2013高中数学奥数培训资料之托勒密定理试题
(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第3-5章)

第三章 托勒密定理及应用习题A1.由CDE BAE △∽△和CBE DAE △∽△,有4BE AB CE =,4DEAD CE=,对四边形ABCD 应用托勒密定理,有()()416BE DEBD AE CE AB AD CE+⋅+=+=⋅.令CE x =,得方程26160x x +-=,求得2x =(舍去了负值).于是12BE DE CE AE ⋅=⋅=.又8BD BC DC <+=,求得3BE =,4DE =或4BE =,3DE =,总之7BD =为所求.2.连EF ,DF ,由FBC FBD FED FAC ∠=∠=∠=∠,ABF EBF EDF ACF ∠=∠=∠=∠,知EDF EDF △∽△,即EF DE DF AF AC CF==.设其比值为k (k 为参数),则EF kAF =,DE kAC DF kCF =⋅=,对四边形BEFD 应用托勒密定理.有()BE EF DF BF DE +=⋅,即()BE k AF k CF BF k AC ⋅+⋅=⋅⋅注意到BE AC =,消去k ,得BF AF CF =+.3.连AC ,在四边形APCD 中应用托勒密定理,有PA PC AC PB AB +=4.连11l l 11,,B D DC B C ,设CAD α∠=,BAD β∠=,O ⊙的半径为R .由AD 为BC 上中线,可令12ABC ACD ABC S S S k ===△△△.由正弦定理有112sin B D R β=⋅,112sin()C D R αβ=⋅+.对四边形111AB D C 应用托勒密定理,有1112sin 2sin 2sin()AB R αAC R βAD R αβ⋅⋅+⋅⋅=⋅⋅+,消去2R ,两边同乘以 12AB AC AD ⋅⋅得111122ACD ABD ABC AB AB S AC AC S AD AD S ⋅⋅+⋅⋅=⋅⋅△△△,亦即 1112AB AB AC AC AD AD ⋅+⋅=⋅,由此即证.5.连1535,A A A A ,则1514A A A A =,3513A A A A =.对四边形1345A A A A 应用托勒密定理,有 3413151435()A A A A A A A A A A ⋅+=⋅,即1213141413()A A A A A A A A A A +=⋅,由此整理即证.6.对四边形AB A B ''应用托勒密定理,有11a b cc AB A B '''=+⋅,即11111a b c cc c AB A B c '''=+⋅⋅,同理,对四边形B CA C ''',AB BC '',AA BC ''分别应用托勒密定理,有1AB A B c AB B C b AB A C a '''''''⋅⋅=⋅⋅+⋅⋅,1AB B C b abc bb b '''⋅⋅=+,1AB A C a a b c aa a '''''''⋅⋅=+.由此四式即证得结论.7.设圆心O 到AB ,BC ,CA 的距离分别为1x ,2x ,3x ,连接BO 并延长与O ⊙交于D ,连AD ,DC ,则12AD x =,22CD x =,对四边形ABCD 应用托勒密定理有12222x a x c Rb +=.同理,23222x b x a Rc +=,13222x b x c Ra +=.加之1232()2()2()2()x a b x b c x c a R a b c +=+++=++,但123()cx ax bx r a b c ++=++,以上两式相加得123x x x R r ++=+.但11x R h =-,22x R h =-, 33x R h =-,由此即证.8.作一直径(11)AB x x =≥的圆,在B 的两侧分别取C ,D 二点,使2BC =,11BD =,于是AC =AD ,对四边形ABCD 应用托勒密定理,有211CD x ⋅=+,将此式与原方程比较得CD =.在BCD △中,由余弦定理,有1cos 2CBD ∠=-,知120CBD ∠=︒,故14sin120CDx AB ===︒为所求.9.作直径1AC =的圆,并作弦AB b =,AD a =的圆内接四边形ABCD ,则DC =,BC =AD BC AB CD AC BD ⋅+⋅=⋅,即1a b BD =⋅,由此得1BD =,即BD 也是圆的直径,故221a b +=.10.当0x =时,1y =,当0x ≠时,作代换222x t x +=,1122x x t x x =+=+≥sin cos t θy t θ+=+,即1sin cos yt θy θ-=-⋅,以1AB =为直径作圆,作弦sin AC θ=,作弦AD =,则BD =cos BC θ=.由托勒密定理及1CD AB ≤=,有sin cos θy θ+,亦有sin cos sin cosyt tθyθθyθ-=-≤+,即11t y⋅--,故22y≤≤11.连AC,CE,AE,对四边形APCE应用托勒密定理,有AC PE AE PC CE PA⋅=⋅+⋅,而AC AE CE==,有PE PA PC=+.同理,PD PB PF=+,由此即证.12.不失一般性,令P点位于OBF△内部(其中O为CAB△中心),作1PP AD⊥于1P,2PP BE⊥于2P,3PP CF⋅于3P.由P,O,1P,2P四点共圆,有23180PP O PPO∠+=︒,知1P,3P,O,2P四点共圆,即P,3P,O,lP,2P共圆,推知l23PP P△是正三角形,在312PP PP中,有123213312PP P P PP PP PP PP⋅=⋅+⋅,即123PP PP PP=+,故PAD PCFS S+△△.13.作ABC△外接圆的直径CF,并设AF x=,BF y=,则60BFC A∠=∠=︒,直径2CF d y==.对四边形BCAF应用托勒密定理,有cd ax by=+.从而tan tan tan tan2221tan tan tan tan2a bA B BFC AFC ax by ax by by cd by by c by xa bA B BFC AFC ax by ax by cd c y cy x--∠-∠-+-=-======-= +∠+∠++⋅+.14.