高中数学选修1,1《椭圆》教案_0
高中数学椭圆的性质教案

高中数学椭圆的性质教案
教学目标:
1. 理解椭圆的基本概念
2. 掌握椭圆的标准方程
3. 熟练运用椭圆的性质进行问题解答
教学重点:
1. 椭圆的定义及数学性质
2. 椭圆的标准方程
3. 椭圆的焦点、长短轴、离心率等性质
教学难点:
1. 椭圆的属性与其他几何图形的比较
2. 椭圆的运用问题解决
教学过程:
一、导入(5分钟)
通过提问引导学生回顾圆的性质,并引入椭圆的概念,让学生猜测椭圆与圆的异同点。
二、讲解(15分钟)
1. 讲解椭圆的定义及性质,介绍椭圆的标准方程及主要属性。
2. 通过示意图讲解椭圆的焦点、长短轴、离心率等概念。
三、练习(20分钟)
1. 完成课堂练习,巩固椭圆的基本算法。
2. 组织学生进行小组讨论,解决椭圆相关问题。
四、拓展(10分钟)
探讨椭圆在实际生活中的应用,如卫星轨道、天文测量等。
五、作业布置(5分钟)
布置课后作业,要求学生继续复习椭圆相关知识,并尝试解决相关问题。
教学反思:
在教学过程中,要注重引导学生思考,让他们通过实际问题解决来理解椭圆的性质和应用。
同时,要注重椭圆与其他几何图形的比较,帮助学生更好地理解椭圆的特点。
高中数学选修1-1教学设计-椭圆的简单几何性质

§2.1.2椭圆的简单几何性质3
【学情分析】:
学生已经掌握了椭圆的概念、标准方程的概念,也能够运用标准方程中的a,b,c的关系解决题目,但还不够熟练。
另外对于求轨迹方程、解决直线与椭圆关系的题目,还不能很好地分析、解决。
【三维目标】:
1、知识与技能:
①进一步强化学生对于椭圆标准方程中a,b,c关系理解,并能运用到解题当中去。
②强化求轨迹方程的方法、步骤。
③解决直线与椭圆的题目,强化数形结合的运用。
2、过程与方法:
通过习题、例题的练讲结合,达到学生熟练解决椭圆有关问题的能力。
3、情感态度与价值观:
通过一部分有难度的题目,培养学生克服困难的毅力。
【教学重点】:
知识与技能②③
【教学难点】:
知识与技能②③
【课前准备】:
学案
【教学过程设计】:。
高中数学选修1-1《椭圆的简单几何性质》教案

⾼中数学选修1-1《椭圆的简单⼏何性质》教案课题:椭圆的简单⼏何性质(第⼀课时)⼀、教学⽬标:1、知识与技能(1)探究椭圆的简单⼏何性质,初步学习利⽤⽅程研究曲线性质的⽅法;(2)掌握椭圆的简单⼏何性质,理解椭圆⽅程与椭圆曲线间互逆推导的逻辑关系及利⽤数形结合思想⽅法解决实际问题。
2、过程与⽅法(1)通过椭圆的⽅程研究椭圆的简单⼏何性质,使学⽣经历知识产⽣与形成的过程,培养学⽣观察、分析、逻辑推理,理性思维的能⼒。
(2)通过掌握椭圆的简单⼏何性质及应⽤过程,培养学⽣对研究⽅法的思想渗透及运⽤数形结合思想解决问题的能⼒。
3、情感、态度与价值观通过数与形的辩证统⼀,对学⽣进⾏辩证唯物主义教育,通过对椭圆对称美的感受,激发学⽣对美好事物的追求。
⼆、教学重难点:1、教学重点:椭圆的简单⼏何性质及其探究过程2、教学难点:利⽤曲线⽅程研究曲线⼏何性质的基本⽅法和离⼼率定义的给出过程。
三、教学⽅法:本节课以启发式教学为主,综合运⽤演⽰法、讲授法、讨论法、有指导的发现法及练习法等教学⽅法。
先通过多媒体动画演⽰,创设问题情境;在椭圆简单⼏何性质的教学过程中,通过多媒体演⽰,有指导的发现问题,然后进⾏讨论、探究、总结、运⽤,最后通过练习加以巩固提⾼。
