差动和集成运放
电工技术 第二章 集成运算放大器及其应用

IC
β
U O = U C1 − U C2 = 0
总目录 章目录 返回 上一页 下一页
二. 差动放大电路工作原理 1. 差模信号
+VCC
ui1=-ui2 =ui/2 若ui1 ↑,ui2 ↓ → ib1 ↑,ib2 ↓ →ie1 ↑,ie2 ↓
+
R Rc c
T1 u i1 + ui1
u ++uo ouo1 -uo1 - E IRe
33 MHz
第一节 直接耦合
直接耦合:将前级的输出端直接接后级的输入端。 直接耦合:将前级的输出端直接接后级的输入端。 可用来放大缓慢变化的信号或直流量变化的信号。 可用来放大缓慢变化的信号或直流量变化的信号。 +UCC R1 R2 + ui – T1 RC1 RC2 + T2 RE2 uo –
总目录 章目录 返回 上一页 下一页
Rb1=Rb2= Rb
几个基本概念
差动放大电路一般有两个输入端: 1. 差动放大电路一般有两个输入端: 双端输入——从两输入端同时加信号。 从两输入端同时加信号。 双端输入 从两输入端同时加信号 单端输入——仅从一个输入端对地加信号。 仅从一个输入端对地加信号。 单端输入 仅从一个输入端对地加信号 2. 差动放大电路可 以有两个输出端。 以有两个输出端。 双端输出——从C1 从 双端输出 输出。 和C2输出。 单端输出——从C1或 从 单端输出 C2 对地输出。 对地输出。
I Re − 0.7V − ( −VEE ) = Re
T1 + ui1 -
+ uo
-
uo2 -
+
T2 + ui2 -
EE 1 I C1 =I C2 = I C ≅ I Re 2 U CE1 = U CE2 = U C − U E = VCC − I C R C − ( − 0.7)
集成运放的分类与特点

模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。
最早的工艺是采用硅NPN 工艺,后来改进为硅NPN-PNP 工艺。
在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。
当MOS 管技术成熟后,特别是CMOS 技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。
经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。
按照集成运算放大器的功能和性能来分,集成运算放大器可分为如下几类。
1、通用型运算放大器通用型运算放大器实际就是具有最基本功能的最廉价的运放,是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
目前对通用型的定义还不十分明确,此型的性能尚没有明确的标准。
可以大致认为,在不要求有突出参数指标情况下使用的运放就称之为通用型。
但是,由于运放的整体性能普遍提高,通用型的标准也有相对上浮趋势。
即过去的某些高性能运放,现在可能就变成了通用型。
根据实际参数指标,目前下列运放被划分为通用型:单运放系列中的uA709、uA741、MC1456、LM301A 、LF351、TL081等;双运放系列中的LM358、RC4558、MC1458、LF353、TL082等;四运放系列中的LM324、MC3403、LF347、TL084等。
通用型运算放大器因为其自己身的特点,应用面很广。
主要应用在技术要求适中的地方,以能满足工作要用,经济又实用为准。
通用型集成运放适用于放大低频信号。
在实际选用时,应尽量选用通用型运算放大器,因为它们容易购得且性价比高。
但其缺点是不能满足一点技术指标要求高的产品应用,不能满足一些特殊的技术服务只有通用型不能满足要求时,才能选用专用型,这样即可降低成本,又容易保证货源。
在通用型运放中,741A μ(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356等是目前应用最为广泛的集成运算放大器。
集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法集成运放的性能可用一些参数来表示。
集成运放的主要参数:1.开环特性参数(1)开环电压放大倍数Ao。
在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。
Ao越高越稳定,所构成运算放大电路的运算精度也越高。
(2)差分输入电阻Ri。
差分输入电阻Ri是运算放大器的主要技术指标之一。
它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。
一般为10k~3M,高的可达1000M以上。
在大多数情况下,总希望集成运放的开环输入电阻大一些好。
(3)输出电阻Ro。
在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。
它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。
(4)共模输入电阻Ric。
开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。
(5)开环频率特性。
开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。
2.输入失调特性由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。
通常用以下参数表示。
(1)输入失调电压Vos。
在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即:Vos=Vo0/Ao失调电压的大小反映了差动输入级元件的失配程度。
当集成运放的输入端外接电阻比较小时。
失调电压及其漂移是引起运算误差的主要原因之一。
Vos一般在mV级,显然它越小越好。
(2)输入失调电流Ios。
在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。
即:Ios=Ib- — Ib+式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。
集成运放工作原理