令AB AC a==,对四边形ABPC应用托勒密定理,有a PB a PC BC PA⋅+⋅=⋅,即有PA aPB PC BC=+.对四边形BCAQ应用托勒密定理,有QA BC a QB a QC⋅+⋅=⋅,即QA aQC QB BC=-.15.对四边形ABCD应用托勒密定理,BC AD BD AC AB CD⋅+⋅=⋅,即AD ACBC BD CDAB AB⋅+⋅=.又ABD MCP△∽△及ABC MDQ△∽△,有AD MPAB MC=,AC MQAB MD=,于是MP MQBC BD CDMC MD⋅+⋅=,注意到=22CD MC MD=即证.16.连EG,FG和EF,对四边形BFGE应用托勒密定理,有BE FG BF EG BG EF⋅+⋅=⋅,又FEG FBG ADB∠=∠=∠,EFG EBG∠=∠,则EFG ABD△∽△,有FG EG EFAB AD BD==,令其比值为t,则t BE AB t BF AD t BG BD⋅⋅+⋅⋅=⋅⋅,消去t,注意到AD BC=即证.17.作DG AF∥交1O⊙于G,则AG FD=,GF AD=.对四边形AGDF应用托勒密定理,AD FG AG FD AF GD⋅=⋅+⋅.由AD平分BAF∠,知FD BD=,即AG BD=,由此知GB DA∥,有GD AB=.故222AD FD AF GD FD AF AB=+⋅=+⋅.同理,有22AE FE AF AC=+⋅.此两式相减有2222DA EA DF EF-=-,故DE AF⊥.18.在直径2AB x=>的圆中,在两个半圆上分别取点C和D,使2AC=,1AD=,则BCBD=由托勒密定理,CD x=⋅,与原方程比较得CD.在ACD△中,由余弦定理,有1cos2CAD∠=-,则120CAD∠=︒,故sinCDxCAD=∠.19.由222+=,在直径AB=的圆中,在一半圆上取点C,使AC=,BC=;在另一半圆上取中点D,则AD BD==CD,知CD AB≤,由托勒密定理,2AB CD=⋅≤,即y=≤ABC△中,AC BC AB+≥(当C与A或B重合时,取等号),故y≤20.设222x y a+=,则01a≤≤.当0a=时,命题显然成立,当01a<≤时,在直径AB a=的一半圆上取点C,使AC x=,BC y=,因2222x y a +=+=,则可在另一半圆上取点D ,使BD =,AD =,由托勒密定理,有2x y AB CD a +=⋅≤,即2()()x x y y x y ++-≤≤但222()()()()x xy y x x y y x y x x y y x y +-=++-≤++-≤21.设点T 在劣弧»AB 上,连AT ,BT ,CT ,分别交小圆于点D ,E ,F .连DE ,EF ,FD ,过点T 作公切线RQ .由DFT RTD RTA ACT ∠=∠=∠=∠,有AC DF ∥,有AD ATCF CT=.又 2AM AD AT =⋅,2CP CF CT =⋅,有2222AM AD AT AT CP CF CT CT =⋅=,即AM AT CP CT =.同理,BN BT CP CT=.对圆内接四边形ATBC 应用托勒密定理,有AT BC BT AC TC AB ⋅+⋅=⋅,而AB BC CA ==,则 AT BT CT +=,故AM BN CP ++.22.令BC a =,AC b =,AB c =.由BE 平分ABC ∠,有AE AB EC BC =,亦有AE ABAC BC AB=+,即bc AE a c =+.同理,bcAF a b=+.由AE PQ ∥,有AEF Q ∠=∠,从而AEF PCB ∠=∠,注意到 FAE BPC ∠=∠,有AEF PCB △∽△,即PB AF a cPC AE a b+==+,即()PB b PC a c PB a ⋅=⋅+-⋅.在圆内接四边形PABC 中,应用托勒密定理,有PB b PC c PA a ⋅=⋅+⋅,故()PC a c PB a PC c PA a +-⋅=⋅+⋅,因此,PC PA PB ++.23.由()BE AC AF FC AC ⋅=+⋅,AC ,()()AF BC AB FC AF BD CD FC BE AE AF ⋅+⋅=⋅++-=⋅ ()()AC AF CD FC AC FC AE AF FC AC AF CD FC AE +⋅+⋅-⋅=+⋅+⋅-⋅,又AF CD FC AE ⋅=⋅, 则BF AC AF BC AB FC ⋅=⋅+⋅,由托勒密定理之逆,知ABCF 有外接圆.24.连EA ,ED ,由BAE ECD ∠=∠,且CDE EAD ABE ∠=∠=∠,有ABE CDE △∽△,亦有AE ABEC CD=, 即EC AB EA CD ⋅=⋅.在圆内接四边形AEBC 中,应用托勒密定理,有EA BC EB AC EC AB ⋅+⋅=⋅,于是222111EB AC EA BC EA BC BC BD BD BD EC AB EC AB EA CD CD CD BD CD DA ⋅⋅⋅=-=-=-===⋅⋅⋅⋅.又ABD CAD ∠=∠,ADB ADC ∠=∠,有ABD CAD △∽△,有AB BDAC AD=.于是22EB AC AB EC AB AC ⋅=⋅,故33EB AB EC AC =. 习题B1.在弧¼ADC 上取点H ,使AH CD c ==,连HC ,HB ,令AC m =,BD n =,BH p =,易证AHC CDA △∽△,即HC AD d ==.对四边形ABCD ,ABCH 分别应用托勒密定理,有ac bd mn +=,ad bc pm +=.又在弧¼BCH 上取点K ,使BK CH d ==,由CHB KBH △∽△,有HK BC b ==对四边形ABKH 应用托勒密定理,有ab cd AK p +=⋅.又由¼¼KHA BCD =,有AK BD n ==. 于是2()()ac bd ad bc m ab cd ++=+,2()()ac bd ab cd n ad bc++=+,由此即求得AC ,BD .2.作AGH △的外接圆1O ,分别截AC ,AD AB 于点H ,Q ,G .易证BCD APE △∽△,即DC BCPE AP=,BD BC AE AP =,即PE AK CD BC BC AP AP =⋅=⋅,AEBD BC AP=⋅.