,…,b 10的平均数为b ,那么样本a 1,b 1,a 2,b 2,…,a 10,b 10的平均数为A.a +bB.21(a +b )C.2(a +b )D.101(a +b )解析:样本a 1,a 2,a 3,…,a 10中a i 的概率为P i ,样本b 1,b 2,b 3,…,b 10中b i 的概率为P i ′,样本a 1,b 1,a 2,b 2,a 3,b 3,…,a 10,b 10中a i 的概率为q i ,b i 的概率为q i ′,则P i =2q i ,故样本a 1,b 1,a 2,b 2,a 3,b 3,…,a 10,b 10的平均数为a 1q 1+b 1q 1′+a 2q 2+b 2q 2′+…+a 10q 10+b 10q 10′=21(a 1P 1+…+a 10P 10)+21(b 1P 1′+21b 2P 2′+…+21b 10P 10′)=21(a +b ).答案:B4.电池厂从某日生产的电池中抽取10个进行寿命测试,得到数据如下(单位:h ):30,35,25,25,30,34,26,25,29,21.则该电池的平均寿命估计为___________,方差估计为___________.解析:x =101(30+35+25+25+30+34+26+25+29+21)=101(0+5-5-5+0+4-4-5-1-9)+30=28, s 2=101[(30-28)2+(35-28)2+(25-28)2+(25-28)2+(30-28)2+(34-28)2+(26-28)2+(25-28)2+(29-28)2+(21-28)2]=101(4+49+9+9+4+36+4+9+1+49)=17.4.答案:28 17.4 ●典例剖析【例1】 x 是x 1,x 2,…,x 100的平均数,a 是x 1,x 2,…,x 40的平均数,b 是x 41,x 42,…,x 100的平均数,则下列各式正确的是A.x =1006040b a + B.x =1004060b a +C.x =a +bD.x =2b a +剖析:这100个数的平均数是a +b 还是21(a +b ),这都很容易让人误解.我们可以从概率及加权平均数的角度来思考.设P i 是x 1,x 2,…,x 100中x i 被抽到的概率,q i 是x 1,x 2,…,x 40中x i 被抽到的概率,r i 是x 41,x 42,…,x 100中x i 被抽到的概率,则P i =10040q i ,P i =10060r i .故x 1,x 2,…,x 100的平均数x =10040(x 1q 1+x 2q 2+…+x 40q 40)+10060(x 41r 41+…+x 100r 100)=10040a +10060b .答案:A评述:除上述解法外,你还有其他解法吗?特别提示除了上述方法外,我们还可以先分别求出x 1+x 2+…+x 40=40a ,x 41+x 42+…+x 100=60b ,再求x .【例2】 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环)甲 10 8 9 9 9 乙1010799如果甲、乙两人只有1人入选,则入选的应是___________.剖析:判断谁入选,首先应考虑选手的成绩是否稳定.因此分别求其方差. 甲的平均数为x 1=51(10+8+9+9+9)=9, 乙的平均数为x 2=51(10+10+7+9+9)=9,甲的方差为s 甲=(10-9)2×51+(8-9)2×51=52, 乙的方差为s 乙=(10-9)2×51×2+(7-9)2×51=56.s 乙>s 甲,说明乙的波动性大,故甲入选. 答案:甲评述:方差的大小可看出成绩的稳定性,平均数的大小可看出成绩的高低.【例3】 某班40人随机分为两组,第一组18人,第二组22人,两组学生在某次数学检测中的成绩如下表:分 组 平均成绩标准差 第一组 90 6 第二组804剖析:代入方差公式s 2=n1[(x 12+x 22+…+x n 2)-n x 2]即可求得.解:设全班的平均成绩为x ,全班成绩的方差为s 2, 则s 12=181[(x 12+x 22+…+x 182)-18×902]=36,s 22=221[(x 192+x 202+…+x 402)-22×802]=16.∴x =401(90×18+80×22)=2169=84.5,s 2=401[(x 12+x 22+…+x 182)+(x 192+x 202+…+x 402)-40·x 2]=401[18×(36+8100)+22×(16+6400)-40×41692]=401(146448+141152-10×1692) =401×1990=49.75.∴s =2199≈7.05.评述:平均成绩应为总成绩除以总人数,而总成绩可由每组成绩之和求得. 【例4】 已知c 为常数,s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2],s c 2=n1[(x 1-c )2+(x 2-c )2+…+(x n -c )2].证明:s 2≤s c 2,当且仅当c =x 时,取“=”.剖析:证明s c 2≥s 2,可证明s c 2-s 2≥0.因此应用方差公式进行变形即可. 证明:∵s 2=n1[(x 1-x )2+…+(x n -x )2]=n1[(x 12+x 22+…+x n 2)-n x 2],s c 2=n1[(x 1-c )2+(x 2-c )2+…+(x n -c )2]=n1[(x 12+x 22+…+x n 2)-2c (x 1+x 2+…+x n )+nc 2],∴s c 2-s 2=x 2-nc 2(x 1+x 2+…+x n )+c 2=x 2-2c ·x +c 2=(x -c )2≥0. ∴s c 2≥s 2,当且仅当x =c 时取“=”. 评述:作差是比较大小的常用手段.●闯关训练 夯实基础1.一组数据的方差为s 2,将这组数据中的每一个数都乘以2,所得到的一组新数据的方差是A.21s 2 B.2s 2 C.4s 2 D.s 2解析:由方差公式易求得新数据的方差为4s 2. 答案:C2.