中考专题复习六——圆

合集下载

人教版中考数学考点系统复习 第六章 圆 第一节 圆的基本性质

人教版中考数学考点系统复习 第六章 圆 第一节 圆的基本性质

论有
( C)
A. 1个
B. 2个
C. 3个
D. 4个
10.(2021·随州第12题3分)如图,⊙O是△ABC的外接圆,连接AO并延 长交⊙O于点D,若∠C=50°,则∠BAD的度数为440 0°°.
11.(2022·随州第12题3分)如图,点A,B,C在⊙O上,若∠ABC=60 °,则∠AOC的度数为121020°°.
另解:计算∠AEB=135°也可以得证.
(2)若AB=10,BE=2 10,求BC的长. 解:如图,连接 OC,CD,OD,OD 交 BC 于点 F. ∵∠DBC=∠CAD=∠BAD=∠BCD,∴BD=DC. ∵OB=OC,∴OD 垂直平分 BC. ∵△BDE 是等腰直角三角形,BE=2 10, ∴BD=2 5. ∵AB=10,∴OB=OD=5. 设 OF=t,则 DF=5-t. 在 Rt△BOF 和 Rt△BDF 中, 52-t2=(2 5)2-(5-t)2. 解得 t=3.∴BF=4.∴BC=8.
长是
( A)
A.10
B.8
C.6
D.4
7.★(2019·十堰第8题3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB 的延长线于点E,若BA平分∠DBE,AD=5,CE= 13,则AE的长为( D ) A.3 B.3 2 C.4 3 D.2 3
8.(2022·宜昌第7题3分)如图,四边形ABCD内接于⊙O,连接OB, OD,
(4)若∠CAB=30°,则∠CDB=3300°°,∠COB=6600°°,∠OCB=6600°°;若
B 为︵CD的中点,则∠BCD=3300°°; (5)当 CD⊥AB 时,若 AB=10,CD=8,则 BE=22,AE=88,BC=22 5 , AC=44 5 ;