对四边形ABDC 应用托勒密定理,有AE AKAD BC BD AC DC AB BC BC AB AP AP⋅=⋅+⋅=⋅+⋅⋅,故AP AD AE AE AK AB ⋅=⋅+⋅.(*) 同理,由托勒密定理,有AP AQ AE AE AK AG ⋅=⋅+⋅.于是2()AP AQ AP AP PQ AP AP PQ AE AH AK AG ⋅=+=+⋅=⋅+⋅, 即22AP PG PH AP AP PQ AE AH AK AG +⋅++⋅=⋅+⋅从而2AP AE AH AK AG PG PH =⋅+⋅-⋅.由(*)式减去上式,有()()() AP AD AP AE AC AH AK AB AG PG PH -=-+-+⋅,即PA PD PK PI PE PF PG PH ⋅=⋅+⋅+⋅.又22221()24PK PI EF KI KI ++≤≤,214PE PF EF ⋅≤,214PG PH GH ⋅≤,故224EF KI GH PA PD ++≥⋅,其中等号当且仅当P 为ABCV △的中心时取得. 3.设四边形1234A A A A 内接于以O 为圆心,半径为R 的圆,设点O 在弦13A A ,12A A ,23A A ,34A A ,41A A ,上的射影分别为点0H ,1H ,2H ,3H ,4H .记(0,1,,4)i i h OH i ==…,1S ,2S 与1p ,2p 为123A A A △与34l A A A △的面积与半周长,1r ,2r 为它们的内切圆半径.考虑含点O 的三角形,不妨设O 在123A A A △内,分别对四边形302A H OH ,110A H OH ,221A H OH ,应用托勒密定理,并注意02H H ,01H H ,12H H 是123A A A △的中位线,有1102()R r p R H H +=⋅.01121023203011102121()()(R H H R H H S h H A h H A h H A h H A h H A h +⋅+⋅+=⋅+⋅+⋅+⋅+⋅+⋅2211222003112011)()()2H A h A A h A A h A A h h h p +⋅+⋅+⋅=++⋅,故1120R r h h h +=++.考虑O 在三角形外部的情形,考虑341A A A △,对四边形140A H H O ,330A H H O ,413A H OH 应用托勒密定理,有220404033434010413()()(R r p R H H R H H R H H R H H S h H A h H A h +=⋅+⋅+⋅+⋅+=⋅-⋅+⋅0303343434433444101334021)()()()2H A h H A h H A h H A h A A h A A h A A h h h p -⋅+⋅-⋅+⋅+⋅-⋅=+-⋅,故2340R r h h h +=+-.在上述情形下,1212342r r h h h h R +=+++-.对一般情形,所求内切圆半径之和等于1h ,2h ,3h ,4h ,2R 并赋以一定的符号之和,这些符号只与点O 相对四边形1234A A A A 的位置有关.因此,这个和与对角线的选取无关.4.设圆1C 的圆心为O ,半径为r ,连i OA ,(1,2,,)i OB i n =…,在四边形112OA B B 中应用托勒密不等式,有112211112OA B B CO A B OB A B ⋅+⋅≥⋅,即1211222()r B B λr A B λr A A A B →⋅+⋅≥+),故 12111222()B B λA B λA A A B +≥+.同理,迭用托勒密不等式,有23222333()B B λA B λA A A B '+≥+;34333444()B B λA B λA A A B +⋅≥+;…; 1111()n n n n n n n B λA B λA A A B ----+⋅≥+,1111()n n n n B B λA B λA A A B +≥+.将上述几个同向不等式相加,得1223111223-11()n n n n n B B B B B B B B λA A A A A An A A -+++≥+++……+, 故21p λp ≥.由托勒密不等式中等号成立的条件是当且仅当四边形112OA B B ,223OA B B ,…,1n n OA B B ,都是圆内接四边形,由圆内接四边形性质,知2323OA A OB B ∠=∠,2132OA A OB B ∠=∠,但 2332OB B OB O ∠=∠,则2123OA A OA A ∠=∠,从而1223OA A OA A △∽△,因此1223A A A A =.同理, 23341n A A A A A A ===…,即n 边形12n A A A …为正n 边形.反之,若12n A A A …为正n 边形,将其绕点O 逆时针方向旋转2πn,知12A A →,23A A →,…,1n A A →,从而12B B →,23B B →,…,1n B B →.于是知12n B B B …也是正n 边形,因此有122312n A A A A A A r ===⋅…πsin n,12231π2sin n B B B B B B λr n ====⋅….此时有21p λp =.5.作1O ⊙,O ⊙的公共直径GMK ,其中GM 是1O ⊙的直径,GK 是O ⊙的直径,连CG 交1O ⊙于点N .显然MN KC ∥,于是CN KM CG KG =,222CN KMf CN CG CG CG CG KG=⋅=⋅=⋅,即f CG =理,d AG =e BG =ABGC 中应用托勒密定理,有b BG c CG a AG ⋅+⋅=⋅.此时两bd ce af +=. 6.首先证EF GH =,MN PQ =.由切线长定理,有()()()()AC BC BD DA AF BF BE AE -+-=-+-= ()()2AF AE BE BF EF -+-=,()()()()()AC DA BD BC CH DH DG CG CH CG -+-=-+-=-+()2DG DH GH -=,而()()()()AC B BD DA AC DA BD BC -+-=-+-,故EF GH =.