2014-2015学年高中数学选修2-1椭圆及其标准方程以及椭圆简单几何性质导学案

合集下载

【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:2.2.1 椭圆及其标准方程]

【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:2.2.1 椭圆及其标准方程]

第二章 2.2 第1课时一、选择题1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段[答案] D[解析] ∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( )A .5B .3或8C .3或5D .20[答案] C[解析] 2c =2,c =1,故有m -4=1或4-m =1, ∴m =5或m =3,故选C.3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( ) A .(±a -b ,0) B .(±b -a ,0) C .(0,±a -b ) D .(0,±b -a )[答案] D[解析] ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).4.(2014·长春市高二期末调研)中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1 B .x 281+y 29=1C.x 281+y 272=1 D .x 281+y 236=1[答案] C[解析] 由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C.5.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .95B .3C .977D .94[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7. ∵△PF 1F 2为直角三角形.且b =3>7=c . ∴F 1或F 2为直角三角形的直角顶点, ∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.6.(2014·洛阳市期末)已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1 B .x 2+y 216=1C.x 220+y 25=1 D .x 25+y 220=1[答案] C[解析] 由椭圆过点(2,2),排除A 、B 、D ,选C. 二、填空题7.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.[答案] x 24+y 23=1[解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3,a -c =1.∴⎩⎪⎨⎪⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.8.如图所示,F1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________.[答案] 2 3[解析] 由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4.∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,解得b 2=2 3. 三、解答题9.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,解得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1. 当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1. 故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1.10.已知点A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,∴|P A |+|PF |=2,且|P A |+|PF |>|AF |, ∴动点P 的轨迹是以A 、F 为焦点的椭圆, ∴a =1,c =12,b 2=34.∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1.一、选择题11.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m <2B .1<m <2C .m <-1或1<m <2D .m <-1或1<m <32[答案] D[解析] 由题意得⎩⎪⎨⎪⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.[点评] 解答本题应注意,方程表示椭圆,分母应取正值,焦点在y 轴上,含y 2项的分母较大,二者缺一不可.12.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B .y 225+x 29=1(y ≠0)C.x 216+y 29=1(y ≠0) D .x 225+y 29=1(y ≠0)[答案] D[解析] ∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.13.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .射线D .直线[答案] A[解析] ∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a , ∴|PQ |+|PF 1|=2a , 又∵F 1、P 、Q 三点共线, ∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a . 即Q 在以F 1为圆心,以2a 为半径的圆上.14.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B的值是( )A. 3 B .2 C .2 3 D .4[答案] A[解析] 由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A.二、填空题15.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.[答案] x 24+y 23=1[解析] 由题意得2|F 1F 2|=|PF 1|+|PF 2|, ∴4c =2a ,∵c =1,∴a =2. ∴b 2=a 2-c 2=3, 故椭圆方程为x 24+y 23=1.16.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.[答案] 35[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+12(|P 4F |+|P 4F ′|)=7a =35.[点评] 对椭圆的定义要正确理解、熟练运用,解决与焦点有关的问题时,要结合图形看能否运用定义.三、解答题17.(2013·四川省绵阳中学月考)求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)a c =,且椭圆上一点到两焦点的距离的和为26.[解析] (1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,2a =32+(2+2)2+32+(2-2)2=8,所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.(2)由题意知,2a =26,即a =13,又a c =135,所以c =5,所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.[点评] 用待定系数法求椭圆的标准方程时,要首先进行“定位”,即确定焦点的位置;其次是进行“定量”,即求a 、b 的大小,a 、b 、c 满足的关系有:①a 2=b 2+c 2;②a >b >0;③a >c >0.若不能确定焦点的位置,可进行分类讨论或设为mx 2+ny 2=1(m >0,n >0)的形式. 18.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.[解析] 设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433.。

椭圆及其标准方程(选修2-1)