四、教学过程:(⼀)创设情景,揭⽰课题多媒体展⽰:模拟“嫦娥⼀号”升空,进⼊轨道运⾏的动画. 解说:2007年10⽉24⽇,随着中国⾃主研制的第⼀个⽉球探测器——嫦娥⼀号卫星飞向太空,⾃强不息的中国航天⼈,⼜将把中华民族的崭新⾼度镌刻在太空中。
绕⽉探测,中国航天的第三个⾥程碑。
它标志着,在实现⼈造地球卫星飞⾏和载⼈航天之后,中国航天⼜向深空探测迈出了第⼀步。
“嫦娥⼀号”卫星发射后⾸先将被送⼊⼀个椭圆形地球同步轨道,这⼀轨道离地⾯最近距离为200公⾥,最远为5.1万公⾥,,⽽我们地球的半径R=6371km.根据这些条件,我们能否求出其轨迹⽅程呢?要想解决这个问题,我们就⼀起来学习“椭圆的简单⼏何性质”。
高中数学椭圆的应用教案

高中数学椭圆的应用教案
教学目标:
1. 了解椭圆的定义和特性;
2. 掌握椭圆的标准方程和参数方程;
3. 能够应用椭圆解决实际问题。
教学重难点:
1. 椭圆的基本概念和性质;
2. 椭圆参数方程的应用。
教学准备:
1. 教师准备课件和教学素材;
2. 学生准备纸笔和计算器。
教学过程:
1. 导入:通过提问和讨论引导学生了解椭圆的定义和特性;
2. 讲解:讲解椭圆的标准方程和参数方程,并介绍椭圆在实际问题中的应用;
3. 练习:通过一些例题和实际问题,让学生练习应用椭圆求解问题;
4. 总结:总结椭圆的相关知识点,并强调学生需要多做练习提高应用能力。
教学延伸:
1. 学生可以通过阅读相关资料和解决实际问题,进一步理解和应用椭圆;
2. 学生可以尝试在数学建模比赛中运用椭圆解决问题,提升自己的数学建模能力。
课后作业:
1. 复习椭圆的相关知识点,并做相关习题;
2. 思考如何运用椭圆解决实际问题,并进行尝试。
教学反思:
通过本节课的教学,学生应该对椭圆的定义、性质和应用有了初步的了解,并能够运用相关知识解决实际问题。
教师可以根据学生的掌握情况进一步调整教学方法,提高学生的学习效果。
高中数学教师竞赛作品《椭圆的几何性质》教学设计 苏教版选修1-1

评价方法或工具(说明在教学过程中将用到哪些评价工具,如何评价以及目的是什么):
1.学生的自我评价。(主要用于一些情感、态度和价值观方面的内容,因为这部分内容没 有一个标准答案,学生自己真实的感受,才能反映出情感教育的真正的价值,而不要虚伪 的情感) 2.小组同学自己的互评。(主要用于对场景教育的判断了,判断是基于史实,因而判断的 正确反映出对史实的掌握程度,而史实又是学生能够自己掌握的内容,因而小组之间的互 评,能反映出互帮互助的学习要求。) 3.教师评价。(对于一些理解实质类方面的内容,需要较强的抽象思维能力,而高二学生 还很难达到这个高度,因而需要教师进行引导。)
大胆交流、虚心学习的良好品质。 学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描 述):
课前先让学生复习椭圆概念以及标准方程,从而能为本节课的学习奠定基础。学生的 基础相对较好,大多数学生的动手能力较好,因此可以让学生亲自动手画图像,教师在学 生动手操作的过程中加以指导。然后让学生观察图像的特征,得出椭圆的几何性质
实践活动教学设计方案
教学目标பைடு நூலகம்析(结合课程标准说明本节课学习完成后所要达到的具体目标): 知识目标:
通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形, 并了解椭圆的一些实际应用.
能力目标:
通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.