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是A.70,25B.70,50C.70,1.04D.65,25解析:易得x 没有改变,x =70, 而s 2=481[(x 12+x 22+…+502+1002+…+x 482)-48x 2]=75, s ′2=481[(x 12+x 22+…+802+702+…+x 482)-48x 2]=481[(75×48+48x 2-12500+11300)-48x 2]=75-481200=75-25=50.答案:B3.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):解析:x 甲=51(9.8+9.9+10.1+10+10.2)=10,x乙=51(9.4+10.3+10.8+9.7+9.8)=10,s 甲2=51[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]=0.02,s 乙2=51[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]=0.244. 所以,甲比乙稳定. 答案:甲4.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系式为Z =sx x -(其中x 是某位学生的考试分数,x 是该次考试的平均分,s 是该次考试的标准差,Z 称为这位学生的标准分).转化成标准分后可能出现小数和负值,因此,又常常再将Z 分数作线性变换转化成其他分数.例如某次学生选拔考试采用的是T 分数,线性变换公式是T =40Z +60.已知在这次考试中某位考生的考试分数是85分,这次考试的平均分是70分,标准差是25,则该考生的T 分数为___________.解析:由已知Z =257085-=53,∴T =40×53+60=24+60=84.故考生成绩的T 分数为84.答案:84试分析两厂上缴利税的情况.解:甲、乙两厂上缴利税的季平均值分别为x 甲=41(70+50+80+40)=60, x乙=41(55+65+55+65)=60;甲、乙两厂上缴利税的方差为 s 甲2=41[(70-60)2+(50-60)2+(80-60)2+(40-60)2]=250, s 乙2=41[(55-60)2+(65-60)2+(55-60)2+(65-60)2]=25.经上述结果分析,两厂上缴利税的季平均值相同,但甲厂比乙厂波动大,导致它们生产出现的差异大,乙厂不同季节的缴税量比较接近平均值,生产稳定,而甲厂不稳定.培养能力 6.某校从甲、乙两名优秀选手中选拔1名参加全市中学生百米比赛,该校预先对这两名选手测试了8次,成绩如下表:解:x 甲=12.4=x 乙,s 甲2=0.12,s 乙2≈0.10,∴甲、乙两人的平均成绩相等,但乙的成绩较稳定,应派乙选手参加比赛.7.某农场为了从三种不同的西红柿品种中选取高产稳定的西红柿品种,分别在五块试验田上试种,每块试验田均为0.5公顷,产量情况如下:解:x 1=51(21.5+20.4+…+19.9)=21,x2=51(21.3+18.9+…+19.8)=21, x3=51(17.8+23.3+…+20.9)=20.5,s 1=0.756, s 2=1.104, s 3=1.901.由x 1=x 2>x 3,而s 1<s 2<s 3,说明第1种西红柿品种既高产又稳定.8.甲、乙两台机床在相同的条件下同时生产一种零件,现在从中各抽测10个,它们的尺寸分别为(单位:mm ):甲:10.2 10.1 10.9 8.9 9.9 10.3 9.7 10 9.9 10.1乙:10.3 10.4 9.6 9.9 10.1 10 9.8 9.7 10.2 10分别计算上面两个样本的平均数与方差,如果图纸上的设计尺寸为10 mm ,从计算结果看,用哪台机床加工这种零件较合适?解:x 甲=101(10.2+10.1+…+10.1)=10,x乙=101(10.3+10.4+…+10)=10,s 甲2=101[(10.2-10)2+(10.1-10)2+…+(10.1-10)2]=0.03, s 乙2=101[(10.3-10)2+(10.4-10)2+…+(10-10)2]=0.06.由上述结果分析,甲台机床加工这种零件稳定,较合适.探究创新9.有一个容量为100的样本,数据的分组及各组的频数如下: [12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5),8. (1)列出样本的频率分布表; (2)画出频率分布直方图;(3)估计数据小于30.5的概率. 解:(1)样本的频率分布表如下:(3)数据大于等于30.5的频率是0.08,∴小于30.5的频率是0.92.∴数据小于30.5的概率约为0.92.探究:解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计.注意直方图与条形图的区别.●思悟小结1.用样本估计总体,除在整体上用样本的频率分布估计总体分布外,还可以用平均值和方差对总体进行估计,即用样本平均数x 去估计总体平均数μ;用样本方差s 2去估计总体的方差σ2,进一步对总体的分布作出判断.2.进行几次实验,得到样本数据x 1,x 2,…,x n ,设c 是任意常数,k 为任意的正数,作变换y i =k1(x i -c )(i =1,2,…,n ),则有:①x =k y +c ;②s x 2=k 2s y 2.●教师下载中心 教学点睛1.期望反映数据取值的平均水平,期望越大,平均水平越高.2.方差反映数据的波动大小,方差越小,表示数据越稳定.拓展题例【例1】 如果数据a 1,a 2,…,a 6的方差是6,那么另一组数据a 1-3,a 2-3,…,a 6-3的方差是多少?解:设a 1,a 2,…,a 6的平均数为a ,则(a 1-3),(a 2-3),…,(a 6-3)的平均数为a -3,∴方差为s 2=61{[(a 1-3)-(a -3)]2+…+[(a 6-3)-(a -3)]2}=6.【例2】 已知样本方差由s 2=101∑=101i (x i -5)2求得,求∑∑=101i x i .解:依s 2=n1[(x 1-x )2+…+(x n -x )2]=n1[x 12+x 22+…+x n 2-n x 2]知,∴101∑=101i x i =5.∴∑=101i x i =50.。