椭圆及其标准方程(选修2-1)
0
几点说明: F F 1、F1、F2是两个不同的定点; 2、M是椭圆上任意一点,且|MF1| + |MF2| = 常数; 3、通常这个常数记为2a,焦距记为2c,且2a>2c>0; 4、如果2a = 2c,则M点的轨迹是线段F1F2.
1
2
5、如果2a < 2c,则M点的轨迹不存在.(由三角形的性质知)
X

x
2
1
25
16
例7:动点P到两定点F1(-4,0),F2(4,0)的距离 之和为8,则动点P的轨迹为---------( B )
A.椭圆
B.线段F1F2
C.直线F1F2
D.不能确定
练习: 平面内两个定点的距离是8,写出到这两个
定点距离之和是10的点的轨迹方程 解: 这个轨迹是一个椭圆。两个定点是焦点,用F1、 F2表示,取过点F1、F2的直线为x轴,线段F1F2 的垂直平分线为y轴,建立直角坐标系. 2a=10,2c=8, a=5,c=4. b2=a2-c2=52-42=25-16=9,即b=3. 因此这个椭圆的标准方程是:
y a
2 2

x b
2 2
1( a b 0 )
椭圆的标准方程的再认识:
(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1
(2)椭圆的标准方程中三个参数a、b、c满足a2=b2+c2。 (3)由椭圆的标准方程可以求出三个参数a、b、c的值。
快速练习:判定下列椭圆的焦点在那条坐标 轴上?并指出焦点坐标。
x 5
2 2

y 3
2 2
1

x
2

y 9
2
1
25

2014-2015学年人教A版选修2-1高中数学《2.2.1椭圆及其标准方程》课堂达标

2014-2015学年人教A版选修2-1高中数学《2.2.1椭圆及其标准方程》课堂达标

课堂达标·效果检测1.a=6,c=1的椭圆的标准方程是( )A.+=1B.+=1C.+=1D.以上都不对【解析】选D.由a=6,c=1,所以b2=a2-c2=35,当焦点在x轴上时,方程为+=1;当焦点在y轴上时,方程为+=1.2.已知椭圆+=1上一点P到椭圆一个焦点的距离为3,则P到另一个焦点的距离为( )A.2B.3C.5D.7【解析】选D.由方程知a=5,因为|PF1|+|PF2|=2a=10,所以P到另一个焦点距离为7.3.(2014·南阳高二检测)如图,P是椭圆+=1在第一象限上的动点,F1,F2是椭圆的焦点,M是∠F1PF2的平分线上的一点,且·=0,则|OM|的取值范围是.【解析】延长F2M交PF1于点N,由已知条件可知|OM|=|NF1|=(|PF1|-|PF2|)= a-|PF2|,而a-c<|PF2|<a,所以|OM|∈(0,c),即|OM|∈(0,3).答案:(0,3)4.如图所示,F1,F2是椭圆+=1的两个焦点,P是椭圆上任一点,且∠F1PF2=,求△F1PF2的面积.【解析】设|PF1|=m,|PF2|=n,由椭圆的定义知:|PF1|+|PF2|=2a=m+n,由椭圆的方程易求2a=20.所以m+n=20,又b=8,所以c=6.在△F1PF2中,由余弦定理得m2+n2-2mncos=|F2F1|2=122,即m2+n2-mn=144,所以(m+n)2-3mn=144,202-3mn=144,所以mn=.所以=|PF1|·|PF2|·sin60°=××=.。

选修2-1教案2.2.1椭圆及其标准方程、几何性质

选修2-1教案2.2.1椭圆及其标准方程、几何性质

2.2.1圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程 教学难点:椭圆标准方程的推导 教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数. 二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b ac =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b+=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -.通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==(教师引导——学生回答) 例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=. 2. 作业:40P 第2题.2.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程. 求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为2的动点的轨迹方程. (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形. 方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,()()()()1212,0,,0,,0,,0A a A aB b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比c a 称为离心率.记ce a=. 可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹.(教师分析——示范书写)三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程.⑴经过点()(,P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.。

高二数学选修2-1 第三章 第1节 椭圆北师大版(理)知识精讲

高二数学选修2-1 第三章 第1节 椭圆北师大版(理)知识精讲

高二数学选修2-1 第三章 第1节 椭圆北师大版(理)【本讲教育信息】一、教学内容:选修2—1 椭圆的标准方程及其几何性质二、教学目标:1、熟练地掌握椭圆的定义及标准方程的形式,能根据已知条件求出椭圆的标准方程。