情感目标: 在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、
创设情景—感知性质
辨析讨论—深化性质 思考问题—猜想结果
人教A版高中数学高二选修1-1教案 椭圆及其标准方程

2.1椭圆2.1.1 椭圆及其标准方程(教师用书独具)●三维目标1.知识与技能(1)了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程;(2)使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.2.过程与方法(1)让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想;(2)学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.3.情感、态度与价值观(1)通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神;(2)通过椭圆知识的学习,进一步体会到数学知识的和谐美、几何图形的对称美,提高学生的审美情趣.●重点、难点重点:椭圆定义及其标准方程.难点:椭圆标准方程的推导过程.椭圆定义是通过它的形成过程进行定义的,揭示了椭圆的本质属性,也是椭圆方程建立的基石.这给学生提供动手操作、合作学习的机会,通过实例使学生去探究椭圆的形成过程,进而顺理成章的可以推导出椭圆标准方程,以实现重、难点的化解与突破.(教师用书独具)●教学建议本节课宜采取的教学方法是“问题诱导—启发讨论—探索结果”以及“直观观察—归纳抽象—总结规律”的一种探究式教学方法,注重“引、思、探、练”的结合.引导学生学习方式发生转变,采用“激发兴趣、主动参与、积极体验、自主探究”的学习方式,形成师生互动的教学氛围.学法方面,通过利用圆的定义及圆的方程的推导过程,从而启发椭圆的定义及椭圆的标准方程的推导,让学生体会到类比思想的应用;通过利用椭圆定义探索椭圆方程的过程,指导学生进一步理解数形结合思想,产生主动运用的意识;通过揭示因椭圆位置的不确定性所引起的分类讨论,进行分类讨论思想运用的指导.●教学流程创设问题情境,引出问题:按问题要求画出什么样的图形?⇒引导学生共同画图,观察、分析画出的图形的特点与满足的要求,引出椭圆定义.⇒通过观察椭圆的形状,结合定义,引导学生求出椭圆的标准方程,理解参数a,b,c的意义.⇒通过例1及其变式训练,使学生理解椭圆的定义,学会使用定义解决问题.⇒通过例2及其互动探究,使学生掌握用待定系数法求椭圆方程.⇒(对应学生用书第19页)课标解读1.掌握椭圆的定义会用待定系数法求椭圆的标准方程.(重点)2.了解椭圆标准方程的推导、坐标法的应用.(难点)椭圆的定义1.取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时能在图板上画出一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两点处(如图)套上铅笔,拉紧绳子,移动笔尖,画出什么样的一个图形?【提示】椭圆.2.在上述画出椭圆的过程中,你能说出笔尖(动点)满足的几何条件吗?【提示】笔尖(动点)到两定点(绳端点的固定点)的距离之和始终等于绳长.把平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.椭圆的标准方程【问题导思】观察椭圆的形状,你认为怎样建立坐标系才能使椭圆的方程简单?【提示】以椭圆两焦点F1、F2的直线为x(y)轴,线段F1F2的垂直平分线为y(x)轴建系.焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)焦点(-c,0)与(c,0)(0,-c)与(0,c) a,b,c的关系c2=a2-b2(对应学生用书第20页)椭圆定义的理解及简单应用(1)已知F1(-4,0),F2(4,0),则到F1、F2两点的距离之和等于8的点的轨迹是________;(2)椭圆x 216+y 225=1的两焦点分别为F 1、F 2,过F 2的直线交椭圆于A 、B 两点,则△ABF 1的周长为________.【思路探究】 (1)动点的轨迹是椭圆吗?(2)怎样用椭圆的定义求△ABF 1的周长? 【自主解答】 (1)由于动点到F 1、F 2的距离之和恰巧等于F 1F 2的长度,故此动点的轨迹是线段F 1F 2.(2)由椭圆的定义,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 1|=2a , ∴|AF 1|+|BF 1|+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AB |=4a =20, ∴△ABF 1的周长为20.【答案】 (1)线段F 1F 2 (2)201.定义是判断点的轨迹是否为椭圆的重要依据,根据椭圆的定义可知,集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,a >0,c >0,且a 、c 为常数.当a >c 时,集合P 为椭圆上点的集合; 当a =c 时,集合P 为线段上点的集合; 当a <c 时,集合P 为空集.