中考圆专题知识点总结

中考圆专题知识点总结

中考圆专题知识点总结一、圆的概念圆是平面上一个集合,该集合中任意两点的距离都相等,并且距离都等于圆的半径。

圆的周长叫做圆的周长,圆的面积叫做圆的面积。

圆的半径为r,圆的直径为d。

二、圆的性质1. 圆的周长和面积:圆的周长C = 2πr圆的面积S = πr²2. 弧和圆心角:- 弧:两点间的曲线部分,圆的一部分。

- 弧长:弧的长度,记作L。

- 圆心角:以圆心为顶点的角叫做圆心角,圆心角的度数等于它所对的弧的弧度数。

3. 弧长公式:L = rθ(θ用弧度表示)4. 圆周角:圆周角是一条弧所对的圆心角。

圆周角的度数等于它所对的圆心角的两倍。

5. 切线和切点:切线是与圆只有一个交点的直线。

切线与圆相切的点叫做切点。

6. 相交弧、对应弧和交角:- 相交弧:两个圆相交的弧。

- 对应弧:两个圆相交的弧的对应部分。

- 交角:两个相交弧的交角。

7. 圆内接四边形:如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。

8. 圆的切线和割线:切线是与圆只有一个交点的直线,割线是与圆相交而不相切的直线。

切线和割线的切点到圆心的连线和圆的半径相垂直。

三、圆周角、圆心角和弧对应的关系1. 圆周角的度数等于所对的圆心角的两倍。

2. 圆周角的度数等于所对的弧的度数。

3. 圆心角的度数等于所对的弧的度数。

四、圆的性质定理证明1. 同弧或同角:弧对应的圆心角和圆周角以及弧的长度都相等。

2. 切线定理:若直线与圆相交,且交点在圆外,则直线与圆的切点连线垂直于直线。

3. 切线与弦定理:如果一条切线和一条弦相交于圆上的同一点,则切线上这个点的两个切线段相等。

五、常见的圆相关问题1. 圆与圆之间的位置关系:相离、外切、相交、内切、相切。

2. 圆的面积和周长问题:求圆的面积和周长。

3. 圆心角、圆周角和弧的问题:根据给定的信息计算圆心角、圆周角和弧的长度。

4. 切线和切点的问题:计算切线和切点的位置以及相关长度。

5. 圆的切线和割线问题:计算切线和割线的位置以及相关长度。

中考圆形知识点总结归纳

中考圆形知识点总结归纳

中考圆形知识点总结归纳圆形是中学数学中一个重要的几何概念,在中考中也是一个常见的考点。

本文将对中考中涉及到的圆形知识进行总结和归纳,帮助考生复习和掌握这一部分内容。

一、圆的基本概念圆是由平面上任意一点到另一点的距离都相等的点的集合。

其中,距离相等的这个固定值称为圆的半径,用字母r表示。

圆心是圆上任意两点的连线的垂直平分线的交点。

二、圆的性质1. 圆上任意两点之间的距离都等于圆的半径。

2. 圆心角的度数等于它所对的弧的度数,且圆心角所对的弧长等于圆的半径乘以圆心角的弧度值。

3. 相等弧所对的圆心角是相等的。

4. 圆的内切正多边形的中心与圆心重合。

三、弧1. 圆周角:圆周角是指以圆心为顶点的角,它的两边是相交于圆上的两条弧。

圆周角的度数等于它所对的弧的度数。

2. 弦:圆内部连接两点的线段称为弦。

弦分割出的两条弧叫做弦所对的弧。

3. 弧长:指圆上的一段弧所对应的圆周长度。

弧长等于圆心角的弧度值乘以圆的半径。

四、相交弦与切线的性质1. 相交弦定理:相交弦所对的弧相等,或者说两个相交弦所对应的圆心角相等。

2. 切线的性质:切线与半径的垂直分割线。

切线于半径的交点处所对应的圆心角为直角。

五、圆的面积和周长1. 圆的面积公式:S = πr²,其中S为圆的面积,r为圆的半径,π取近似值3.14。

2. 圆的周长公式:C = 2πr,其中C为圆的周长。

六、圆的应用1. 圆的切线与圆的性质:切线与切点间的弦相等,切线切割出的小圆与大圆相似。

2. 弧长与扇形面积:扇形面积等于扇形所对的圆心角的弧长所占整个圆的比例乘以圆的面积。

总结:通过对中考圆形知识点的总结和归纳,我们可以看到,圆形在中考中的考点比较多,涉及到圆的基本概念、性质、弧、相交弦与切线的性质、面积和周长以及应用等方面的内容。

对于考生而言,要牢固掌握圆的基本概念和性质,熟练运用相关公式和定理,灵活应用于解题过程中。

只有通过不断的实践和练习,才能在考试中熟练运用所学的圆形知识,取得好的成绩。

中考圆知识点总结复习

中考圆知识点总结复习

中考圆知识点总结复习圆是初中数学中重要的一章,所以复习圆的知识点是中考复习的重点之一、下面是关于圆的相关知识点的总结复习。

1.圆的定义与要素圆是指平面上到一点距离等于固定的一点的所有点的集合。

在一个圆中,距离固定点(圆心)的距离叫做半径,而连接圆心与圆上任意一点的线段叫做半径。

圆上的任意一段弧称为弦,弦的中点称为弦的中点。

2.圆的性质(1)圆上的任意一条弦都小于等于圆的直径。

(2)如果两条弦等长,则它们所对应的弧相等。

(3)圆上的两个相邻的弧所对应的圆心角相等。

(4)圆上任意两条弦所对应的圆心角一定小于等于180°,当且仅当两条弦所对应的圆心角相等时,这两条弦等长。

(5)在同一个圆或等圆上,圆心角相等的弧相等,弦长相等的圆心角相等。

3.圆的证明(1)两个平行弦所对应的圆心角相等。

证明方法:连接两个圆心与平行弦的中点,用平行线性质证明两个等腰三角形的两个底角相等。

(2)相等弧的圆心角相等。

证明方法:用反证法,假设相等的弧对应的圆心角不相等,然后利用圆周角的性质推导出矛盾。

(3)等腰三角形的底角对应的圆心角相等。

证明方法:连接两个顶点与圆心,利用等腰三角形的性质证明两个三角形的两个底角相等。

(4)正三角形的顶角对应的圆心角为120°。

4.圆周角和弧度制(1)圆周角:一个圆周角等于360°,半圆角等于180°,直角等于90°。

(2)弧度制:角度制中一个圆周角等于360°,而弧度制中一个圆周角等于2π(即360°=2π)。

5.弧长和扇形面积(1)弧长:一个圆的弧长等于它的圆周角所对应的弧x半径。

弧长公式:弧长=圆周角/360°x2πr(2)扇形面积:一个圆的扇形面积等于它的圆周角所对应的扇形面积。

扇形面积公式:扇形面积=圆周角/360°xπr²6.圆的切线和切点(1)切线:圆上的一条切线与圆的切点只有一个。

中考数学 考点系统复习 第六章 圆 第二节 与圆有关的位置关系

中考数学 考点系统复习 第六章 圆 第二节 与圆有关的位置关系

点 C,过点 A 作 AD∥OB 交⊙O 于点 D,连接 CD.若∠B=50°,则∠OCD

( B)
A.15°
B.20°
C.25°
D.30°
5.(2021·贺州)如图,在 Rt△ABC 中,∠C=90°,AB=5,点 O 在 AB
上,OB=2,以 OB 为半径的⊙O 与 AC 相切于点 D,交 BC 于点 E,CE 的长
∴CE=DH=2 5,∠DEC=90°, ∴OD⊥BC, ∴BC=2CE=4 5,
BC 5 ∵sin∠BAC=AB= 3 , ∴AB=12, 即半圆的直径为 12.
12.(2020·宜宾)如图,已知 AB 是⊙O 的直径,点 C 是圆上异于 A,B 的 一点,连接 BC 并延长至点 D,使 CD=BC,连接 AD 交⊙O 于点 E,连接 BE. (1)求证:△ABD 是等腰三角形; (2)连接 OC 并延长,与以 B 为切点的切线交于点 F,若 AB=4,CF=1,求 DE 的长.