5.1 总体特征数的估计(均值、方差、标准差)

5.1 总体特征数的估计(均值、方差、标准差)
制作:阳志昂
复习 目标
掌握总体平均数和方差的概念. 掌握总体平均数和方差的计算 公式及其在实际问题中的 应用功能. 能较熟练地应用样本的算术平 均数和样本的方差估计总体平 均数和方差,并能结合实际问 题对数据进行分析.
总体平均数
概念 总体中所有数值的总和除以 个体总数所得的商称为总体平均数. 即“总体平均数”为“总体的算术平均值”! 功能 总体平均数能反映总体分 布中大量数据向某一数值集中的情况, 利用总体平均数可以对两个总体的差异 进行比较.
解:根据以上数据,得 甲的平均速度是 x甲 = 2.7 3.8 3.0 3.7 3.5 3.1 =3.3,
乙的平均速度是 x 乙 = ∴甲、乙的平均速度一样大.
2.9 3.9 3.8 3.4 3.6 2.8 6
6
=3.3,
分析:他们的平均速度一样大,应比较他们的速度哪个更稳定.
总体方差的估计
概念
总体方差的计算,在其个体较少时,易算; 但在其个体较多或无限时,难以计算.这时常通 过抽取样本,用样本的方差来推断总体方差, 这种方法称为对“总体方差的估计”.
一般在两组数据较多时,采用如下方 法比较其稳定性: (1)分别抽取样本; (2)计算出两个样本的方差; (3)比较样本方差; (4)推断总体方差,并比较两组数据的优劣.
试估计哪个品种的水稻更优秀?
x甲 408.1 x乙 408.1 2 2 s 甲 357.49 s 乙 508.49 甲更优秀
思考
有甲、乙两名运动员,上一赛季教 练给他们的打分是:
甲 乙 101 101 109 98 103 98 105 101 108 115 90 85 75 115 110 102
分组计算算术平均数应注意