同理MN PQ =. 连1O A ,1O E ,3O C ,3O G ,由BAD ∠与BCD ∠互补,知1O AE ∠与3O CG ∠互余,有13390O AE O CG CO G ∠=︒-∠=∠,即13AE CO G △∽△.于是1313AE CG O E O G R R ⋅=⋅=⋅.同理,24BM DP R R ⋅=⋅.令AE AQ a ==,BM BF b ==,CG CN c == DP DH d == EF GH m ==,MN PQ n ==.于是,AB a b m =++,CD c d m =++,BC b c n =++,DA d a n =++,()()AC AF CM a m c n =+=+++,()()BD BE DQ b m d n =+=+++.对ABCD 应用托勒密定理,有AC BD AB CD BC DA ⋅=⋅+⋅,即()()()()()()a c m n b d m n a b m c d m b c n d a n +++⋅+++=+++++++++,亦即mn ac bd =+.即证. 7.设BAN NAC a ∠=∠=,对AB ,AN ,AC 应用三弦定理,则有2cos AN αAB AC ⋅=+,因1sin ()2ABC ABL ACL S S S AL αAB AC ++=⋅⋅+△△△,则cos sin ABC AN AL αα=⋅⋅⋅△S .又在Rt ALK △中,cos AL αAK ⋅=,则sin 2ANK S ABC AN AK αS =⋅⋅=△△.又易知AK AM =,即知ANK ANM △∽△,于是12ANK ANM AKNM S S S ==△△四边形,即证.8.必要性:连OB ,OC ,知EAB △,FAC △均为等腰三角形,且2()2BPC AEP CFD BAD CAD BAC BOC ∠=∠+∠=∠+∠=∠=∠,知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB OP BC ⋅=⋅+⋅,由PB PC PO =+得OC BC =,即OBC △为正三角形,推得1302BAC BOC ∠=∠=︒.充分性:由30BAC ∠=︒,知OBC △为正三角形,且由BPC BOC ∠=∠知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB PO BC ⋅=⋅+⋅,及OC OB BC ==,即得PB PC PO =+. 9.对四边形1ACA B 应用托勒密定理,有111AA BC AB AC AC A B ⋅=⋅+⋅,令11A B AC x ==,注意112x A B ACK BC =+>,有11222()ABx AC x AA AB AC AB AC BC BC +==+⋅>+,即11()2AA AB AC >+.同理,11()2BB BA BC >+,11()2CC CA CB >+,此三式相加即证.10.令AC a =,CE b =,AE c =.对四边形ACEF 应用托勒密不等式,有AC EF CE AF AE CF ⋅+⋅≥⋅,注意EF AF =,有FA c FC a b ≥+.同理。
数学竞赛辅导托勒密定理一

托勒密定理 Ptolemy (约公元85年~165年),希腊数大天文学家,他的主要着作《天文集》被后人称为“伟大的数学书”。
托勒密定理 圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和。
已知:四边形ABCD 内接于圆,如图,求证:AB·CD+BC·AD=AC·BD证明:在∠BAD 内作∠BAE =∠CAD ,交BD 于E 。
因∠ABE=∠ACD ,所以△ABE ∽△ACD , 从而AB·CD =AC·BE ①;易证△ADE ∽△ACB ,所以BC·AD=AC·DE ②;①+②得AB·CD+BC·AD=AC·BD 。
托勒密定理的逆定理:如果凸四边形两组对边的积的和,等于两对角线的积,此四边形必内接于圆。
已知四边形ABCD 满足AB·CD+BC·AD=AC·BD , 求证:A 、B 、C 、D 四点共圆。
证明:构造相似三角形,即取点E ,使∠BCE =∠ACD ,且∠CBE =∠CAD ,则△CBE ∽△CAD 。
所以BC·AD=AC·BE ①;又CD CA CE CB =,∠BCA =∠ECD ,所以△BCA ∽△ECD 。
AB·CD =AC·DE ②;①+②得AB·CD+BC·AD=AC·(BE+DE )。
显然有BE+DE≥DB 。
于是AB·CD+BC·AD≥AC·DB 。
等号当且仅当E 在BD 上成立,结合已知条件得到此时等号成立,这时∠CBD =∠CAD ,即A 、B 、C 、D 四点共圆。
托勒密定理的推广 托罗密不等式在四边形ABCD 中, 有AB·CD+AD·BC≥AC·BD. 并且当且仅当四边形内接于圆时,等式成立。
高中数学第一章直线、多边形、圆1圆与四边形托勒密定理及逆定理的证明素材1

托勒密定理及逆定理的证明托勒密定理 :如果四边形内接于圆,那么它的两对对边的乘积之和等于它的对角线的乘积.证明:设ABCD 是圆内接四边形.在弦BC 上,圆周角∠BAC = ∠BDC , 而在AB 上,∠ADB = ∠ACB 。
在AC 上取一点K ,使得∠ABK = ∠CBD ;因为∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD ,所以∠CBK = ∠ABD 。
因此△ABK ∽△DBC ,同理也有△ABD ∽△KBC 。
因此AK/AB = CD/BD ,且CK/BC = DA/BD ; (1) 因此AK·BD = AB·CD ,且CK·BD = BC·DA; (2) 两式相加,得(AK+CK )·BD = AB·CD + BC·DA ; 但AK+CK = AC,因此AC·BD = AB·CD + BC·DA 。
证明: 设四边形ABCD 有外接圆O ,AC 和BD 相交于P,∠CPD=α(图3-107).若四边形ABCD 的四边都相等,则四边形ABCD 为圆内接菱形,即正方形,结论显然成立.若四边不全相等,不失一般性,设AB 〈AD 。