( B)
A.12
2 B.3
2 C. 2
D.1
6.(2021·泰安)如图,在△ABC 中,AB=6,以点 A 为圆心,3 为半径的
圆与边 BC 相切于点 D,与 AC,AB 分别交于点 E 和点 G,F 是优弧 GE 上一
点,∠CDE=18°,则∠GFE 的度数是
( B)
A.50°
B.48°
C.45°
连接 EM,过点 M 作 MH⊥EF 于 H,则 EF=2EH,
在 Rt△EHM 中,EM=4,MH=3, 根据勾股定理得 EH= EM2-MH2= 42-32= 7, ∴弦长 n=EF=2EH=2 7.
形内一点,连接 CF,DF,且∠ADF=∠DCF,点 E 是 AD 边上一动点,连接 EB,EF,则 EB+EF 长度的最小值为_33-133-3 .

圆的考点梳理(中考专题复习识记内容)

圆的考点梳理(中考专题复习识记内容)

圆的考点梳理(中考专题复习识记内容)一、圆的概念及与圆的相关概念1.圆的概念(1)定义1:把线段OP绕着端点O在平面内旋转1周,端点P运动所形成的图形叫做圆.其中,点O叫做圆心,线段OP叫做半径.(2)定义2:平面内到定点的距离等于定长的点组成的集合叫做圆.其中定点叫做圆心,定长叫做半径.(3)圆的有关概念与基本性质是解决圆的有关问题的基础.如圆与三角形结合的题目,经常利用半径相等,构造等腰三角形,再利用等腰三角形性质证明线段或角相等.2.与圆有关的概念(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,简称弧.用符号“⌒”表示.圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(4)等圆、同心圆:能够互相重合的两个圆叫做等圆;圆心相同,半径不相等的两个圆叫做同心圆.(5)圆心角:顶点在圆心的角叫做圆心角.(6)等弧:能够互相重合的弧叫做等弧.二、点与圆的位置关系点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外.设⊙O的半径为r,点P到圆心O的距离为d,用图形表示点与圆的位置关系如图所示.三、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等.四、圆心角的度数与它所对的弧的度数的关系1.1°的弧:将顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,我们把1°的圆心角所对的弧叫做1°的弧.2.圆心角的度数与它所对的弧的度数的关系:圆心角的度数与它所对的弧的度数相等.【注意】(1)圆心角的度数与它所对的弧的度数相等,不是指角与弧相等(角与弧是两个不同的图形)(2)度数相等的角为等角,但度数相等的弧不一定是等弧.五、垂径定理及垂径定理的推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.定理的条件:(1)直径,弦(2)直径垂直弦定理的结论:(1)弦被直径平分(2)弦所对的两条弧被平分2.垂径定理的推论如果一条直线具有:(1)经过圆心;(2)垂直于弦;(3)平分弦(非直径的弦);(4)平分弦所对的劣弧;(5)平分弦所对的优弧这五个性质中的任意两个,那么这条直线就具有余下的三个性质,简称“知二推三”.【注意】在垂径定理推论中,一定不能忽视“弦不是直径”这一条件.因为一个圆的任意两条直径都能互相平分,但未必垂直.六、确定圆的条件不在同一条直线上的三个点确定一个圆.【注意】(1)这里的“三个点”不是任意的三点,而是指不在同一条直线上的三个点,在同一直线上的三个点不能画圆.(2)“确定”一词应理解为“有且只有”,即过不在同一条直线上的三点有且只有一个圆.(3)过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.七、三角形的外接圆1.三角形外接圆的概念三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆.外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形.【注意】(1)三角形的外心是三角形任意两边的垂直平分线的交点,因此三角形的外心到三角形各顶点的距离相等.(2)三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.(3)锐角三角形的外心在三角形内,钝角三角形的外心在三角形外,直角三角形的外心在斜边(斜边中点).2.三角形外接圆的作法要作三角形的外接圆只要找到外接圆的圆心即可,而外接圆的圆心是三角形三条边的垂直平分线的交点.所以只需作出两条边的垂直平分线的交点,就可以确定外接圆的圆心.八、圆周角定理1.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【注意】(1)这一定理应用的前提条件是在“同圆或等圆中”,且不能丢掉“同弧或等弧所对的”这一条件.(2)定理的逆命题也成立,即在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧长也相等.(3)由于圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.2.