典明中学石春晖 整式加减的应用(公开课)
[初中数学++]整式的加减第2课时+课件+北师大版七年级数学上册
![[初中数学++]整式的加减第2课时+课件+北师大版七年级数学上册](https://img.taocdn.com/s3/m/455041a1c9d376eeaeaad1f34693daef5ef71390.png)
【重点2】整式的化简及求值(模型观念、运算能力)
【典例2】(教材再开发·P92例4拓展)已知A=2a2-a+3b-ab,B=a2+2a-b+ab.
(1)化简A-2B;
(2)当a-b=2,ab=-1时,求A-2B的值;
(3)若A-2B的值与b的取值无关,求A-2B的值.
【自主解答】(1)A-2B=(2a2-a+3b-ab)-2(a2+2a-b+ab)
C.+(a-1)=+a+1
D.+(a+1)=+a-1
【解析】A选项,-(a-1)=-a+1,故该选项符合题意;
B选项,-(a+1)=-a-1,故该选项不符合题意;
C选项,+(a-1)=a-1,故该选项不符合题意;
D选项,+(a+1)=a+1,故该选项不符合题意.
2.已知b-a=10,c+d=-5,则(b+c)-(a-d)的值为( D )解析】因为b-a=10,c+d=-5,所以(b+c)-(a-d)=b-a+c+d=10-5=5.
4a+7b
3.一条线段长为6a+8b,将它剪成两段,其中一段长为2a+b,则另一段长为__________.
【解析】另一段长为:(6a+8b)-(2a+b)
=6a+8b-2a-b
【解析】设这个多项式是A,则A+5x2-4x-3=-x2-3x,
所以A=-x2-3x-(5x2-4x-3)=-x2-3x-5x2+4x+3=-6x2+x+3.
5a3-4a2+a-1
人教版七年级数学上册整式的加减《整式》第二课时示范公开课教学课件

像这样,几个单项式的和叫作多项式.
其中,每个单项式叫作多项式的项,不含字母的项叫作常
数项.例如,多项式2n-10的项是2n与-10,其中-10是常数项.
探究新知
多项式里,次数最高的项的次数,叫作这个多项式的
次数.
例如,多项式2n-10有2项,次数最高的项是一次项2n,
这个多项式的次数是1;多项式x²+2x+8有3项,次数最高的
项是二次项x²,这个多项式的次数是2.
探究新知
次数3
次数1
次数0
x²y +2x +8
叫做三次三项式
项
单项式与多项式统称整式.
2
例如,前面学习的单项式92t,a²,0.9p, a h,以及多项式
2n-10,x²+2x+8,2a+3b, ab-πr2等都是整式.
人教版七年级数学上册
第四章 整式的加减
4.1
整 式(1)
多项式及整式
学习目标
1.理解多项式、整式的概念.
2.会确定一个多项式的项数和次数.
复习引入
1.写出下列单项式的系数和次数.
1
-16
2
-1−源自1132
2
探究新知
在上一章中,我们还遇到一些代数式
2n-10,x²+2x+8,2a+3b, ab-πr2
整式:{ 0, +b,a2-πr2,
…}
,x-1,…}
能力提升
1.测得一种树的直径与树的生长年数的有关数据如下表:
初中数学冀教版七年级上册《整式的加减》优质课公开课比赛获奖课件面试试讲课件

括号前是“-”号, 把括号和它前面的 x2-2x-1 的差。 “-”号去掉后, 括号里各项都要变 号
2 (x -2x-1)
问课堂
完成课本136页 “观察与思考”, 然后思考整式加减 的步骤。
整式加减的一般步骤:
求整式的和或差时, 应先用括号将每一个整式 括起来,再用加减运算符 号连接。 具体运算时,先去掉括号, 再合并同类项。
2 2 =-2x -x +3x +1+x -2x -1 -------- === ------- ~~~ === -------- ~~~
求整式-2x , -x2+3x+1 ,x2-2x-1的和。
=-x
求整式 -x2ჷ1)
2 2 =- x +3x +1 - x +2x+1 -------- ----- --- -------- ----- --=-2x2 +5x+2
课本138页 习题1题、2题
问自己
• 自学课本137页例3, 学会格式,给小组同 学讲解。
巩固练习
• 课本138页B2,4
• 检测,课本137页的4题(1)(2)
知识延伸
• 课本138页的4题
• B组1题,3题
问自己
整式加减的一般步骤:
(1)根据题意,列出代数式; (2)去括号; (特别注意:括号前面是“-” 号时,括号内的每一项都要改变符号!) (3)合并同类项。 整式加减的实质就是去括号,合并同类项!
问课堂
• 组内小测验 完成课本137页练习1题、 2题,然后组内订正讨论。
问教材
三个植树队,第一小队种树x 棵,第二小队比第一小队种的树的 3倍多8棵,第三小队种的树比第一 小队的一半多6棵,三个队各种了 多少棵?一共种了多少棵?