在弧AD 上取一点E ,使DE=AB,连结AE ,BE,DE ,则AE∥BD ,于是△ABD ≌△EDB ,从而AD=BE .KAB C DS 四边形ABCD =21AC ×BD ×sin α又S 四边形BCDE =21(BE ×BC+DE ×CD )sin ∠EBC而S 四边形ABCD =S 四边形BCDE ,所以21(BE ×BC+DE ×CD )sin ∠EBC=21AC ×BD ×sin α即(AD ×BC+AB ×CD )sin ∠EBC=AC ×BD ×sin α. 由于∠α=∠DAC+∠ADB=∠DBC+∠EBD=∠EBC , 所以AD ×BC+AB ×CD=AC ×BD . 托勒密定理逆定理的证明:证明:在任意四边形ABCD 中,连接AC ,取点E 使得∠1=∠2(即∠ABE=∠ACD )∠3=∠4(即∠BAE=∠CAD ,) 则△ABE ∽△ACD 所以CDBE =AC AB ,即BE·AC=AB·CD (1) 又有比例式ACAB=ADAE 得:AEAB =ADAC而∠BAC=∠1+∠EAC ,∠DAE=∠2+∠EAC 得∠BAC=∠DAE所以△ABC ∽△AED 相似.得:ED BC =AD AC即ED·AC=BC·AD (2)且∠5=∠6 (1)+(2),得AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD得:AB·CD+AD·BC≥AC·BDA BCDE12 3 456当BE+ED= BD时,点B,E,D共线此时因为∠3=∠4,∠5=∠6在△ABC中,∠1+∠2+∠EAC+∠3+∠6=180o得:∠1+∠2+∠EAC+∠4+∠5=180o即∠BAD+∠BCD=180o得此时,A,B,C,D四点共圆.(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)所以命题得证。
模型 托勒密定理(学生版)

模型介绍1.托勒密定理:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.翻译:在四边形ABCD 中,若A 、B 、C 、D 四点共圆,则AC BD AB CD AD BC ⋅=⋅+⋅.证明:在线段BD 上取点E ,使得∠BAE=∠CAD ,易证△AEB ∽△ADC ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅,当∠BAE=∠CAD 时,可得:∠BAC=∠EAD ,易证△ABC ∽△AED ,∴AD DE AC CB=,即AC DE AD BC ⋅=⋅,∴AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴AC BD AB CD AD BC ⋅=⋅+⋅.2.(托勒密不等式):对于任意凸四边形ABCD ,有AC BD AB CD AD BC⋅≤⋅+⋅证明:如图1,在平面中取点E 使得∠BAE=∠CAD ,∠ABE=∠ACD ,易证△ABE ∽△ACD ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅①,连接DE ,如图2,∵AB AE AC AD =,∴AB AC AE AD=,又∠BAC=∠BAE+∠CAE=∠DAC+∠CAE=∠DAE ,∴△ABC ∽△AED ,∴AD DE AC BC =,即AC DE AD BC ⋅=⋅②,将①+②得:AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴()AC BD AC BE DE AB CD AD BC⋅≤⋅+=⋅+⋅即AC BD AB CD AD BC ⋅≤⋅+⋅,当且仅当A 、B 、C 、D 共圆时取到等号.3.托勒密定理在中考题中的应用(1)当△ABC是等边三角形时,⋅=⋅+⋅,如图1,当点D在弧AC上时,根据托勒密定理有:DB AC AD BC AB CD=+.又等边△ABC有AB=AC=BC,故有结论:DB DA DC证明:在BD上取点E使得DE=DA,易证△AEB∽△ADC,△AED∽△ABC,利用对应边成比例,可得:DB DA DC=+.如图2,当点D在弧BC上时,结论:DA=DB+DC.【小结】虽然看似不同,但根据等边的旋转对称性,图1和图2并无区别.(2)当△ABC是等腰直角三角形,⋅=⋅+⋅,如图3,当点D在弧BC上时,根据托勒密定理:AD BC AB CD AC BD=+.又::1:1:2AB AC BC=,代入可得结论:2AD BD CD如图4,当点D在弧AC上时,根据托勒密定理:AD BC AB CD AC BD⋅=⋅+⋅,又::1:1:2BD AD CD=+.AB AC BC=,代入可得结论:2(3)当△ABC是一般三角形时,若记BC:AC:AB=a:b:c,根据托勒密定理可得:a AD b BD c CD⋅=⋅+⋅例题精讲【例1】.如图,正五边形ABCDE内接于⊙O,AB=2,则对角线BD的长为.变式训练【变式1-1】.先阅读理解:托勒密(Ptolemy古希腊天文学家)定理指出:圆内接凸四边形两组对边乘积的和等于两条对角线的乘积.即:如果四边形ABCD内接于⊙O,则有AB•CD+AD•BC=AC•BD.再请完成:(1)如图1,四边形ABCD内接于⊙O,BC是⊙O的直径,如果AB=AC=,CD=1,求AD的长.(2)在(1)的条件下,如图2,设对边BA、CD的延长线的交点为P,求PA、PD的长.【变式1-2】.如图1,已知⊙O内接四边形ABCD,求证:AC•BD=AB•CD+AD•BC.证明:如图1,在BD上取一点P,连接CP,使∠PCB=∠DCA,即使∠1=∠2.∵在⊙O中,∠3与∠4所对的弧都是,∴∠3=∠4.∴△ACD∽△BCP.∴=.∴AC•BP=AD•BC.①又∵∠2=∠1,∴∠2+∠7=∠1+∠7.即∠ACB=∠DCP.∵在⊙O中,∠5与∠6所对的弧都是,∴∠5=∠6.∴△ACB∽△DCP.…(1)任务一:请你将“托勒密定理”的证明过程补充完整;(2)任务二:如图2,已知Rt△ABC内接于⊙O,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交⊙O于点D,求CD的长.【例2】.