直径(或半圆)所对的圆周角是直角.90︒的圆周角所对的弦是直径.90的圆周角联系在一起,构造直径所对的圆周角是解决与圆【注意】把圆中的直径与︒有关问题的常用方法.九、圆内接四边形1.定义:一个四边形的四个顶点都在一个圆上,这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.2.性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的相邻内角的对角.3.判定定理:如果一个四边形的对角互补,那么它的四个顶点在同一个圆上(简称四点共圆).4.推论:如果四边形的一个外角等于它的内角的对角,那么它的四个顶点共圆.【注意】(1)任何圆都有圆内接四边形,但并不是所有四边形都有外接圆.(2)圆的内接四边形可以有无数个,如果四边形有外接圆,那么它只有一个外接圆.(3)圆内接四边形对角互补的性质是计算圆周角的重要依据之一.十、直线与圆的位置关系1.直线与圆有三种位置关系:相交、相切和相离.①直线与圆有两个公共点时,叫做直线与圆相交,这时直线叫做圆的割线.②直线与圆有唯一公共点时,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点.③直线与圆没有公共点时,叫做直线与圆相离.2.直线与圆的位置关系的性质和判定:【注意】判断直线与圆的位置关系有两种方法:一是看直线与圆的公共点的个数;二是看圆心到直线的距离与半径之间的数量关系.3.切线的判定定理:过半径的外端并且垂直于半径的直线是圆的切线.符号语言∵OA⊥l于A,OA为半径,∴l为⊙O的切线.(请务必记住证明切线方法:有交点就连半径证垂直;无交点就做垂直证半径)【注意】(1)判定定理中的已知条件“经过半径的外端”和“垂直于这条半径”缺一不可.(2)这个定理是切线最常用的判定方法,常见的辅助线是“连半径”.4.切线的性质定理圆的切线垂直于经过切点的半径论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.(请务必记住切线重要用法:见切线就要连圆心和切点得到垂直)【注意】(1)切线的性质中:①半径;②垂直;③经过切点,这三个条件只要满足任何两个,则必具备另外一个.其中“半径”也可看做“过圆心的直线”.(2)切线的判定与切线的性质的区别:切线的判定是在未知相切而要说明相切的情况下运用,切线的性质是在已知相切而要推出一些其他结论时运用,两者在运用时不要混淆.5.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连接两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角.(1)定理:过圆外一点所画的圆的两条切线长相等.【注意】(1)切线长不是指切线的长度,而是指圆的切线上一点与切点之间的线段长.(2)切线长定理的基本图形要熟记,还可推出结论:这点和圆心的连线垂直平分切点弦(切点连成的弦),同时也平分这两条切线的夹角.6.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.【注意】(1)三角形的内切圆只有一个,圆的外切三角形有无数个.(2)三角形的内心是三角形角平分线的交点.(3)三角形的内心到三角形三边的距离相等.十一、正多边形的有关计算正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形,因此正n 边形的计算问题可转化为直角三角形的计算问题来解决,在计算时应注意:(1)这些直角三角形的斜边都是正n 边形的半径r ,一条直角边是正n 边形的边心距n r ,另一条直角边是正n 边形边长n a 的一半,一个锐角是正n 边形中心角n α的一半,即180n ︒. (2)正n 边形的每个中心角都等于360n ︒,说明正n 边形的中心角等于它的外角. 十二、弧长公式在半径为R 的圆中,360°的圆心角所对的弧长就是圆周长2πC R =,所以1°的圆心角所对的弧长是2360180πR πR =,于是在半径为R 的圆中,n °的圆心角所对的弧长180R n l π=. 十三、扇形面积公式一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.因为圆的面积为2R π,所以1°的扇形的面积是2π360R ,那么圆心角为 n 的扇形的面积为2π360扇形n R S = 因为扇形的弧长π180n R l =,所以扇形面积还可以表示为lR S 21=扇形. 十四、圆锥1.圆锥的基本概念 圆锥可以看做是由一个直角三角形绕一条直角边所在的直线旋转一周而形成的图形,这条直线叫做圆锥的轴.垂直于轴的边旋转一周而形成的面叫做圆锥的底面.圆锥的底面是一个圆面,斜边旋转而成的面叫做圆锥的侧面.从圆锥的顶点到底面的距离叫做圆锥的高.连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.2.圆锥的侧面积圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥的母线,弧长是圆锥底面圆的周长.圆锥侧面展开图的面积就是它的侧面积.如果用l 表示圆锥的母线长,用r 表示它的底面半径,由上面的分析可知:12ππ2侧S r l rl == 圆锥侧面展开图(扇形)的圆心角为︒θ,由于扇形的弧长等于圆锥底面的周长,即有2180l r θπ=π,所以360r θl =.。