2、掌握椭圆简单的几何性质,理解椭圆的准线、离心率、焦点,定义椭圆的方法及椭圆的参数方程的应用。

3、理解用方程的思想、函数的思想、数与形结合、分类讨论的思想及参数法、待定系数法等数学思想方法解决椭圆的有关问题。

三、知识要点分析: (一)椭圆的基本概念1、椭圆的第一定义:平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的集合叫椭圆。

点集M={P| |PF 1|+|PF 2|=2a>|F 1F 2|}(1)到两个定点F 1,F 2的距离之和等于|F 1F 2|的点的集合是线段F 1F 2. (2)到两个定点F 1,F 2的距离之和小于|F 1F 2|的点的集合是空集。

椭圆的第二定义:平面内一动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数e 的点的集合叫椭圆。

点集M={P |}1e 0,e d|PF |<<= 2、椭圆的标准方程:)0(,12222>>=+b a b y a x (焦点在x 轴上),22221c b a ).0,c (F ),0,c (F =-- )0(,12222>>=+b a ay b x (焦点在y 轴上),22221c b a ).c ,0(F ),c ,0(F =-- 3、点),(00y x P 与椭圆)0b a (1by a x 2222>>=+的位置关系。

点1by a x )0b a (1b y a x )y ,x (P 220220222200<+⇔>>=+内部在椭圆点1by ax )0b a (1by ax )y ,x (P 22022222200=+⇔>>=+上在椭圆点1b y a x )0b a (1b y a x )y ,x (P 220220222200>+⇔>>=+外部在椭圆4、椭圆的参数方程:椭圆12222=+b y a x 上任意一点P (x ,y ),则R b y a x ∈⎩⎨⎧==θθθ,sin cos(二)椭圆的几何性质:焦点在x 轴上焦点在y 轴上图形性质X 围 |x|≤a ,|y|≤b|x|≤b ,|y|≤a对称性关于x 轴、y 轴、坐标原点对称 顶点A 1(-a ,0) A 2(a ,0)B 1(0,-b ) B 2(0,b ) A 1(0,-a ) A 2(0,a ) B 1(-b ,0) B 2(b ,0)离心率离心率e=ac,0<e<1,(焦距与长轴的比)(对椭圆定型) 准线 x=ca 2±y=ca 2±焦点半径公式|0201||,|ex a PF ex a PF -=+=|0201||,|ey a PF ey a PF -=+=注:1、在确定椭圆的标准方程时若不能确定焦点的位置,可进行讨论焦点:在x 轴上、y 轴上的两种情形或把所求的椭圆标准方程设为:),0,0(,122B A B A By Ax ≠>>=+ .2、与椭圆)0(,12222>>=+b a b y a x 共焦点的椭圆可设为:kb y k a x +++2222=1,(a>b>0)3、椭圆上任意一点P 到焦点F 的距离的最大值是|PF|=a+c ,最小值是|PF|=a -c .4、椭圆上任意一点P 到两焦点的距离之积的最大值是a 2,此时P 点与椭圆的短轴的两端点重合5、注意利用平面几何知识解决椭圆问题。

高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义

高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义

当 PF1 PF 2 2a F1F 2 时, P 的轨迹为 以 F1、F2 为端点的线段
2.椭圆的方程与几何性质:
标准方程
x2 y 2 1(a b 0) a2 b2
参数关系

焦点
(c,0), (c,0)

焦距
范围
| x | a,| y | b
a2 b2 c2 2c
y2 a2
x2 b2
举一反三:【变式 1】两焦点的坐标分别为 0,4,0,- 4,且椭圆经过点(5,0)。
【变式 2】已知一椭圆的对称轴为坐标轴且与椭圆 x 2 y 2 1有相同的焦点,并且经过点(3, 94
-2),求此椭圆的方程。
2
类型三:求椭圆的离心率或离心率的取值范围 例 3.椭圆 x 2 y 2 1(a>b>0)的半焦距为 c,若直线 y=2x 与椭圆的一个交点的横坐标为 c,求 a2 b2
(Ⅰ)求以 A、B 为焦点,且过 C、D 两点的椭圆的标准方程;
5:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线 l : y kx b 与圆锥曲线相交与 A 、 B 两点, A(x1, y1), B(x2 , y2 ) 则
弦长 AB (x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 (kx1 kx2 )2 1 k 2 x1 x2
5
举一反三【变式 1】已知直线 l:y=2x+m 与椭圆 C: x2 y2 1 交于 A、B 两点 54
(1) 求 m 的取值范围
(2) 若|AB|= 5 15 ,求 m 的值 6
例 9、已知椭圆 C: x2 y2 1 ,直线 l:y=kx+1,与 C 交于 AB 两点,k 为何值时,OA⊥OB. 4