集成运放工作原理
集成运放是一种高增益放大器,常用于电子电路中以满足各种信号条件和应用要求。
它是由许多晶体管、电阻、电容等电子元件组成的集成电路。
集成运放可以实现放大、滤波、求和、差分运算等功能。
集成运放的工作原理如下:
1. 差动输入:集成运放具有两个输入端,分别为非反相输入端(+IN)和反相输入端(-IN)。
当+IN输入端的电压高于-IN
输入端时,输出电压将增大;反之,它将减小。
这种输入方式称为差动输入。
2. 开环放大:集成运放在没有反馈的情况下,具有极高的开环增益。
开环增益是指输出电压与输入电压之间的比例关系。
开环放大可以使输入信号经过放大后得到较大的输出信号。
3. 反馈机制:通过将输出信号与输入信号的某个比例连接起来,构成反馈回路,可以实现对集成运放的控制。
反馈可以分为正反馈和负反馈两种形式。
负反馈是最常用的一种形式,可以降低开环增益,并提高放大器的稳定性和线性度。
4. 输出电阻:集成运放的输出电阻很小,可以近似认为是零,因此可以驱动较大的负载电阻。
5. 输入阻抗:集成运放的输入阻抗很大,接近无穷大,可以认为输入电流接近于零。
6. 反向饱和保护:集成运放具有反向饱和保护功能,当输出电压超出一定范围时,集成运放将自动调整电路以避免损坏。
通过以上工作原理,集成运放可以实现各种信号处理任务,例如放大弱信号、滤波去噪、比较、求和等。
同时,集成运放还具有很高的稳定性、精确性和可靠性,广泛应用于各种电子设备和系统中。
电工与电子技术第三章 集成运算放大器及其应用

各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2
集成运算放大器

A/D转换方法
– 计数法 速度慢 – 双积分式A/D转换器 精度高、干扰小 速度慢 – 逐次逼近式A/D转换器 原理同计数式相似,只是从最高位开始,通过试探值来计数。
例1:ADC0804 (8位,100us,转换精度 ±1LSB,内带可控三态门)。
例2:ADC570 (输入电压:0~10V 或 -5V~+5V)
例3. 8位以上A/D转换器和系统连接。 ADC1210:12位,100us,启动端SC,结束转换CC。
例4. ADC0809: 逐次逼近式8通道8位ADC。
同时有模拟电路和数字电路的系统中地 线的连接
模拟电路 ADC DAC 数字电路
模拟电路 AGND
数字电路 DGND
模拟地
公共接地点
if RF
R1 R2
R3 RP
- +
u0
ui 1 ui 2 ui 3 uo R1 R2 R3 Rf 可得: uo R f ( ui 1 ui 2 ui 3 ) R1 R2 R3 若R1=R2=R3=R,则 u R f ( u u u ) o i1 i2 i3 R
集成运算放大器
1.集成运算放大器概述
集成运算放大器是一种高电压增益、高输入电阻和低输出 电阻的多级直接耦合放大电路,一般由四部分组成:
输入级:一般是差动放大 器,利用其对称特性可以 提高整个电路的共模抑制 比和电路性能,输入级有 反相输入端“-”、同相 输入端“+”两个输入端; 中间级:的主要作用是
3、差动比例运算电路
R1=R2,R’=RF Uo=-RF/R1(Ui1-Ui2)
差动比例运算电路 又称减法运算电路
第4章 差动放大电路与集成运算放大器