中考复习圆专题含答案

中考复习圆专题含答案

中考专题复习——圆一、垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.转为几何语言:∵CD是直径,CD⊥AB,∴AM=BM,⌒AC=⌒BC,⌒AD=⌒BD如果把条件和结论看成是5个条件,相互间是否还有其它关系呢?如图,在下列五个条件中:①CD是直径,②CD⊥AB,③AM=BM,④⌒AC=⌒BC,⑤⌒AD=⌒BD只要具备其中两个条件,就可推出其余三个结论.你可以写出相应的命题吗?条件结论命题①②③④⑤垂直于弦的直径平分弦,并且平分弦所的两条弧.①③②④⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.①⑤ ②③④ ②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. ②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.②⑤ ①③④ ③④ ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.③⑤ ①②④ ④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.垂径定理是《圆》这一章的重要内容,在实际生活中有着广泛的应用.在各地中考题中对垂径定理的考查频频出现,这类问题常常需要结合勾股定理来解决,现以中考题为例说明如下:类型一 求直径【例1】如图,O ⊙的直径AB 垂直弦CD 于点P ,且点P 是半径OB 的中点,6 cm CD =,则直径AB 的长是( ).A . 2 3 cmB . 3 2 cmC . 4 2 cmD . 4 3 cm【解析】解决本题的关键是构造直角三角形,根据勾股定理列出方程求解即可.连接OD ,由垂径定理可知PD =362121=⨯=CD (cm).设半径OD =x cm ,则OP=x OB 2121=(cm). 在Rt △OPD 中,因为222OP DP OD +=,所以222132x x ⎛⎫+= ⎪⎝⎭.解这个方程,得23x =.所以直径AB 的长为342=x (cm),故应选D . 类型二 求弦长【例2】如图,AB O 是⊙的直径,弦CD AB ⊥于点E ,60COB ∠=°,⊙O 的半径为 3 cm ,则弦CD 的长为( ).A .3cm 2B . 3 cmC . 2 3 cmD . 9 cm 【解析】因为60COB ∠=°,CD AB ⊥,所以∠CEO =90°,∠OCD =30°.又因为⊙O 3 cm ,所以OE =12OC 3.由勾股定理可得222233(3)22CE OC OE ⎛⎫=--= ⎪ ⎪⎝⎭. 所以CD =2CE =3(cm).故应选B . 类型三 求弦心距【例3】⊙O 的半径为10 cm ,弦AB =12 cm ,则圆心到弦AB 的距离为( ).A .2 cmB .6 cmC .8 cmD .10 cm【解析】画出示意图如图,作OC AB ⊥于点C ,连接OA , 由垂径定理,得AC =1112622AB =⨯=. 在Rt △AOC 中,由勾股定理,得OC =22221068OA AC -=-=(cm).故应选C .类型四 求拱高【例4】如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ).A .5米B .8米C .7米D .53米 【解析】设石拱桥圆弧的圆心为O ,连接OA 、OD ,则OD ⊥AB .又因为OA =13,由垂径定理可得AD =11241222AB =⨯=. 所以在Rt △AOD 中,OD 222213125OA AD -=-=. 所以CD =OC -OD =13-5=8(米).故应选B .类型五 探究线段的最小值【例5】如图,⊙O 的半径 5 cm OA =,弦8 cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是________cm .【解析】因为连接直线外一点与直线上各点的所有线段中,垂线段最短, 所以需作出弦AB 的弦心距.过点O 作OC ⊥AB , C 为垂足,由垂径定理,知AC=118422AB =⨯=(cm). 在Rt △AOC 中,由勾股定理可得OC 2222543OA AC -=-=. 故点P 到圆心O 的最短距离为3 cm .二、 圆周角定理及推论《圆周角》解题技巧在数学里,把一个对象转化为另一个对象,常常可以化繁为简,化未知为已知,从而达到解决问题的目的,这种思考问题的方法,就是“转化”.在研究与圆周角有关的问题时,常进行等角间的转化.【例1】如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC ,OC ,BC .(1)求证:∠ACO =∠BCD .(2)若EB =8 cm ,CD =24 cm ,求⊙O 的直径.【分析】(1)欲证∠ACO =∠BCD ,关键是进行等角间的转化:∠ACO =∠OAC ,∠BCD =∠OAC ,转化的依据是等腰三角形的性质定理和圆周角的“等弧所对的圆周角相等”;(2)借助勾股定理构建方程即可求得⊙O 的直径.解:(1)∵AB 为⊙O 的直径,CD 是弦,且AB CD 于点E ,∴CE =ED ,︵CB =︵DB . ∴∠BCD =∠BAC . ∵OA =OC , ∴∠OAC =∠OCA . ∴∠ACO =∠BCD .(2)设⊙O 的半径为R cm ,则OE =OB -EB =R -8.∴CE =21CD =21×24=12.在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R-8)2+122.解得R=13.所以2R=2×13=26.【例2】如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC 上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.【分析】(1)欲证CD⊥DF,可转化为证明∠FCD+∠CFD=90°.