托勒密定理:圆的内接四边形两对对边乘积的和等于两条对角线的乘积.已知:如图1,四边形ABCD内接于⊙O.求证:AB⋅DC+AD⋅BC=AC⋅BD.证明:如图2,作∠BAE=∠CAD,交BD于点E,……∴△ABE∽△ACD,∴AB•DC=AC•BE,……∴△ABC∽△AED,∴AD•BC=AC•ED,∴AB•DC+AD•BC=AC•BE+AC•ED=AC(BE+ED)=AC•BD.(1)请帮这位同学写出已知和求证,并完成证明过程;(2)如图3,已知正五边形ABCDE内接于⊙O,AB=1,求对角线BD的长.变式训练【变式2-1】.已知:如图1,四边形ABCD内接于⊙O.求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵=,∠ABE=∠ACD,∴△ABE∽△ACD,∴,∴AB•CD=AC•BE;∵=,∴∠ACB=∠ADE(依据1),∵∠BAE=∠CAD,∴∠BAC=∠EAD,∴△ABC∽△AED(依据2),∴,∴AD•BC=AC•ED;∴AB•CD+AD•BC=AC•(BE+ED),即AB•CD+BC•AD=AC•BD.(1)上述证明过程中的“依据1”是指;“依据2”是指.(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们熟知的定理.(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C是的中点,求AC的长.【变式2-2】.圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.1.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,对角线交于点O,连接AO,如果AB=4,AO=4,那么AC的长等于()A.12B.16C.4D.82.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.3.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD 所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为.4.如图,P是正方形ABCD内一点,CP=CD,AP⊥BP,则的值为.5.如图,正方形ABCD的边长是6,对角线的交点为O,点E在边CD上且CE=2,CF⊥BE,连接OF,则:(1)∠OFB°;(2)OF=.6.如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,过点D作DE⊥DF,交BA的延长线于点E,交AC的延长线于点F.若CF=,AC=4,AB=2.则AE=.7.设△ABC是正三角形,点P在△ABC外,且与点A在直线BC异侧,∠BPC=120°,求证:PA=PB+PC.8.⊙O半径为2,AB,DE为两条直线.作DC⊥AB于C,且C为AO中点,P为圆上一个动点.求2PC+PE的最小值.9.如图,点P为等边△ABC外接圆,劣弧为BC上的一点.(1)求∠BPC的度数;(2)求证:PA=PB+PC.10.如图,⊙O的直径AB的长为10,弦BD的长为6,点C为上的一点,过点B的切线EF,连接AD,CD,CB;(1)求证:∠CDB=∠CBF;(2)若点D为的中点,求CD的长.11.阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:.(请写出)(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.12.在学习了《圆》和《相似》的知识后,小明自学了一个著名定理“托勒密定理:圆内接四边形对角线的乘积等于两组对边乘积之和.”(1)下面是小明对托勒密定理的证明和应用过程,请补充完整.已知:四边形ABCD内接于⊙O.求证:AC•BD=AB•CD+AD•BC.证明:作∠CDE=∠BDA,交AC于点E,∵⊙O中,∠1=∠2,∴△ABD∽△ECD().∴.∴AB•CD=BD•EC①,.又∵∠BDA+∠3=∠CDE+∠3,即∠ADE=∠BDC,∴△DAE∽△DBC().∴.∴AD•BC=BD•AE②.,∴AB•CD+AD•BC=AC•BD.(2)利用托勒密定理解决问题:是否存在一个圆内接四边形,它的两条对角线长为5和,一组对边长为1和3,另一组对边的和为4.若存在,求出未知的两边;若不存在,说明理由.13.阅读下列相关材料,并完成相应的任务.布拉美古塔定理婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边.某数学兴趣小组的同学写出了这个定理的已知和求证.已知:如图,在圆内接四边形ABCD中,对角线AC⊥BD,垂足为P,过点P作AB的垂线分别交AB,DC于点H,M.求证:M是CD的中点任务:(1)请你完成这个定理的证明过程.(2)该数学兴趣小组的同学在该定理的基础上写出了另外一个命题:若圆内接四边形的对角线互相垂直,则一边中点与对角线交点的连线垂直于对边请判断此命题是命题.(填“真”或“假”)(3)若PD=2,HP=,BP=3,求MH的长.14.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.15.问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:PA=PB+PC.问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.16.(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是.17.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.18.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE =CD,从而得出结论:AC+BC =CD.简单应用:(1)在图①中,若AC =,BC=2,则CD=.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是或.21。