因此,只有|F 1F 2|<2a 时,动点M 的轨迹才是椭圆.2.注意定义的双向运用,即若|PF 1|+|PF 2|=2a (a >|F 1F 2|),则点P 的轨迹为椭圆;反之,椭圆上任意点到两焦点的距离之和必为2a .椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8D.32【解析】 如图,F 2为椭圆右焦点,连MF 2,则ON 是△F 1MF 2的中位线,∴|ON |=12|MF 2|,又|MF 1|=2,|MF 1|+|MF 2|=2a =10, ∴|MF 2|=8,∴|ON |=4. 【答案】 B求椭圆的标准方程求适合下列条件的椭圆的标准方程.(1)两焦点坐标分别为(-4,0)和(4,0)且过点(5,0);(2)中心在原点,焦点在坐标轴上,且经过(2,0)和(0,1)两点.【思路探究】 (1)焦点的位置确定了吗?怎样求出标准方程?(2)焦点位置不确定时该怎么办?有没有简便的求解方法?【自主解答】 (1)∵椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∴2a =(5+4)2+(5-4)2=10,∴a =5.又c =4,∴b 2=a 2-c 2=25-16=9, 故所求椭圆的标准方程为x 225+y 29=1.(2)法一 当椭圆的焦点在x 轴上时, 设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1.则⎩⎪⎨⎪⎧a =2,b =1. ∴所求椭圆的方程为:x 24+y 2=1;当椭圆的焦点在y 轴上时, 设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧0a 2+4b 2=1,1a 2+0b 2=1.则⎩⎪⎨⎪⎧a =1,b =2.与a >b 矛盾,故舍去. 综上可知,所求椭圆的标准方程为x 24+y 2=1.法二 设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵椭圆过(2,0)和(0,1)两点, ∴⎩⎪⎨⎪⎧4m =1,n =1,∴⎩⎪⎨⎪⎧m =14,n =1,综上可知,所求椭圆方程为x 24+y 2=1.1.求椭圆的标准方程的常用方法是待定系数法,即先由条件确定焦点位置,设出方程,再设法求出a 2、b 2代入所设方程,也可以简记为:先定位,再定量.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )和焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而达到了简化运算的目的.本例(2)若改为“经过(-23,1)和(3,-2)两点”,其他条件不变,试求椭圆的标准方程.【解】 设椭圆的标准方程为mx 2+ny 2=1 (m >0,n >0,m ≠n ),将点(-23,1),(3,-2)代入上述方程得⎩⎪⎨⎪⎧12m +n =1,3m +4n =1,解得⎩⎨⎧m =115,n =15,故所求椭圆的标准方程为x 215+y 25=1.求与椭圆有关的轨迹方程已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,垂足为P ′,点M 在PP ′上,并且PM →=2MP →,求点M 的轨迹.【思路探究】设动点M (x ,y ),P (x 0,y 0)→找M ,P 的关系→用点M 坐标表示点P 坐标→代入圆方程→得点M 轨迹【自主解答】 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x 0=x ,y 0=3y . ∵P (x 0,y 0)在圆x 2+y 2=9上,∴x 20+y 20=9.将x 0=x ,y 0=3y 代入得x 2+9y 2=9,即x 29+y 2=1. ∴点M 的轨迹是焦点在x 轴上的椭圆x 29+y 2=1.1.转代法(即相关点法)求轨迹方程:有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称作“转代法”.2.用转代法求轨迹方程大致步骤是:(1)设所求轨迹上的动点P (x ,y ),再设具有某种运动规律f (x ,y )=0上的动点Q (x ′,y ′);(2)找出P 、Q 之间坐标的关系,并表示为⎩⎪⎨⎪⎧x ′=φ1(x ,y ),y ′=φ2(x ,y );(3)将x ′,y ′代入f (x ,y )=0,即得所求轨迹方程.设A 、B 是椭圆x 225+y 216=1与x 轴的左、右两个交点,P 是椭圆上一个动点,试求AP中点M 的轨迹方程.【解】 设P (x 0,y 0),AP 的中点M (x ,y ),则⎩⎪⎨⎪⎧x =x 0-52,y =y 02,即⎩⎪⎨⎪⎧x 0=2x +5,y 0=2y ,代入椭圆方程x 225+y 216=1,得(2x +5)225+y 24=1,所以AP 中点M 的轨迹方程是(2x +5)225+y 24=1.已知B 、C 是两个定点,|BC |=8,且△ABC 的周长为18,求这个三角形顶点A 的轨迹方程.【思路探究】 (1)解答本题时如何建系更简单?(2)由△ABC 的周长为18能否得到A 到B 、C 的距离之和为定值?这满足椭圆的定义吗?