苏教版高三数学复习课件9.2 总体特征数的估计

苏教版高三数学复习课件9.2 总体特征数的估计



________.

3.已知一组数据:20,30,40,50,50,60,70,80,其中平均数、中位数、 众数的大小


关系是________.
解析:平均数= =50,按由小
到大排列可知,
中位数是50,众数也是50.

答案:众数=中位数=平均数
4.(江苏南通模拟)甲、乙两名射击运动员参加某大型运动会的预选赛,
形中点的横坐标.(5)中位数为平分频率分布直方图面积且垂直于横轴的
直线与横轴交点的横坐标.
【例1】 对某电子元件进行寿命追踪调查,情况如下. 寿命(h) [100,200) 个 数 20
[200,300) 30
[300,400) 80
[400,500) 40
[500,600] 30
(1)列出频率分布表;
解:甲、乙两人数学成绩的茎叶图如图所示.
从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,中位数
是98;甲同学的得分情况除一个特殊得分外,也大致对称,中位数是88.
因此乙同学发挥比较稳定,总体得分情况比甲同学好.
变式2:(南通市高三调研)如图是某兴趣小组的学生在一次数学测验中
的得分茎叶图,则该组男生的平均得分与女生的平均得分之差是
第2课时
总体分布的估计、总体特征数的估计
了解频率分布的意义和作用,会列频率分布表,会画频率分布直方 图、频率分布折线图、茎叶图,理解它们各自的特点/理解样本数据标 准差的意义和作用,会计算数据标准差/能从样本数据中提取基本的数
字特征(如平均数、标准差),并给出合理的解释/会用样本的频率分布
估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,

10.6 用样本均值、标准差估计总体均值、标准差

10.6 用样本均值、标准差估计总体均值、标准差

标准差越大,则数据的离散程度越大; 反之,数据的离散程度越小.
教材 P 143 习题10.6 第1,2题;
答: 这些参加语文考试的学生平均成绩约为85分。
在初中,我们学过n个数据x1,x2, …,xn的方差为
1 n
x
n i 1
i
x

2
1 n 其中, x xi . n i 1
它表示这些数据偏离平均数的大小,也就是反映这 些数据的偏差程度,方差越大,说明这组数据的波 动越大。
同样,对于总体ξ,反映所有个体与总体均 值之间偏离程度的数字特征,称为总体方差, 记为D(ξ). D(ξ)越大,说明个体与总体均值的偏离越大。 总体方差是总体的又一个重要数字特征。 对于总体ξ,从中随机地抽取一个容量为n的样本 (ξ1, ξ2, ξ3 … ξn),则称
1 n i n i 1
称为样本均值。 通常,我们用样本均值来估计总体均值。
例1 从参加语文考试的学生中,抽取30名学生 的成绩,分数如下: 90, 84, 84, 86, 87, 98, 78, 82, 90, 83 86, 95, 84, 71, 78, 61, 94, 88, 77, 100
以上30名学生的语文成绩是从所有参加考试的学生的语文成绩组成的总体中抽取的一个样本容量为30的样本这个样本均值为这些参加语文考试的学生平均成绩约为85分
概 统计 率 10.6 用样本均值、标准差估计总 体均值、标准差
统计 概率
在一次语文考试中, 考生有20000多名,我们 想了解这20000多名考生的平均成绩, 但如果将他
们的成绩全部加在一起再除以考生总数,十分麻烦。
这时,可以采取用样本估计总体的方法,即从中抽 取部分考生的成绩,用他们的平均成绩去估计所有 考生的平均成绩。