由圆周角的性质有∠FCD=∠ABD,再联系条件∠BAD=2∠CFD,不难向等腰△ABD的内角和定理进行联想,从而找到解题的切入点;(2)欲证BC=2CD,现在还有一个条件∠BFC=∠BAD没有用,注意到∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,从而有∠ABF=∠CAD,而∠CAD=∠CBD,故∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,从而∠FBC=∠FCB,于是得FB=FC.思考到这里,不妨再回头看看证题目标BC=2CD,可考虑取BC的中点G,于是问题转化为证明CG=CD,即证△FGC≌△FDC.证明:(1)∵AB=AD,∴∠ABD=∠ADB.在△ABD中,∠BAD+2∠ABD=180°.又∠BAD=2∠DFC,∠FCD=∠ABD,∴2∠DFC+2∠FCD=180°.∴∠DFC+∠FCD=90°.∴∠FDC=90°.∴CD⊥DF.(2)∵∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,∴∠ABF=∠CAD.又∠CAD=∠CBD,∴∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,∴∠FBC=∠FCB,∴FB=FC.取BC的中点G,连接FG.∴FG⊥BC.∴∠FGC=90°.∵AB=AD,∴︵AB=︵AD,∴∠ACB=∠ACD.∵∠FGC=∠FDC=90°,FC=FC,∴△FGC≌△FDC.∴CG=CD.∵BC=2CG,∴BC=2CD.三、切线及切线长定理怎样证明直线与圆相切?在直线与圆的各种位置关系中,相切是一种重要的位置关系.现介绍以下三种判别直线与圆相切的基本方法:(1)利用切线的定义——在已知条件中有“半径与一条直线交于该半径的外端”,于是只需直接证明这条直线垂直于这个半径即可.【例1】已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.求证:PA是⊙O的切线.【证明】连接EC.∵AE是⊙O的直径,∴∠ACE=90°.∴∠E+∠EAC=90°.∵∠E=∠B,∠B=∠CAP,∴∠E=∠CAP.∴∠EAC+∠CAP=∠EAC+∠E=90°.∴∠EAP=90°.∴PA⊥OA.又PA经过点A,∴PA是⊙O的切线.(2)利用切线的判定定理——在已知条件中,有“一条直线过圆上某一点(即为切点),但没有半径”,于是先连接圆心与这个点成为半径,然后再证明这条直线和这条半径垂直.【例2】以Rt△ABC的直角边BC为直径作⊙O交斜边AB于点P,点Q为AC的中点.求证:PQ为⊙O的切线.B【证明】连接OP,CP.∵BC为直径,∴∠BPC=90°,即∠APC=90°.又点Q为AC的中点,∴QP=QC.∴∠1=∠2.又OP=OC,∴∠3=∠4.又∠ACB=90°,∴∠2+∠4=∠1+∠3=∠ACB=90°.∴∠OPQ=90°.∵点P在⊙O上,且点P为半径OP的端点,∴QP为⊙O的切线.说明:要证PQ与半径垂直,即连接OP.这是判别相切中添加辅助线的常用方法.(3)证明“d=R”,在已知条件中“没有半径,也没有明确直线与圆的公共交点”,于是过圆心作直线的垂线,然后再证明这条垂线段的长(d)等于圆的半径(R)即可.【例3】已知,在△ABC中,AD⊥BC于点D,且AD=12BC,点E,F分别为AB,AC的中点,点O为EF的中点.求证:以EF为直径的圆与BC相切.【证明】作OH⊥BC于点H,设AD与EF交于点M.∵点E,F分别为AB,AC的中点,∴EF=12 BC.∴点M也是AD的中点,即MD=12 AD.又AD=12BC,∴EF=AD,MD=12EF.又AD⊥BC,∴OH∥MD.∴四边形OHDM是矩形.∴OH=MD=12EF.∴OH是⊙O的半径.∴以EF为直径的圆与BC相切.与《切线长定理》相关的中考压轴题1.已知:以Rt △ABC 的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,过点D 作⊙O 的切线交BC 边于点E .(1)如图,求证:EB =EC =ED ;(2)试问在线段DC 上是否存在点F ,满足BC 2=4DF •DC ?若存在,作出点F ,并予以证明;若不存在,请说明理由.分析:(1)连接BD ,已知ED 、EB 都是⊙O 的切线,由切线长定理可证得OE 垂直平分BD ,而BD ⊥AC (圆周角定理),则OE ∥AC ;由于O 是AB 的中点,可证得OE 是△ABC 的中位线,即E 是BC 中点,那么Rt △BDC 中,DE 就是斜边BC 的中线,由此可证得所求的结论;(2)由(1)知:BC =2BE =2DE ,则所求的比例关系式可转化为22BC ⎛⎫ ⎪⎝⎭=DF •DC ,即DE 2=DF •DC ,那么只需作出与△DEC 相似的△DFE 即可,这两个三角形的公共角为∠CDE ,只需作出∠DEF =∠C 即可;①∠DEC >∠C ,即180°-2∠C >∠C ,0°<∠C <60°时,∠DEF 的EF 边与线段CD 相交,那么交点即为所求的F 点;②∠DEC =∠C ,即180°-2∠C =∠C ,∠C =60°时,F 与C 点重合,F 点仍在线段CD 上,此种情况也成立;③∠DEC<∠C,即180°-2∠C<∠C,60°<∠C<90°时,∠DEF的EF边与线段的延长线相交,与线段CD没有交点,所以在这种情况下不存在符合条件的F点.解:(1)证明:连接BD.由于ED、EB是⊙O的切线,由切线长定理,得ED=EB,∠DEO=∠BEO,∴OE垂直平分BD.又∵AB是⊙O的直径,∴AD⊥BD.∴AD∥OE.即OE∥AC.又O为AB的中点,∴OE为△ABC的中位线,∴BE=EC,∴EB=EC=ED.(2)解:在△DEC中,由于ED=EC,∴∠C=∠CDE,∴∠DEC=180°-2∠C.①当∠DEC>∠C时,有180°-2∠C>∠C,即0°<∠C<60°时,在线段DC上存在点F满足条件.在∠DEC内,以ED为一边,作∠DEF,使∠DEF=∠C,且EF交DC于点F,则点F即为所求.这是因为:在△DCE和△DEF中,∠CDE=∠EDF,∠C=∠DEF,∴△DEF∽△DCE.