选修2-1:椭圆及其标准方程(一)教案案

选修2-1:椭圆及其标准方程(一)教案案

一、教案背景1、面向学生:高中学科:高二数学2、课时:1课时3、学生课前准备:(1)预习课本,思考:椭圆的定义及标准方程及其推导方法.(2)思考:椭圆定义中应该注意那些.(3)思考:标准方程是如何推导的.二、教学课题:《椭圆及其标准方程》第一课时1、理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程的推导及椭圆的标准方程;2、进一步学习类比、数形结合的数学思想方法,理解坐标法及其应用.3、重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简三、教材分析1、本节教材整体来看是两大块内容:意识椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把用坐标法对椭圆的研究放在了重点位置上.学好椭圆对于学生学好圆锥曲线是非常重要的.2、这节课的重点是椭圆的定义、椭圆的标准方程、坐标化的基本思想;难点是椭圆标准方程的推导与化简,坐标法的应用;标准方程推导的关键是含有两个根式的等式化简.四、教学方法1、用模型结合多媒体课件演示椭圆,再给出椭圆的定义,最后加以强调,加强概念的形成过程教学.2、对椭圆的标准方程的推导,可采用观察、分析、归纳、抽象、概括、自主探究、合作交流的教学方法,调动学生参与课堂教学的主动性和积极性.3、本节课坚持推行“学案引导——自主学习——合作探究——精讲点拨——巩固练习”的课堂教学模式,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人.五、教学过程课前预习,搜寻问题1、椭圆的定义及注意事项:2、椭圆的标准方程的推导:3、椭圆的标准方程有那几种形式:课内探究,答疑解惑一、创设情景、引入概念首先用多媒体演示“神州七号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.★问一:“神州七号”飞船绕地球旋转的轨迹是什么图形?二、尝试探究、形成概念学生实验:按课本上介绍的方法,学生用一块纸板,两个图钉,一根无弹性的细绳尝试画椭圆.实验探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?椭圆的定义:找定义的关键处:①平面曲线;②任意一点到两个定点的距离的和等于常数;③常数大于| F1F2|.三、标准方程的推导归纳求曲线方程的一般步骤:建系→设点→列出方程→化简方程.建系一般应遵循简单、优化的原则.★问二:怎样建立坐标系,才能使求出的椭圆方程最为简单?推导过程:思考:观察右图,能从中找出表示,a c12222=+byax.(0a b>>)此即为椭圆的标准方程.它所表示的椭圆的焦点在x轴上,焦点是)0,()0,(21cFcF-,中心在坐标原点的椭圆方程.M2F1F★问三:如果椭圆的焦点F 1,F 2在y 轴上,线段F 1F 2的垂直平分线为x 轴,a ,b ,c 意义同上,椭圆的方程形式又如何?注意理解以下几点:① 在椭圆的两种标准方程中,都有0>>b a 的要求;② 在椭圆的两种标准方程中,由于22a b >,所以可以根据分母的大小来判定焦点在哪一个坐标轴上;③ 椭圆的三个参数,,a b c 之间的关系是222a b c =+,其中0,0,a b a c b c >>>>和 大小不确定.四、尝试应用1、下列方程哪些表示的是椭圆,如果是,判断它的焦点在哪个坐标轴上?2、 写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是()04,-、()04,,椭圆上一点到两焦点距离的和等于10;变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?变式二:将上题改为两个焦点的距离为8,椭圆上一点P 到两焦点的距离和等于10,结果如何?五、典例分析:例:写出适合下列条件的椭圆的标准方程两个焦点的坐标分别是()20-,、()20,,并且经过点P ⎪⎭⎫⎝⎛-2523,. 11)4(2222=++m y m x 123)3(22-=--y x 0225259)2(22=--y x 11625)1(22=+y x六、课堂练习1.写出适合下列条件的椭圆的标准方程:(1)a =4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.2.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为 .课后反思,巩固练习1、课后反思与体验<1>、本节课我学到了哪些知识,是用什么方法学会的?<2>、我还有什么知识没有掌握,是什么原因导致的?<3>、我从老师和同学那儿学到了哪些好的学习方法?<4>、通过上述的回顾评价一下自己本节课的表现。