北师大版七年级上册数学《整式的加减》整式及其加减PPT教学课件(第2课时)

(来自《典中点》)
知2-练
3
当x=6,y=-1时,多项式-
1 3
(x+2y)+
2 3
y的
值是___-__2___.
4 如果长方形的周长为4m,一边的长为m-n,则与 其相邻的一边的长为___m_+__n__.
(来自《典中点》)
去括号应注意的事项: (1)括号前面有数字因数时,应利用乘法分配律,先将该
知2-讲
知2-讲
解:(1)4a-(a-3b)=4a-a+3b=3a+3b; (2) a+(5a-3b)-(a-2b)=a+5a-3b-a+2b =5a-b; (3) 3(2xy-y)-2xy=(6xy-3y)-2xy =6xy-3y-2xy=4xy-3y; (4) 5x-y-2(x-y)=5x-y-(2x-2y) =5x-y-2x+2y=3x+y.
知1-讲
1 去括号:a+(b-c)=___a_+__b_-__c___; a-(b-c)=___a_-__b_+__c___.
知1-练
2 去括号:4(a+b)-3(2a-3b) =( _4_a_+__4_b__ )-( __6_a_-__9_b_ )=__-__2_a_+__1_3_b__.
(来自《典中点》)
3 下列去括号正确的是( D ) A.4a-(3b+c)=4a+3b-c B.4a-(3b+c)=4a-3b+c C.4a-(3b+c)=4a+3b+c D.4a-(3b+c)=4a-3b-c
知1-练
(来自《典中点》)
知识点 2 利用去括号法则化简
例2 化简下列各式: (1)4a-(a-3b); (2)a+(5a-3b)-(a-2b); (3)3(2xy-y)-2xy; (4)5x-y-2(x-y).
2022年初中数学精品教案《整式的加减 2》公开课专用

第3课时整式的加减【知识与技能】让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.【过程与方法】培养学生的观察、分析、归纳、总结以及概括能力.【情感态度】认识到数学是解决实际问题和进行交流的重要工具.【教学重点】整式的加减.【教学难点】总结出整式的加减的一般步骤.一、情境导入,初步认识做一做某学生合唱团出场时第一排站了n人,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?(1)学生写出答案:n+(n+1)+(n+2)+(n+3)(2)提问:以上答案进一步化简吗?如何化简?我们进行了哪些运算?练一练化简:(1)(x+y)—(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?【教学说明】从实际问题引入,让学生经历一个实际背景,体会进行整式的加减运算的必要性,再通过复习、练习,为学生概括出整式的加减的一般步骤作必要的准备.二、思考探究,获取新知【教学说明】上一栏目中已提出了怎样进行整式的加减运算这个问题,这里教师可先让学生阅读教材67~69页的例题,教师巡视,及时发现问题并进行评讲,再引导学生归纳整式加减的法则.【归纳结论】不难发现,去括号和合并同类项是整式加减的基础.因此,整式加减的一般步骤可以总结为:(1)如果有括号,那么先去括号.(2)如果有同类项,再合并同类项.试一试教材第69页练习.【教学说明】第2题去括号时注意要变号,第3题为化简求值题,教师提醒学生要变号.三、典例精析,掌握新知例1 求下列各整式的和.【分析】先根据题意列出代数式,然后去括号,合并同类项.例2化简求值:【分析】(1)题中的括号前面分别是+2,-3,运算时可以直接把它看成性质符号,利用乘法分配律去乘括号里的每一项.(2)题中去括号,可由内向外,按顺序先去小括号,再去中括号,最后去大括号,也可由外向内按顺序先去大括号,再去中括号,最后去小括号,合并同类项既可去掉括号后合并,也可边去括号边合并同类项.例3 若3x2-2x+b与x2+bx-1的和中不存在含x的项,求b的值.写出它们的和,并说明不论x取什么值,它的值总是正数.【分析】所谓不含x项,是指x项的系数为0,若说明无论x取什么值时两个整式之和总是正数,即说明这个和总大于零.解:(3x2-2x+b)+(x2+bx-1)=4x2+(b-2)x+(b-1)令b-2=0,所以b=2.当b=2时,4x2+(b-2)x+(b-1)=4x2+1.因为不论x取什么值,总有x2≥0,即4x2≥0,因此总有4x2+1>0.四、运用新知,深化理解2+4x-1得6x-8x2+2,求这个多项式.2.一个整式加上ab-2ac得3ac-ab,求这个整式减去ab-2ac的值.3.已知(a+2)2+|a+b+5|=0,求3a2b-[2a2b-(2ab-a2b)-4a2]-ab 的值.5+a y4和-5x3y b+1是同类项,求代数式3b4-6a3b-4b4+2ba3的值.2+2kab+b2-6ab+9不含ab项,求k的值.【教学说明】以上五题都是上一栏目例题的变式题,教师可提醒学生这一点,第1、2题是例1的变式题,都是直接给出多项式进行加减;第3、4题是例2的变式题,都是化简求值的类型;第5题是例3的变式题.第4、5题稍难,教师要向学生强调理解同类项的概念是解决本题的关键.五、师生互动,课堂小结1.整式的加减实际上就是去括号、合并同类项这两个知识的综合.2.整式的加减的一般步骤:①如果有括号,那么先算括号.②如果有同类项,则合并同类项.3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便.4.数学是解决实际问题的重要工具.1.布置作业:从教材习题2.2中选取.2.完成练习册中本课时的练习.本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,由学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相订正问题,充分体现学生自行解决问题的主体作用.第4课时“斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:Rt △ABF ≌Rt △DCE .解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE 都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD ,∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边”判定三角形全等的运用 【类型一】 利用“HL ”判定线段相等如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【类型二】 利用“HL ”判定角相等或线段平行如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等. 证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt△ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2. 方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL ”解决动点问题如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解. 【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS.三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL ”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL ”,除此之外,还可以选用“SAS ”“ASA ”“AAS ”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.。