【自主解答】 以过B ,C 两点的直线为x 轴,线段BC 的中点为原点,建立平面直角坐标系.由|BC |=8,可知点B (-4,0),C (4,0). 由|AB |+|BC |+|AC |=18, 得|AB |+|AC |=10>|BC |=8.因此,点A 的轨迹是以B ,C 为焦点的椭圆,这个椭圆上的点与两个焦点的距离之和为2a =10,即a =5,且点A 不能在x 轴上.由a =5,c =4,得b 2=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).1.本题紧扣椭圆的定义求得了顶点A 的轨迹方程,解答时不要漏掉y ≠0这一条件. 2.用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义,若符合椭圆的定义,则用待定系数法求解即可.已知A (-12,0),B 是圆F :(x -12)2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P 点,则动点P 的轨迹方程为________.【解析】 如图,依题意知|PA |=|PB |,所以|PA |+|PF |=|PB |+|PF |=|BF |=2,所以点P 的轨迹为以A (-12,0),F (12,0)为焦点的椭圆,其方程可设为x 2+y 2b 2=1,又因为c =12,a=1,所以b 2=a 2-c 2=34,从而所求的动点P 的轨迹方程为x 2+43y 2=1.【答案】 x 2+43y 2=1(对应学生用书第21页)忽略椭圆标准方程中a >b >0的条件致误方程x 2m 2+y 2(m -1)2=1表示焦点在y 轴上的椭圆,求实数m 的取值范围.【错解】 方程x 2m 2+y 2(m -1)2=1表示焦点在y 轴上的椭圆,则m 2<(m -1)2,解得m <12,所以实数m 的取值范围是(-∞,12).【错因分析】 错解只注意了焦点在y 轴上,而没有考虑m 2>0且(m -1)2>0,这是经常出现的一种错误,解题时要注意.【防范措施】 椭圆的焦点在x 轴上时,其方程为x 2a 2+y 2b 2=1(a >b >0),焦点在y 轴上时,其方程为y 2a 2+x 2b 2=1(a >b >0),应用时一定要注意条件a >b >0,否则极易将焦点位置弄错.【正解】方程x 2m 2+y2(m -1)2=1表示焦点在y 轴上的椭圆,则⎩⎪⎨⎪⎧m 2>0,(m -1)2>0,(m -1)2>m 2,解得⎩⎪⎨⎪⎧m ≠0,m ≠1,m <12.故实数m 的取值范围是(-∞,0)∪(0,12).1.熟悉椭圆定义、标准方程,熟练掌握常用基本方法的同时,要注意揣摩解题过程所运用的数学思想方法,以达到优化解题思路、简化解题过程的目的,但切忌只想不算,形成解题思路后,一定要动手计算,没有形成结论就不应该停手.2.在运用椭圆的定义解题时,一定要注意隐含条件a>c.3.注意焦点分别在x轴和y轴上对应的椭圆方程的区别和联系.4.求椭圆的标准方程常用的方法是定义法和待定系数法.(对应学生用书第22页)1.设P是椭圆x225+y216=1上的一点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于() A.10B.8C.5D.4【解析】由椭圆的定义知|PF1|+|PF2|=2a=2×5=10.【答案】 A2.椭圆x216+y225=1的焦点坐标是()A.(±4,0) B.(0,±4)C.(±3,0) D.(0,±3)【解析】∵a2=25,b2=16且焦点在y轴上,∴c=3,焦点坐标为F1(0,-3),F2(0,3).【答案】 D3.一椭圆的两个焦点坐标分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为( )A.x 2100+y 236=1 B.y 2400+x 2336=1 C.y 2100+x 236=1 D.y 220+x 212=1 【解析】 由题意c =8,a =10且焦点在y 轴上,∴b 2=a 2-c 2=100-64=36,∴方程为y 2100+x 236=1. 【答案】 C4.已知一椭圆标准方程中b =3,c =4,求此椭圆的标准方程.【解】 ∵b 2=9,c 2=16,∴a 2=b 2+c 2=25.∵此椭圆的焦点不确定,∴标准方程为x 225+y 29=1或y 225+x 29=1.。
高中数学教师竞赛作品《椭圆的几何性质》教学案 苏教版选修1-1

(3)提出如何解决精确性问题,学生发表见解,引出问题。
3、(1)教师借助几何画板用描点法画出椭圆图形;
(2)教师提出问题,由图形你能观察出椭圆有哪些几何Байду номын сангаас质;
(3)教师将学生得出的结论写在黑板上。
4、(1)教师提出由图形观察出的几何性质,能否由方程得到 ?
《椭圆的几何性质》教学案
课程分析:(本课的作用和学习本课的意义)
圆锥曲线是高中数学的核心。本节内容是在学生已经学过椭圆的概念及标准方程基础上引入的,因此既是对上述知识的拓展和延伸,也是对后面学习双曲线、抛物线的进一步认识与理解.本节课的学习使椭圆知识体系更加完整、系统。
问题设计
问题:
1、椭圆的定义是什么?椭圆的标准方程是什么?
2、椭圆的几何范围?
3、椭圆的对称性?