2014-2015学年人教版高中数学选修2-1公开课课件:2.2.1椭圆及其标准方程

2014-2015学年人教版高中数学选修2-1公开课课件:2.2.1椭圆及其标准方程
2
2
, 0 ca , 02c + O x -F + y 2F= c2 y2 1 -2
x
2
x + c + y 2 = 4a 2 - 4a
2
x - c
2
+ y2 x - c + y2
a2 - c2 x2 + a2 y2 = a2 a 2 - c2
例:求适合下列条件的椭圆的标准方程:
⑴两个焦点的坐标分别是(0,-2)、(0,2),
3 5 并且椭圆经过点 , 。 2 2
⑵a=3,c=2。
小结:求椭圆标准方程的步骤: ①定位:确定焦点所在的坐标轴; ②定量:求a, b的值.
小结:求椭圆标准方程的步骤: ①定位:确定焦点所在的坐标轴; ②定量:求a, b的值。 练习: 求适合下列条件的椭圆的标准方程:
数 学 实 验
(1)取一条细绳, (2)把它的两端 固定在板上的两 点 F 1 、 F2 (3)用铅笔尖 (M)把细绳拉 紧,在板上慢慢 移动看看画出的 图形
F1
F2
M
F1
F2
(1)在画出一个椭圆的过程中,F1、F2 ︳F1F2︱=2c 的位置是固定的还是运动的? (2)在画椭圆的过程中,绳子的长度变 ︱MF1︳+︱MF2︳=2a 了没有?说明了什么? (3)在画椭圆的过程中,绳子长度与两 2a>2c 定点距离大小有怎样的关系?
所以 b a c
2
2
b
F1 O
a c
F2
x
思考:当椭圆的焦点在y轴上时,它的标准方程是 怎样的呢
小 结:
定 义
椭圆的标准方程
|MF1|+|MF2|=2a y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆及其标准方程(一)导学案【学习要求】1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.【学法指导】1.通过自己亲自动手尝试画图,发现椭圆的形成过程进而归纳出椭圆的定义,培养观察、辨析、归纳问题的能力.2.通过经历椭圆方程的化简,增强战胜困难的意志并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性,养成扎实严谨的科学态度【知识要点】1.椭圆:平面内与两个定点F 1,F 2的 的点的轨迹叫做椭圆(ellipse).这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的 . 2.探究点一 椭圆的定义问题1 给你两个图钉、一根无弹性的细绳、一张纸板,能画出椭圆吗?问题2 动点P 到两定点A 、B 的距离之和|P A |+|PB |=2a (a >0且a 为常数)的轨迹一定是椭圆吗?探究点二 椭圆的标准方程问题1 观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.问题2 建系时如果焦点在y 轴上会得到何种形式的椭圆方程?怎样判定给定的椭圆焦点在哪个坐标轴上?问题3 椭圆方程中的a 、b 以及参数c 有什么意义,它们满足什么关系?例1 (1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程; (2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.跟踪训练1 (1)已知中心在原点,以坐标轴为对称轴,椭圆过点Q (2,1)且与椭圆x 29+y 24=1有公共的焦点,求椭圆的标准方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过P 1(6,1),P 2(-3,-2)两点,求椭圆的标准方程.例2 已知方程x 2k -4-y 2k -10=1表示焦点在x 轴上的椭圆,则实数k 的取值范围为__________.跟踪训练2 若方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,那么实数m 的取值范围是 ( )A .m >0B .0<m <1C .-2<m <1D .m >1且m ≠ 2探究点三 椭圆的定义及标准方程的应用例3 已知椭圆的方程为x 24+y 23=1,椭圆上有一点P 满足∠PF 1F 2=90°(如图).求△PF 1F 2的面积.跟踪训练3 已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2的连线夹角为直角,则|PF 1|·|PF 2|=________【当堂检测】1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为 ( )A .5B .6C .7D .82.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是 ( )A .-9<m <25B .8<m <25C .16<m <25D .m >83.椭圆x 216+y 232=1的焦距为________.4.已知椭圆经过点(3,0)且与椭圆x 24+y 29=1的焦点相同,则这个椭圆的标准方程为____________【课堂小结】1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在.2.对于求解椭圆的标准方程一般有两种方法:可以通过待定系数法求解,也可以通过椭圆的定义进行求解. 3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论,达到了简化运算的目的.【拓展提高】1.已知P 是椭圆13422=+y x 上的点,21F F 、分别是椭圆的左、右焦点,21=,则21PF F ∆的面积为( ) A .33B .3C .32D .33 2.已知椭圆的两焦点为P F F ),0,1()0,1(21、-为椭圆上一点,且21212PF PF F F += (1)求此椭圆方程(2)若点P 在第二象限,21012,120F PF PF F ∆=∠求的面积3.如果点),(yxM在运动过程中总满足关系10)3()3(2222=+++-+yxyx,点M的轨迹是,它的方程是4.椭圆22194x y+=的焦点为F1、F2,点P为其上的动点,当21PFF∠为钝角时,求P点横坐标的取值范围。