托勒密模型练习题

托勒密模型练习题托勒密模型,也称为地心模型,是古代天文学家托勒密提出的一种描述行星运动的天文模型。
根据这一模型,地球位于宇宙的中心,而其他天体则绕地球运动。
本篇文章将通过练习题的形式,帮助读者更好地理解和应用托勒密模型。
问题一:根据托勒密模型,太阳是围绕地球运动的吗?请简要解释你的答案。
答案:根据托勒密模型,太阳是围绕地球运动的。
托勒密认为地球是天体的中心,太阳、月亮和其他行星都围绕着地球运动,形成了地心宇宙的描述。
问题二:托勒密模型如何解释行星的逆行现象?请用简单的语言解释。
答案:托勒密模型认为行星在其运行轨道上沿着一个小圆周围行,这个小圆叫做“循环”。
在行星运行过程中,当地球和行星相对位置发生变化时,会产生一种视觉上的错觉,使得行星向相反的方向移动,这就是行星的逆行现象。
问题三:托勒密模型是否能够准确描述行星的运动?为什么?答案:尽管托勒密模型在其提出的时代得到了广泛应用和接受,但随着观测技术的发展和对天文现象的深入研究,发现托勒密模型不能准确描述行星的运动。
托勒密模型假设了许多天文现象,如行星的逆行等,而这些现象在实际观测中无法得到解释。
因此,随着时间的推移,人们逐渐转向了更符合实际观测数据的哥白尼和开普勒的模型。
问题四:托勒密模型对后世的天文学研究产生了哪些影响?答案:尽管托勒密模型在现代天文学中已经被更精确的模型所取代,但它作为天文学发展历史上的重要里程碑,仍然对后世的天文学研究产生了影响。
首先,托勒密模型的提出促使了人们对天体运动的研究与探索,为后来的观测数据提供了参考。
其次,托勒密模型的错误也启示人们不应固步自封,应该坚持观察实验,不断完善与更新理论。
托勒密模型的不足之处迫使开普勒和哥白尼等科学家提出了更加精确的模型,推动了天文学的发展。
问题五:简要描述哥白尼的日心模型及其对天文学的影响。
答案:哥白尼提出的日心模型指出太阳是宇宙的中心,行星绕太阳运动,而地球则是其中之一。
这一模型克服了托勒密模型中存在的一些问题。
托勒密定理 知能优化训练(答案解析) 高中数学选修4-1 北师大版

[学生用书P37~P38]1.已知四边形ABCD是圆内接四边形,则下列结论中正确的有()①如果∠A=∠C,则∠A=90°②如果∠A=∠B,则四边形ABCD是等腰梯形③∠A的外角与∠C的外角互补④∠A∶∠B∶∠C∶∠D可以是1∶2∶3∶4A.1个B.2个C.3个D.4个解析:选B.由“圆内接四边形的对角互补”可知:①相等且互补的两角必为直角;②两相等邻角的对角也相等(亦可能有∠A=∠B=∠C=∠D的特例);③互补两内角的外角也互补;④两组对角之和的份额必须相等(这里1+3≠2+4).因此得出①③正确,②④错误.2.以下各种说法中,正确的是()A.任意三角形可能有1个外接圆,也可能有2个B.在圆内部的四边形叫作圆内接四边形C.菱形一定有外接圆D.圆内接平行四边形一定是矩形如图,四边形ABCD是⊙O的内接四边形,E为AB延长线上的一点,∠CBE=40°,则∠AOC等于()A.20°B.40°C.80°D.120°解析:选C.四边形ABCD是圆内接四边形,且∠CBE=40°,由圆内接四边形性质知∠D=∠CBE=40°,又由圆周角定理知∠AOC=2∠D=80°.4.两圆相交于A、B,过A作两直线分别交两圆于C、D和E、F.若∠EAB=∠DAB,求证:CD=EF.证明:因为四边形ABEC 为圆内接四边形, 所以∠2=∠CEB .又因为∠1=∠ECB ,且∠1=∠2, 所以∠CEB =∠ECB . 所以BC =BE .在△CBD 与△EBF 中,∠BCD =∠BEF ,∠D =∠F ,BC =BE , 所以△CBD ≌△EBF . 所以CD =EF .5.如图,ABCD 是⊙O 的内接四边形,延长BC 到E ,已知∠BCD ∶∠ECD =3∶2,那么∠BOD 等于( )A .120°B .136°C .144°D .150° 解析:选C.∵∠BCD ∶∠ECD =3∶2, ∴∠ECD =72°,∴∠BOD =2∠A =2∠ECD =144°. 6.下列说法正确的个数为( )①平行四边形内接于圆;②梯形内接于圆;③菱形内接于圆;④矩形内接于圆;⑤正方形内接于圆. A .1 B .2 C .3 D .4解析:选B.根据圆内接四边形的判定定理知,④⑤正确.7.如图所示,四边形ABCD 内接于⊙O ,AD ∶BC =1∶2,AB =35,PD =40,则过点P 的⊙O 的切线长是( )A .60B .40 2C .35 2D .50解析:选A.由圆内接四边形的性质定理,可得△P AD 与△PBC 相似. ∴AD BC =PD PB ,即40P A +35=12,解得P A =45.若设过点P 的⊙O 的切线长为x ,则x 2=P A ·PB =45×80,∴x =60,故选A. 8.如图,四边形ABCD 内接于⊙O ,∠BOD =80°,则∠BCD 等于( )A .80°B .100°C .140°D .160° 解析:选C.∵∠BOD =80°,∴∠A =40°. ∵四边形ABCD 是圆内接四边形, ∴∠A +∠BCD =180°, ∴∠BCD =140°. 9.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB =20°,则∠ACB ,∠DBC 分别为( ) A .15°与30° B .20°与35° C .20°与40° D .30°与35° 答案:B 10.若圆内接四边形中3个相邻的内角比是5∶6∶4,则这个四边形中最大的内角为______,最小的内角为______.解析:不妨设该四边形的四个内角分别为∠A =5α,∠B =6α,∠C =4α,∠D =β,根据圆内接四边形的性质定理,得 ⎩⎪⎨⎪⎧ ∠A +∠C =180°,∠B +∠D =180°,即⎩⎪⎨⎪⎧5α+4α=180°,6α+β=180°. 解得β=60°,∴该四边形的最大的内角是∠B =120°,最小的内角是∠D =60°. 答案:120° 60°11.如图,四边形ABCD 是圆O 的内接四边形,延长AB 与DC 相交于点P .若PB =1,PD=3,则BCAD的值为____.解析:由割线定理,得PB ·P A =PC ·PD ,即P A =3PC .所以PC P A =13.因为四边形ABCD 是圆O的内接四边形,所以∠PBC =∠D . 又∠P =∠P ,所以△PBC ∽△PDA .所以BC AD =PC P A =13.答案:1312.如图,已知四边形ABCD 内接于圆,延长AB 和DC 相交于E ,EG 平分∠BEC ,且与BC 、AD 分别相交于F 、G .求证:∠CFG =∠DGF .证明:因为四边形ABCD 是圆内接四边形,所以∠ECF =∠EAG . 又因为EG 平分∠BEC , 即∠CEF =∠AEG ,所以△EFC ∽△EGA .所以∠EFC =∠EGA .。