id
图3-3 差动放大电路的输入方式
共模信号 与差模信号
Ui1 Ui2
线性放 大电路
Uo
1 共模信号输入电压: U ic (U i1 U i 2 ) 2
差模信号输入电压:U
id
(U i1 U i 2 )
差模信号:是指在两个输入端加幅度相等, 极性相反的信号。
共模信号 :是指在两个输入端加幅度相等, 极性相同的信号。
在放大器的两个输入端分别输入大小相等、 极性相同的信号,即 ui1 ui 2 时,这种输入方 式称为共模输入,所输入的信号称为共模 (输入)信号。共模输入信号常用 uic 来表 示,即 uic ui1 ui 2 。在放大器的两个输入端 分别输入大小相等、极性相反的信号,即 时这种输入方式为差模输入,所输 入的信号称为差模输入信号。差模输入信 号常用 u 来表示,即 ui1 uid / 2 ui 2 uid / 2
输入信号种类
ui1 = ui2 共模输入
(common mode)
uC ud
ui1 = -ui2 差模输入
(differential mode) 任意输入ui1, ui2(既非差模又非共模)
3.2 相关的理论知识
(2)共模输入
如图3-3(a)所示为共模输入方式,由图中可以看出,当差动放大器输 入共模信号时,由于电路对称,两管的集电极电位变化相同,因而输出 电压 u oc 恒为零。
Rod 2RC
5.共模抑制比 如果温度变化,两个差放管的电流将按相同的方向一起增大或减小,相当于给放大电路 加上一对共模输入信号。所以差模输入信号反映了要放大的有效信号,而共模输入信号 可以反映由温度等原因而产生的漂移信号或其它干扰信号。通常希望差分放大电路的差 模电压放大倍数愈大愈好,而共模电压放大倍数愈小愈好。 共模抑制比反映了差分放大电路放大差模信号、抑制零漂和共模信号的能力。
第三章 差动放大电路及集成运放电路1