椭圆及其标准方程(二)导学案【学习要求】加深理解椭圆定义及标准方程,能熟练求解与椭圆有关的轨迹问题.【学法指导】通过例题的学习,进一步用运动、变化的观点认识椭圆,感知数学与实际生活的联系,通过生成椭圆的不同方法,体会椭圆的几何特征的不同表现形式.【双基检测】1.设定点F1(0,-3)、F2(0,3),动点P满足条件|PF1|+|PF2|=a+9a(a>0),则点P的轨迹是()A.椭圆B.线段C.不存在D.椭圆或线段2.已知椭圆5x2+ky2=5的一个焦点坐标是(0,2),那么k的值为()A.-1 B.1 C. 5 D.- 53.“m>n>0”一定是“方程mx2+ny2=1表示焦点在y轴上的椭圆”吗?4.椭圆x212+y23=1的焦点为F1和F2,点P在椭圆上,线段PF1的中点在y轴上,那么|PF1|是|PF2|的_____倍.5.已知椭圆的焦距是2,且焦距是椭圆上一点到两焦点距离的等差中项,求椭圆的标准方程【问题探究】探究点一定义法求轨迹方程例1如图,P为圆B:(x+2)2+y2=36上一动点,点A坐标为(2,0),线段AP的垂直平分线交直线BP于点Q,求点Q的轨迹方程.跟踪训练1已知圆A:100)3(22=++yx,圆A内一定点B(3,0),圆P过B且与圆A内切,求圆心P的轨迹方程探究点二相关点法求轨迹方程例2如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?问题从例2你能发现椭圆与圆之间的关系吗?跟踪训练2如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=45|PD|.当P在圆上运动时,求点M的轨迹C的方程,并判断此曲线的类型.探究点三直接法求轨迹方程例3如图,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是-49,求点M的轨迹方程.问题若将例3中的-49改为a (a<0),曲线形状如何?跟踪训练3已知M(4,0),N(1,0),若动点P满足MN→·MP→=6|NP→|.求动点P的轨迹C的方程.【当堂检测】1.已知椭圆x2m+y216=1上的一点P到椭圆一个焦点的距离为3,到另一焦点距离为7,则m等于()A.10 B.5 C.15 D.252.椭圆x2m+y24=1的焦距等于2,则m的值为()A.5 B.8 C.5或3 D.163.设B(-4,0),C(4,0),且△ABC的周长等于18,则动点A的轨迹方程为()A.x225+y29=1 (y≠0) B.y225+x29=1 (y≠0) C.x216+y216=1 (y≠0) D.y216+x29=1 (y≠0)4.椭圆x29+y2=1上有动点P,F1,F2是椭圆的两个焦点,求△PF1F2的重心M的轨迹方程.【课堂小结】1.解答与椭圆有关的求轨迹问题的一般思路是2.注意题目要求中求轨迹和求轨迹方程的区别.【拓展提高】1.已知椭圆x 29+y 24=1的左、右焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使|PQ |=|PF 2|,那么动点Q 的轨迹方程为________2.设F 1、F 2为椭圆22194x y +=的两个焦点,P 为椭圆上一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且21PF PF >,求21PF PF 的值3.B A 、,3=分别在y 轴和x 轴上运动,O 为坐标原点,若3231+=,则点P 的轨迹方程为4.椭圆31222y x +=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上, 那么点M 的纵坐标是椭圆的简单几何性质(一)导学案【学习要求】1.理解椭圆的简单几何性质.2.利用椭圆的简单几何性质解决一些简单问题.【学法指导】通过几何图形观察,代数方程验证的学习过程,体会数形结合的数学思想.通过几何性质的代数研究,养成辩证统一的世界观.【知识要点】12.离心率的作用当椭圆的离心率越 ,则椭圆越扁;当椭圆离心率越 ,则椭圆越接近于圆.【问题探究】探究点一 椭圆的简单几何性质问题1 观察椭圆x 2a 2+y 2b 2=1 (a >b >0)的形状,你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?问题2 如何用椭圆的标准方程(代数方法)研究你观察到的几何性质?问题3 观察不同的椭圆,椭圆的扁平程度不一样,怎样刻画椭圆的扁平程度呢?问题4 (1)b a 或cb的大小能刻画椭圆的扁平程度吗?为什么?