4、椭圆的顶点?
5、椭圆的离心率?
教学构想及目标:
知识目标:
通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.
能力目标:
通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.
情感目标:
在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。
学生展示自己的研究方法;
练习
(1)求椭圆 的长轴长,短轴长,焦点及顶点坐标。
(2)求椭圆 的长轴长,短轴长,焦点和顶点坐标及范围。
教师板书
通过复习旧知识引出问题,使学生不感到突然,并且学生通过亲自实践,产生认知冲突。
通过多媒体画出令学生信服的椭圆图形,让学生观察图形,总结性质,自由 发表自己的见解,培养学生的兴趣,增强自信心。
《椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计霞浦第一中学郑德松一、概述1.课名是《椭圆及其标准方程》,是高中数学选修1-1(人教版)2.1.1中的内容。
2.分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路。
本节是第一课时.3.主要学习内容是运用多媒体形象地给出椭圆,通过让学生自已动手作图,“定性”地画出椭圆,再通过坐标法“定量”地描述椭圆,使之从感性到理性抽象概括,形式概念,推出方程。
4.本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本章和本节的重点内容之一。
二、教学目标分析知识与技能:(1)学生能够归纳椭圆的定义,理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式;(2)明确焦点、焦距的概念;(3)学生能根据条件求出椭圆的标准方程。
过程与方法:(1)学生通过对椭圆概念的学习,达到提高观察分析、动手操作、概括能力,同时能养成分类讨论的数学思想方法;(2)学生通过亲身经历椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并学会处理比较复杂根式化简的思想方法。
情感态度与价值观:(1)通过对椭圆的学习,感受数学的对称、简洁、和谐美;(2)通过查找“神舟7号”有关材料,增强数学应用意识;(3)通过主动探究,讨论交流,感受探索的乐趣与成功的喜悦,增强对物理学习的兴趣。
三、学习者特征分析1.在此之前,学生已学过坐标法解决几何问题,学过圆的定义与标准方程,但掌握不够,2.从研究圆到研究椭圆,跨度较大,学生思维上存在障碍.3.在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修1,1《椭圆》教案
(一)教材的地位和作用
本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。
因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(二)教学重点、难点
1.教学重点:椭圆的定义及其标准方程
2.教学难点:椭圆标准方程的推导
(三)三维目标
1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。
2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。
3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。
二、教学方法和手段
采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
授人以鱼,不如授人以渔。
要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的再创造过程。
三、教学程序
1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。
2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。
3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。
4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。
5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。
6.例题讲解:通过例题规范学生的解题过程。
7.巩固练习:以多种题型巩固本节课的教学内容。
8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。
9.课后作业:面对不同层次的学生,设计了必做题与选做题。
10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。
四、教学评价
本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。
高中数学选修1-1《椭圆》教案【二】
教学准备
教学目标
教学目标:1.掌握求适合条件的椭圆的标准方程的方法.
2.理解椭圆的比值定义,椭圆的准线的定义.
3.掌握椭圆的准线方程并能运用准线方程判定椭圆的焦点位置.
教学重难点
教学重点:椭圆的比值定义,椭圆的准线的定义及其运用.
教学难点:椭圆的准线的运用
教学过程
教学过程:
一、知识回顾:
求椭圆16x2+9y2=144中x,y的范围,长轴和短轴长、离心率、半焦距的大小、焦点及顶点坐标。
二、课堂新授:
例1. 求适合下列条件的椭圆的标准方程:
(1) 经过点P(-3,0)、Q(0,-2);
(2) 长轴的长等于20,离心率等于.
解:(1)由椭圆的几何性质可知,点P、Q分别是椭圆长轴和短轴的一个端点.
于是得a=3,b=2.
又长轴在x轴上,所以椭圆的标准方程为
(2) 由已知,2a=20,e=,
a=10,c=6.
b2=102-62=64.
由于椭圆的焦点可能在x轴上,也可能在y轴上,所以所求椭圆的标准方程为
例1. 如图,我国发射的第一颗人造卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆。
已知它的近地点A(离地面最近的点)距地面439KM。
远地点B(离地面最远的点)距地面2384km,并且F2、A、B在同一直线上,地球半径约为6371km.求卫星运行的轨道方程(精确到1km).
点评:当点M与一个定点的距离和它到一条定直线的距离的比是常数e=(0
一、随堂练习:P102 练习4,6
二、课堂小结:
五、课后作业:P103 习题8.24,5,6,7。