∴DE2=DF•DC.即212BC⎛⎫⎪⎝⎭=DF•DC.∴BC2=4DF•DC.②当∠DEC=∠C时,△DEC为等边三角形,即∠DEC=∠C=60°,此时,C点即为满足条件的F点,于是,DF=DC=DE,仍有BC2=4DE2=4DF•DC.③当∠DEC<∠C时,即180°﹣2∠C<∠C,60°<∠C<90°;所作的∠DEF >∠DEC,此时点F在DC的延长线上,故线段DC上不存在满足条件的点F.点评:此题主要考查了直角三角形的性质、切线长定理、三角形中位线定理及相似三角形的判定和性质;(2)题一定要注意“线段DC上是否存在点F”的条件,以免造成多解.2.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.分析:过D作DF⊥BC于F,设AD=x,则DE=AD=x,EC=BC=x+6,根据勾股定理就得到一个关于x的方程,就可以解得AD的长;△ADP和△BCP相似,有△ADP∽△BCP和△ADP∽△BPC两种情况进行讨论,根据相似三角形的对应边的比相等,就可以求出AP的长.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC-AD=6,∴DC2=62+82=100,即DC=10.设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.即:x(x+6)=16,解得x1=2,x2=-8,(舍去)∴AD=2,BC=2+6=8.(2)存在符合条件的P点.设AP=y,则BP=8-y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,有AD APBC PB=,即288yy=-.∴y=85.②△ADP∽△BPC时,有AD APBP BC=,即288yy=-.∴y=4.故存在符合条件的点P,此时AP=85或4.点评:本题主要考查了相似三角形的判定性质,对应边的比相等的两三角形相似.3.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).分析:(Ⅰ)根据切线的性质及切线长定理可证明△PAC为等边三角形,则∠P的大小可求;(Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC 的长.解:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°-∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵cos∠BAC=ACAB,∴AC=AB•cos∠BAC=2cos30°3∵△PAC为等边三角形,∴PA=AC,∴PA3.点评:本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.四、 正多边形与圆4.(1)已知如图①所示,△ABC 是⊙O 的内接正三角形,点P 为︵BC 上一动点,求证PA =PB +PC .下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP 上截取AE =CP ,连接BE . ∵△ABC 是正三角形, ∴AB =CB .∴∠1和∠2是同弧所对的圆周角. ∴∠1=∠2. ∴△ABE ≌△CBP .③OPFEDBA②ODCBA①21E POCB(2)如图②所示,四边形ABCD 是⊙O 的内接正方形,点P 为︵BC 上一动点,求证:PA =PC 2PB .(3)如图③所示,六边形ABCDEF 是⊙O 的内接正六边形,点P 为︵BC 上一动点,请探究PA 、PB 、PC 三者之间有何数量关系,直接写出结论.4.证明:⑥F⑤④(1)如图④所示,延长BP 至E ,使PE =PC ,连接CE . 易知∠CPE =∠CAB =60°,∴△PCE 是等边三角形. ∴CE =PC ,∠ECP =60°. ∴∠ECP +∠PCB =∠BCA +∠PCB , 即∠ECB =∠PCA .在△CAP 和△CBE 中,CA =CB ,CP =CE ,∠PCA =∠ECB , ∴△CAP ≌△CBE . ∴PA =BE =PB +PC .(2)如图⑤所示,过点B 作BE ⊥PB 交PA 于E . ∵∠1+∠2=∠2+∠3=90°, ∴∠1=∠3.又∵AB =BC,∠BAP =∠BCP , ∴△ABE ≌△CBP ,∴PC =AE .∵∠APB=45°,∴BP =BE ,∴PE PB. ∴PA =AE +PE =PC PB . (3)PA =PC .证明:如图⑥所示,在AP 上截取AQ =PC ,连接BQ . ∵∠BAP =∠BCP ,AB =BC ,AQ =CP , ∴△ABQ ≌△CBP ,∴BQ =BP . 又∵∠APB =30°,∴PQ =3PB . ∴PA =PQ +AQ =3PB +PC .五、 与圆有关的计算1.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则弧AMB 的度数是( ).A .60°B .90°C .120°D .150°2.如图,王虎使一长为4 cm 、宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木板档住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ).A .10 cmB .4π cmC .72π cmD .52cm3.如图,有一圆锥形粮堆,其正视图是边长为6 cm 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是________cm (结果不取近似值).4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=3,BC=1,将Rt△ABC绕点C 旋转90°后得Rt△A'B'C,再将Rt△A'B'C绕点B'旋转为Rt△A''B'C'使得点A,C,B',A''在同一条直线上,则点A运动到点A''所走的路径长为___________.。