(2)你能运用三角函数的知识解释:为什么e =c a 越大,椭圆越扁?e =ca越小,椭圆越圆吗?问题5 比较下列各组中椭圆的形状,哪一个更圆,哪一个更扁?为什么? (1)4x 2+9y 2=36与x 225+y 220=1; (2)9x 2+4y 2=36与x 212+y 216=1.例1 求椭圆m 2x 2+4m 2y 2=1 (m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率.跟踪训练1 已知椭圆方程为4x 2+9y 2=36,求椭圆的长轴长、短轴长、焦点坐标、顶点坐标和离心率.探究点二 由椭圆的几何性质求方程 例2 椭圆过点(3,0),离心率e =63,求椭圆的标准方程. 跟踪训练2 求适合下列条件的椭圆的标准方程.(1)长轴在x 轴上,长轴的长等于12,离心率等于23;(2)长轴长是短轴长的2倍,且椭圆过点(-2,-4).探究点三 求椭圆的离心率例3 如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率.跟踪训练3 如图,A 、B 、C 分别为椭圆x 2a 2+y 2b 2=1 (a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为 ( ) A .-1+52B .5-1C .2+12D .2+1【当堂检测】1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是 ( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6 D .10、6、0.62.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是 ( )A .x 2144+y 2128=1B .x 236+y 220=1C .x 232+y 236=1D .x 236+y 232=13.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ( )A .45B .35C .25D .154.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为______.【课堂小结】1.已知椭圆的方程讨论性质时,若不是标准形式要先化成标准形式,再确定焦点的位置,找准a 、b .2.利用椭圆的几何性质求标准方程通常采用待定系数法. 3.求离心率e 时,注意方程思想的运用.【拓展提高】1.已知F 1、F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率e =32,则椭圆的方程是( )A .x 24+y 23=1B .x 216+y 24=1C .x 216+y 212=1D .x 216+y 23=12.椭圆1145222=++a y a x 的焦点在x 轴上,则它离心率的取值范围是 3.椭圆M :2222x y a b+=1 (a >b >0) 的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且12PF PF ⋅ 的最大值的取值范围是[2c 2,3c 2],其中c 则椭圆M 的离心率e 的取值范围是( )A .⎥⎦⎤⎢⎣⎡22,33B .[C .D .11[,)32 4.已知椭圆)0(12222>>=+b a by a x 的左、右顶点分别为B A 、,右焦点是F ,过F 作直线与长轴垂直,与椭圆交于Q P 、两点(1)若060=∠PBF ,求椭圆的离心率 (2)求证:APB ∠一定为钝角5.在平面直角坐标系内,已知点)0,2()0,2(-B A 、,P 是平面内一动点,直线PB PA 、的斜率之积为43- (1)求动点P 的轨迹C 的方程(2)过点)0,21(作直线l 与轨迹C 交于F E 、两点,线段EF 的中点为M ,求直线MA 的斜率k 的取值范围6.椭圆的长轴长为4,椭圆中心到其准线的距离为334,则椭圆的标准方程为7.椭圆)0(12222>>=+b a b y a x 的离心率23=e ,焦点21F F 、相应的准线为21l l 、,P 为椭圆上一点,b PF =1,则P 到2l 的距离为( )A .b 63 B .b 332 C .b 233 D .b 32 8.已知定点)3,2(-A ,点F 为椭圆1121622=+y x 的右焦点,点M 在椭圆上移动,求MF MA 2+的最小值,并求此时点M 的坐标椭圆的简单几何性质(二)导学案【学习要求】1.理解直线与椭圆的位置关系.2.能解决简单的与椭圆有关的综合问题.