冀教版(2024新版)七年级数学上册《4.4 整式的加减》精品课件

课堂练习
1. 求多项式2x2-3x-1与-x2+3x-5的和.
解: (2x2-3x-1)+(-x2+3x-5) =2x2-3x-1-x2+3x-5 =x2-6.
课堂练习
2. 化简:3(2x2-y2)-2(3y2-2x2) 解:3(2x2-y2)-2(3y2-2x2) =6x2-3y2-6y2+4x2 =10x2-9y2.
=3x+2y+4x+3y =7x+5y (元)
你还能有其 他解法吗?
课堂小结
整式加减法的一般步骤是: 1. 去括号; 2. 合并同类项; 3. 运算的结果不再含有同类项.
= 2a²+ab+3b²-a²+2ab-b²
有同类项再合并同类项
= a²+3ab+2b²
结果中不能再有同类项
新知探究 如何进行整式的加减呢?
去括号、合并同类项
ห้องสมุดไป่ตู้
做一做
计算:2b3 (3ab2 a2b) 2(ab2 b3) 解:原式= 2b3 3ab2 a2b 2ab2 2b3
(2b3 2b3 ) (3ab2 2ab2 ) a2b = ab2 a2b
典型例题
例2 先化简,再求值. 5xy (4x2 2xy) 2(2.5xy 10) ,其中x=1,y=-2.
解:5xy (4x2 2xy) 2(2.5xy 10)
5xy 4x2 2xy 5xy 20 4x2 2xy 20.
当x=1,y=-2时,
4x2 2xy 20 4 12 21 (2) 20 20.
归纳小结
1. 整式的加减运算重点注意去括号时的符号、系数的处理, 不要把符号弄错,不要漏乘括号外的系数; 2. 整式的化简求值题,能够化简的最好先化简,尽量不要 直接把字母的值代入计算.
七年级数学《整式的加减》教案

七年级数学《整式的加减》教案七年级数学《整式的加减》教案一数学活动一、内容和内容解析1.内容活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2 探究月历中数之间所蕴含的关系和变化规律.2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示方法和运算.基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.二、教材解析本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,发展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有2012个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.本节数学活动课教师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和积极性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.三、教学目标和目标解析1.教学目标(1)用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意识和创新意识;(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.2.目标解析达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体总结规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,经常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中积极思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.四、教学问题诊断分析本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.五、教学支持条件分析根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正方形纸片、一张月历.教师准备几何画板软件供学生使用,同时采用多媒体课件辅助教学.六、教学过程设计1.数学活动1问题1 如图1所示,用火柴棍拼成一排由三角形组成的图形.图1(1)如果图形中含有n个三角形,需要多少根火柴棍?(2)当图形中含有2012个三角形时,需要多少根火柴棍?师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.教师重点关注学生自主探究的步骤和方法.学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.教师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得三角形个数1 2 3 4 … 火柴棍根数1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n.④从火柴棍的根数与三角形的个数的对应关系观察可得三角形个数1 2 3 4 … n 火柴棍根数3=1×2+1 5=2×2+1 7=3×2+19=4×2+1 … n×2+1 表达式:2n+1.⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1.七年级数学《整式的加减》教案二教学目标知识与技能理解同类项的概念,在具体情景中,认识同类项.过程与方法通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.情感、态度与价值观初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点重点理解同类项的概念.难点根据同类项的概念在多项式中找同类项.教学过程一、复习引入师:同学们,在上新课之前,我们先来做几个题目.1.教师读题,指名回答.(1)5个人+8个人=;?(2)5只羊+8只羊=.?2.师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课1.同类项的定义:师:在生活中我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a 可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解教师读题,指名回答.例1判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()(3)3x2y与-yx2是同类项.