总体的特征数

总体的特征数

总体是指所有研究对象的全体,特征数是研究对象在某个方面的具体表现。

因此,总体的特征数是指总体在某个特征上的具体表现,可以是数值型特征,也可以是类别型特征。

对于数值型特征,总体的特征数通常是指总体的均值、中位数、标准差、方差等统计指标。

这些指标可以反映总体在某个特征上的集中趋势和离散程度,帮助我们了解总体分布的基本情况。

例如,如果我们要研究一个班级学生的数学成绩,那么总体的特征数可以是平均分、标准差等,这些指标可以告诉我们这个班级学生的数学成绩整体水平以及成绩的差异程度。

对于类别型特征,总体的特征数通常是指每个类别的频数和所占比例。

这些指标可以反映总体在某个特征上的分布情况,帮助我们了解不同类别的出现概率。

例如,如果我们要研究一个班级学生的性别比例,那么总体的特征数可以是男生人数、女生人数以及各自所占比例,这些指标可以告诉我们这个班级中男女学生的分布情况。

在具体研究中,总体的特征数通常需要根据具体问题进行选择和计算。

此外,为了确保研究的准确性和可靠性,我们需要进行合理的样本设计和数据采集,并对数据进行有效的处理和分析。

最后,根据分析结果得出结论并提出建议。

总之,总体的特征数是研究总体的重要手段之一,可以为我们提供关于总体分布的基本情况和特征的定量描述。

在实际研究中,我们需要根据具体问题进行选择和计算适当的特征数,并对其进行合理的分析和解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

情境一:
某农场种植了甲、乙两种玉米苗,从中各抽取了 10株,分别测得它们的株高如下(单位:厘米):
甲: 25 41 40 37 22 14 19 39 21 42 30
乙: 27 16 44 27 44 16 40 40 16 40 31
问: 哪种玉米苗长得高?
分析: 欲比较哪种玉米苗长得高,可以比较一下它们的
处理实验数据的原则是使这个近似值与实验数 据之间的离差(偏差)最小、设近似值为x,
则它与n个实验值 ai(i=1,2,3,…,n)的平称均为数这或n个者数均的值
离差分别为 x-a1,x-a2,…,x-an
读作:a平均
a1 a2 L an
a=
n
1n
= n i1 ai
平均数最能代表一个样本数据的集中趋势, 也就是说它与样本数据的离差最小。
分析 在班级年龄序列中18出现了20次, 17出现了13 次,16出现了7次,15出现了3次
解: x 18 20 1713 16 7 15 3 43
18 20 17 13 16 7 158 3
43
43
43
43
17
“加权平均数”
加权平均值 (用频率计算平均值)
9.76 9.45 9.99 9.81 9.56 9.78 9.72 9.93 9.94 9.65 9.79 9.42 9.68 9.70 9.84 9.90
平 怎样利用这些数据对重力加速度进行估计? 均

问题转化为:
实验结果测得一组数据为 a1 , a2, L an
用 算术平均数作为重力加速度“最理想的”近似 值,依据是什么呢?
平均高 !