【学法指导】用直线和椭圆的方程研究直线和椭圆的位置关系,将图形之间的关系问题转化为方程组解的问题是典型的数形结合思想.【知识要点】1.点P (x 0,y 0)与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:点P 在椭圆上⇔ ; 点P 在椭圆内部⇔ ; 点P 在椭圆外部⇔ .2.直线y =kx +m 与椭圆x 2a 2+y2b 2=1 (a >b >0)的位置关系判断方法:联立⎩⎪⎨⎪⎧y =kx +m x 2a 2+y 2b2=1,消去y23.弦长公式设直线方程y =kx +m ,椭圆方程x 2a 2+y 2b 2=1 (a >b >0).直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·(y 1+y 2)2-4y 1y 2.【问题探究】探究点一 直线与椭圆的位置关系问题1 已知直线和椭圆的方程,怎样判断直线与椭圆的位置关系?问题2 直线与椭圆的位置关系能否用中心到直线的距离来判断?例1 已知椭圆x 225+y 29=1,直线l :4x -5y +40=0.椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?问题3 如何求最大距离?跟踪训练1 在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y -16=0的距离最短,并求出最短距离.探究点二 直线与椭圆的相交弦问题问题 直线与椭圆相交,怎样求相交弦的弦长?例2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程.跟踪训练2 已知椭圆x 216+y 24=1的弦AB 的中点M 的坐标为(2,1),求直线AB 的方程,并求弦AB 的长.探究点三 椭圆中的最值(或范围)问题问题 在椭圆的有关问题中,常出现离心率、弦长或面积的范围、最值问题,这类问题一般思路是什么?例3 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.跟踪训练3 在本例中,设直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),求△AOB 面积的最大值及△AOB 面积最大时的直线方程.教材例6(椭圆第二定义)【当堂检测】1.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是 ( )A .相交B .相切C .相离D .相切或相交2.直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是 ( )A .m >1B .m ≥1或0<m <1C .0<m <5且m ≠1D .m ≥1且m ≠53.直线y =x +1被椭圆x 24+y 22=1所截得的线段的中点坐标是 ( )A .⎝⎛⎭⎫23,53B .⎝⎛⎭⎫43,73C .⎝⎛⎭⎫-23,13 D .⎝⎛⎭⎫-132,-172 4.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________【课堂小结】解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为 (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求; (5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.【拓展提高】1.若),(y x P 在椭圆116922=+y x 上,则y x +的最大值为( ) A .3 B .4 C .5 D .62.椭圆2214x y +=两焦点为21F F 、,点P 在椭圆上,则21PF PF ⋅的最大值为_____,最小值为_____ 3.椭圆2212516x y +=两焦点为21F F 、,)1,3(A 点P 在椭圆上,则PA PF +1的最大值为____ _, 最小值为_____ 4.设A (-2, 3),椭圆3x 2+4y 2=48的右焦点是F ,点P 在椭圆上移动,当|AP |+2|PF |取最小值时P 点的坐标是( )A .(0, 23)B .(0, -23)C .(23, 3)D .(-23, 3)5.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相切B .相交C .相离D .不确定6.过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

相关文档
最新文档