()(4)5ab2与-2ab2c是同类项.()(5)23与32是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)例2游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.例3指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2.答案(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.例4k取何值时,3xky与-x2y是同类项?答案要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项.例5若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)答案改变2ab2c3的系数即可,与其本身也是同类项.五、课堂小结理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时合并同类项教学目标知识与技能理解合并同类项的概念,掌握合并同类项的法则.过程与方法经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.情感、态度与价值观在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.教学重难点重点正确合并同类项.难点找出同类项并正确的合并.教学过程一、情境引入师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?学生完成,教师点评.二、讲授新课合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解例1找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.答案原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.例2下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-3x2=4; (4)9a2b-9ba2=0.(通过这一组题的训练,进一步熟悉法则)例3求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.答案3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.答案略四、课堂小结1.要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时去括号、添括号教学目标知识与技能去括号与添括号法则及其应用.过程与方法在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.情感、态度与价值观让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点重点去括号和添括号法则.难点当括号前是“-”号时的去括号和添括号.教学过程一、创设情境,引入新课还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为4n-(n-1).?4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+3n.?搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?生:相等.师:那么我们怎样说明它们相等呢?学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一去括号师:在代数式里,如果遇到括号,那么该如何去括号呢?我们再看看以前做过的习题.七年级数学《整式的加减》教案三一、教学内容解析:1.本节课选自:新人教版数学七年级上册§2.2.1节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跟踪练习:
飞机的无风航速为a千米/时,风速为20千米/时, 飞机顺风飞行6小时的行程是多少?飞机逆风飞行 3小时的行程是多少?两个行程的相差是多少?
b a
c
3b 2a
4c
解:(1)小纸盒的表面积是:
(2ab 2bc 2ac)cm 大纸盒的表面积是:
2
(2 2a 3b 2 2a 4c 2 3b 4c) (12 ab 16 ac 24bc)cm 2
12b 16ac 24bc 2ab 2ac 2bc 2 10 ab 14 ac 22bc(cm )
2.2
整式加减的应用
典明中学 石春晖
+
=
典明中学 石春晖
一、整式的意义
1、 5a 2 表示什么意义?
答:a的5倍与2的差。
2、同理 4( x
2
2 x 3) 6( x 5 x 6)
2
可以表示什么意义? 2 答:多项式 x 2 x 3 的4倍与多项式
x 5 x 6 的6倍的差。
例3:一条河流的水流速度是x千米/秒,已知轮船 在静水中的速度是y千米/秒,则轮船在这条河流中 顺水行驶和逆水行驶的速度分别怎样表示?
分析:船在河流中行驶时,船的速度需分两种情况讨论: 顺水行驶:船的速度=船在静水中的速度+水流的速度 逆水行驶:船的速度=船在静水中的速度-水流的速度
解:当船顺水行驶时,船的速度是(x+y)千米/秒
2
整式的加减的应用
二、数量关系的应用 例1、求多项式 a 2b 和多项式 3a b 的差。
解:(a 2b) (3a b)
a 2b 3a b
(1 3)aБайду номын сангаас (2 1)b
2a 3b
例2、已知 A
x 2 y B 3x 5 y 求 A 5B
(2)做大纸盒比做小纸盒多用料: (12ab 16ac 24bc) (2ab 2ac 2bc)
小结:整式加减的应用
1.数量关系的应用
2.生活中的实际应用
①航行问题 ②几何问题
作业: 课本P71习题 第1、4题。
谢谢 指导!
解: A 5B
( x 2 y) 5(3x 5 y) x 2 y 15 x 25 y
跟踪练习: 已知 A x 2 y B 3x 5 y
(1 15) x (2 25) y 16 x 23 y
,
求 2 A 3B
三、实际应用
1、航行问题
当船顺水行驶时,船的速度是(x - y)千米/秒
例4:两船从同一港口同时出发反向而行,甲船 顺水,乙船逆水,两船在静水中的速度都是50千 米/时,水流速度是a千米/时。 (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米?
解:顺水航速=船速+水速=50+a(千米/时)
顺水航速=船速-水速=50-a(千米/时)
2、几何问题:
(1)
例5:如图:求长方形的周长和面积。
b
5b
解:周长=2· (3a+5b) 解:周长=2· (a+b) 面积=3a· 5b=15ab 面积=a· b
a
3a
例6:做大小两个长方体纸盒,尺寸如下(单位:cm):
长
小纸盒 大纸盒 a 2a
宽
b 3b
高
c 4c
(1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比做小纸盒多用料多少平方厘米?