上一页 下一页 返回
3.2 差分放大电路
是晶体管的电流放大倍数。 其中β是晶体管的电流放大倍数。 从上可知,静态时,每个管子的发射极电路中相当于接入了2R 从上可知,静态时,每个管子的发射极电路中相当于接入了2RE 的电阻,这样每个晶体管的工作点稳定性都得到提高。 的电阻,这样每个晶体管的工作点稳定性都得到提高。VEE的作用是 补偿R 上的直流压降,使得晶体管有合适的工作点。 补偿RE上的直流压降,使得晶体管有合适的工作点。
这时差模电压放大倍数变为差模信号输入时从差分放大电路的两个输入端看进去所呈现的等效电阻称为差分放大电路的差模输入电阻由图34可得下一页返回上一页差分放大电路两管集电极之间对差模信号所呈现的等效电阻称为差分放大电路的差模输出电阻由图34可得2ro12r在放大器两输入端分别输入大小相等相位相同的信号即ui1i2时这种输入方式称为共模输入所输入的信号称为共模输入信号
u ic =u i1 =u i 2
上一页 下一页 返回
3.2 差分放大电路
图3-5所示电路在共模信号的作用下,V1管和V2管相应电量的变 所示电路在共模信号的作用下, 管和V 化完全相同,显然, =0, 化完全相同,显然,共模输出电压uo=uo1-uo2=0,则共模电压放大 倍数
Auc = 0
发射极电阻R 对共模信号具有很强的抑制能力。 发射极电阻RE对共模信号具有很强的抑制能力。当共模信号使
ro=2Ro1=2Rc
2.共模输入动态分析 在放大器两输入端分别输入大小相等、相位相同的信号, 在放大器两输入端分别输入大小相等、相位相同的信号,即ui1 这种输入方式称为共模输入, =ui2时,这种输入方式称为共模输入,所输入的信号称为共模输入 信号。 来表示。共模输入电路如图 所示。 信号。共模输入信号用uic来表示。共模输入电路如图3-5所示。由 图3-5可得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章直流放大器和集成运算放大器
[本章知识点]
1了解直流放大器的组成特点以及解决级间电位配合与零点漂移的两个问题的主要措施
2理解基本差动放大器的组成与抑制零点漂移的工作原理
3理解差模电压放大倍数共模电压放大倍数和共模抑制比的概念并掌握它们的计算方法
4掌握基本差动放大电路静态工作点的计算方法
5了解差动放大电路的四中连接方式
6熟悉集成运放的开环放大倍数和闭环放大倍数
7掌握理想集成运算放大器的两个重要特点
8掌握集成运算放大器作为比例运算同相反相加法减法以及反相器电压跟随器的简单运用
[题库]
一是非题对的画错的画
1直流放大器是放大直流信号的它不能放大交流信号
2一个理想的差动放大电路只能放大差模信号不能放大共模信号
3所谓共模输入信号是指加在差动式放大器的两个输入端的电压之和
4差动放大器有单端输出和双端输出两大类它们的差模电压放大倍数是相等的
5差动放大器有四种接法而放大器的差模放大倍数只取决于输入端的接法而与输出端的接法无关
6一个完全对称的差动式放大器其共模放大倍数为零
7共模抑制比越大差动放大电路抑制零点漂移的能力越强
9反相比例运算电路中引入一个负反馈同相比例运算放大电路中引入一个正反馈
二选择题
1直流放大器的功能是
A只能放大直流信号B只能放大交流信号C直流和交流信号都能放大2集成运放内部的耦合方式是
A直接耦合B阻容耦合C变压器耦合
3一个性能良好的差动放大器应
A A VD等于A VC
B A VD大而A VC小
C A VD小而A VC大
4引起直流放大器零点漂移的因素很多其中最难控制的是
A半导体参数的变化B电路中电容和电阻数值的变化C电源电压的变化5差动放大器抑制零点漂移的效果取决于
A两个三极管的放大倍数B两个三极管的对称程度
C每个三极管的穿透电流的大小
6集成运放内部电路第一级多采用
A 共发射极电路
B 差动放大器
C 射极输出器 7差动放大电路输入和输出端有
钟接法 A 4 B 2 C 5 8
单端输出差动放大电路的差模电压放大倍数应是
A 与单管共射放大电路的电压放大倍数相等
B 单管共射放大电路的电压放大倍数的一半
C 与双端输出差动放大电路的电压放大倍数相等
三填空题 1用来放大
的放大器称为直流放大器 2直接耦合放大电路存在两个问题一是 二是
3直流放大器中输入信号为零时输出电压仍然无规则的涨落的现象称为
4为了有效的抑制零点漂移多级直流放大器的第一级均采用
电路 5在差动放大电路中大小相等极性或相位一致的两个输入信号称为
信号 6已知某差动放大电路的A VD
=100K CMR =60dB 则A VC =
7理想情况下集成运算放大器的各项技术指标为Av= Ri=
Ro= K CMR =
8线性集成运放的两个基本特点是1
2
四
计算题 1电路如图1所示已知 = =50V BE =0.7V, r be =2K
. (1)估算静态电流;
(2) 估算双端输出时的Avd.
3k
5.1k -9v
图1
2电路如图2所示已知差模电压放大倍数Avd=80dB Vi1=3.001V, Vi2=2.999v.
试问:(1)K CMR =时, Vo= ?
(2) K CMR=100 dB V o= ?
图2
3图3所示电路中求V o=
15k
o 15k
图3
4图4所示电路中已知R1=10K
Rf=50k
计算1闭环电压放大倍数 2若Vi= 1v 则Vo=
o
5
图5所示电路中Rf=2R1Vi= 2v 则V o=
6图6
所示电路中设运放为理想的电压表满量程为2v 内阻为2k
Rx 为被
测电阻
1 试证明Vo 与Rx 成正比Vo 为电压表读数
2 计算当Rx 的测量范围为0~10k 时电阻R1的值为多少。