反映了总体的

某种特征

总体特征数: 通常把能反映总体某种特征的量称为总体特征数
如何反映总体的特征数? 用样本的特征数估计总体的特征数!
情境二:
在利用单摆检验重力加速度的实验中,全班同学在 相同的条件下进行测试,得到下列数据(单位:m/s²)
9.62 9.54 9.78 9.94 10.01 9.66 9.88 9.68 10.32
一般地,若取值为 x1, x2,L xn , 出现的次数分别
为 f1, f2 L fn ,设频率为 p1, p2 ,L pn 则其加权平均数为
x1 p1 x2 p2 L xn pn
其中 ( p1 p2 L pn 1)
例4:由某单位年收入表试估计该单位职工 的平均年收入
收入范围
107 106 111 121 97 107 114 122 101 107
107 111 114 106 104 104 95 111 111 110
乙班均分
思考 某公司有经理1人,另有6名管理人员,5名高级 技工,10名工人和10名学徒,现需要增加一名新工人。 小张前来应聘,经理说:“我公司报酬不错,平均工 资每月1695元。”小张工作几天后找到经理说:“你 欺骗了我,我问过其他工人,每月一个人的工资不超 过1500元,平均月工资怎么能是1695元呢?”经理拿 出如下表所示的工资表说:“你看,平均月工资就是 某公司16内95部元结。构”以及工资分布:
人员 经理 管理人员 技工 工人 学徒 合计
月工资 11000 1250 1100 1000 500Fra bibliotek人数 1
6
5 10 10 23
在这个问题中,总体月平均数能客观地反映工人的 月工资水平吗?为什么?
在这个问题中,总体月平均数能客观地反映工人的 月工资水平吗?为什么?
总体月平均数不能反映工人的月工资水平, 因为公司中少数人的月工资额与大多 数人 的月工资额差别较大,这样导致平均 数与 中位数的偏差较大,所以月平均数不 能反 映这个公司工人的月工资水平,而应 该应 用中位数或众数来反映工人的月工资 水平
甲: 31 32 35 37 33 30 32 31 30 29
乙: 53 16 54 13 66 16 13 11 16 62
问: 哪种玉米苗长得齐高?

x甲 =32


x乙 =32
呢 ?
甲: 31 32 35 37 33 30 32 31 30 29 乙: 53 16 54 13 66 16 13 11 16 62
例2:由下表计算学生日睡眠时间
[6,6.5)
5
0.05
[6.5,7)
17
0.17
[7,7.5)
33
0.33
[7.5,8)
37
0.37
[8,8.5)
6
0.06
[8.5,9]
2
0.02
合计
100
1
例3 高一(1)班学生年龄统计:(班级共有43 人)其中有20人18岁,13人17岁,7人16 岁,,3人15岁,求该班级的平均年龄。
立发中学 高二数学备课组
知识回顾
中位数:把一组数据按照从小到大(或从大到小)的
顺序排列后,处于最中间位置的一个数据(或最中间 两个数据的平均数)
众数:一组数据中出现次数最多的数据
众数、中位数都是描述一组数据集中趋势的量, 众数考查各数据出现的频率,它的大小只与这组 数据中的部分数据有关;中位数仅与数据的排列 位置有关,某些数据的变动对中位数没有影响。
例1 某校高一年级的甲乙两个班级(均为50人)的 数学成绩如下(总分150),试确定这次考试中,哪 个班的数学成绩更好一些 .
甲班 112 86 106 84 100 105 98 102 94 107
87 112 94 94 99 90 120 98 95 119
108 100 96 115 111 104 95 108 111 105
所占百分 比
10000 至 15000 10%
15000 至 20000 15%
20000 至 25000 20%
25000 至 30000 25%
30000 至 35000 15%
35000 至 40000 10%
40000 至 50000
5%
情境一:
某农场种植了甲、乙两种玉米苗,从中各抽取 了10株,分别测得它们的株高如下:
104 107 119 107 93 102 98 112 112 99
92 102 93
乙班
116 95 109
84 94 96 106
94 100 90 84 114
甲班均分
98 108 99 110 103
94 98 105 101 115 104 112 101 113 96
108 100 110 98 107 87 108 106 103 97
相关文档
最新文档