托勒密定理题目

托勒密定理题目摘要:1.托勒密定理的背景和起源2.托勒密定理的定义和表述3.托勒密定理的证明方法4.托勒密定理的应用领域5.托勒密定理的历史意义和影响正文:1.托勒密定理的背景和起源托勒密定理,是数学史上著名的几何定理之一,起源于古希腊时期。
它的名字来源于古希腊著名天文学家、地理学家和数学家托勒密(Ptolemy),他在其著作《天文学大成》中阐述了这一定理。
托勒密定理是数学史上第一个被证明的关于三角形的定理,对后世的数学研究产生了深远的影响。
2.托勒密定理的定义和表述托勒密定理的表述如下:在三角形中,任意一边所对的角大于其邻边所对的角。
用数学符号表示就是:对于三角形ABC,如果角A、B、C 所对的边分别是a、b、c,那么有角A 所对的边a 大于角B 所对的边b,角B 所对的边b 大于角C 所对的边c,即a > b > c。
3.托勒密定理的证明方法托勒密定理的证明方法有多种,其中比较常见的方法是利用平行线和相似三角形。
首先,通过作图将三角形ABC 转化为两个相似三角形,然后利用相似三角形的性质,证明角A 所对的边a 大于角B 所对的边b,角B 所对的边b 大于角C 所对的边c。
4.托勒密定理的应用领域托勒密定理在数学领域具有广泛的应用,尤其是在几何学、三角形学以及相关领域的研究中。
此外,托勒密定理在实际生活中的应用也相当广泛,如在测量、航海、建筑等领域,都需要运用到托勒密定理来解决实际问题。
5.托勒密定理的历史意义和影响托勒密定理是数学史上的重要里程碑,它的发现和证明对后世数学研究产生了深远的影响。
托勒密定理的发现,使得人们对三角形的认识更加深入,为三角形学的发展奠定了基础。
第8讲 托勒密定理(学生版)

例题1
托勒密定理:四边形
内接于圆 ,求证:
.
习题1
如图,由⊙ 的 的中点 引弦 、 ,分别与 相交于 、 ,求证: .
习题2
如图, 、 切 于 、 .直线 交 于 、 .求证:
.
例题2
如图,已知 为正
外接圆的 上一点,求证:
.
习题3
如图,在
中, 的平分线交外接圆于 ,连结 ,求证:
, 为 上的一点,求证:
.
习题7
已知:正五边形
的边长为 (如图),求对角线长 .
习题8
如图,设圆内接四边形
的边 为圆的直径,其余三边为 、 、 ,求证:这圆的直径是方程 的根.
习题9
如图,过 的圆截平行四边形
的边和对角线分别于 , , ,求证:
.
例题6
若 、 、 、 是正实数,且
,
.求证:
.
习题10
.
习题4
已知 为正方形
的外接圆的 上的一点,求证:
例题3
为定值.
等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形
,
,Hale Waihona Puke ,求证:.习题5
已知等腰梯形 .
的中位线长是 ,腰长等于 ,对角线长为 ,则梯形的两底长分别是
例题4
在
中,已知
,求证:
.
习题6
设
是圆内接正七边形,求证:
.
例题5
如图,已知圆的内接正五边形
证明“勾股定理”:在
中,
,求证:
例题7
如图,凸四边形
中,
,
交于点 ,求
.
.
,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《托勒密定理及其应用》 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).
即:;内接于圆,则有:
设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅
;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD
AC BC AD CD AB ABCD ⋅≥⋅+⋅
一、直接应用托勒密定理
例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC .
四点共圆时成立;
、、、上时成立,即当且仅当在且等号当且仅当相似
和且又相似
和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE
AC AB BE
AC CD AB CD BE AC AB ACD ABE ACD
ABE CAD BAE E ABCD ⋅≥⋅+⋅∴+⋅=⋅+⋅∴⋅
=⋅⇒=∴∆∆∴∠=∠=⋅=⋅⇒=∴∆∆∠=∠∠=∠)( E
D
C
B A
二、完善图形借助托勒密定理
例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2
例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).
三、构造图形借助托勒密定理
例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.
四、巧变原式妙构图形,借助托勒密定理
例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.
五、巧变形妙引线借肋托勒密定理
例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,
练习:
1.已知△ABC 中,∠B=2∠C 。
求证:AC 2=AB 2+AB ·BC 。
2. 已知正七边形A 1A 2A 3A 4A 5A 6A 7。
求证: 。
(第21届全苏数学竞赛)
PM
AB PL AC PK BC PN PL PK AB AC BC P BC ABC +=∆求证:,和、作垂线与、分别向边上一点外接圆的弧由.3。