2023最新中考数学总复习(精品课件)第六篇 《圆》

2023最新中考数学总复习(精品课件)第六篇    《圆》

经过半径的外端并且 垂直 这条半径的直线是圆的切线.
4.证明直线和圆相切的方法:
(1)当已知直线与圆有公共点时,连半径,证 垂直 .
(2)当不知道直线与圆是否有公共点时,过圆心作直线的垂线,证圆心到直线的距离
等于半径
.
5.切线长定理.
PA=PB , ∠APO=∠BPO .
_____p_r______
知识点5:五种基本作图
(1)作一条线段等于已知线段. (2)作一个角等于已知角. (3)作一个角的平分线. (4)经过一已知点作直线的垂线: ①经过已知直线 上 一点作这条直线的垂线; ②经过直线 外 一点做已知直线的垂线. (5)作已知线段的垂直平分线.
【注意】运用基本作图法作图时,一般先画出草图,分析作图步骤以及相应的字母表 示,选择正确的作图程序,再按分析后编排的字母写出已知、求作,按步骤一边画图一 边写好作法.
知识点5:圆心角与圆周角
________
∠_________________. ACB=90°
知识点6:圆内接四边形及其性质
___∠__D____
知识点7:弦、弧、圆心角的关系
1.定理: 同圆 或 等圆 中,相等的圆心角所对的弧相等 ,所对的弦相等 .
2.推论:在同圆或等圆中,如果两个圆心角、两条弦和两条弧(同是优弧或劣弧)中有一 组量相等,那么它们对应的其余各组量也分别 相等 .
知识点4:垂径定理及推论
1.垂径定理:垂直于弦的直径 平分 这条弦,并且平分弦所对的两条弧.
2.推论:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (2)弦的垂直平分线经过 圆心 ,并且平分弦所对的两条弧. (3)平分弦所对的一条弧的直径 垂直于 弦,并且平分弦所对的另一条弧.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题复习
中考复习之专题六圆
第一部分:圆的性质及与圆有关的位置关系
一.圆的有关概念与性质
1. 圆上各点到圆心的距离都等于 .
2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又
是对称图形,是它的对称中心.
3. 垂直于弦的直径平分,并且平分;平分弦(不是
直径)的垂直于弦,并且平分 .
4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆
周角中有一组量,那么它们所对应的其余各组量都分别 .
5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 .
6. 直径所对的圆周角是,90°所对的弦是 .
二.与圆有关的位置关系
1. 点与圆的位置关系共有三种:①,②,③;
对应的点到圆心的距离d和半径r之间的数量关系分别为:
①d r,②d r,③d r.
2. 直线与圆的位置关系共有三种:①,②,③.
对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:
①d r,②d r,③d r.
3. 圆与圆的位置关系共有五种:①,②,③,④,⑤;
两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d R
-r ,②d R -r ,③ R -r d R +r ,④d R +r ,⑤d R +r. 三.圆的切线
1. 圆的切线 过切点的半径;经过 的一端,并且 这条 的直线是圆的切线.
2. 从圆外一点可以向圆引 条切线, 相等, 相等.
3. 三角形的三个顶点确定 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 心,是三角形 的交点.
4. 与三角形各边都相切的圆叫做三角形的 ,内切圆的圆心是三角形 的交点,叫做三角形的 .
例1如图:AC
⌒ =CB ⌒ ,D E ,分别是半径OA 和OB 的中点,CD 与CE 的大小有什么关系?为什么?
例2.(08济南)已知:如图,30PAC ∠=︒,在射线AC 上顺次截取AD =3cm , DB =10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,求圆心O 到AP 的距 离及EF 的长.
C
B
O
E
D
A
1.(2008济南,7,4分)如图:点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,
若72AOB ∠=︒,则ACB ∠的度数是( ) A .18° B .30°
C .36°
D .72°
2. (2011济南,12,3分)如图,O 为原点,点A 的坐标为(3,0),点B 的坐标
为(0,4),⊙D 过A 、B 、O 三点,点C 为弧ABO 上的一点(不与O 、A 两点重合),则cos C 的值是【 】
A . 3 4
B . 3 5
C . 4 3
D . 4 5
3.(2012济南,12,3分)已知⊙O 1和⊙O 2的半径是一元二次方程x 2
-5x+6=0的两根,若圆心距O 1O 2=5,则⊙O 1和⊙O 2的位置关系是
A 、外离
B 、外切
C 、相交
D 、内切
4.(2010济南,17,3分)如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .
5.(2012济南,20,3分)如图,在Rt △ABC 中,∠B=90
0,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH 的各边分别与半圆相切且平行于AB 或BC ,则矩形EFGH 的周长是 .
O C B A
6.(2012天津市3分)如图,已知正方形ABCD 的边长为1,以顶点A 、B 为圆心,1为半径的两弧交于点E ,以顶点C 、D 为圆心,1为半径的两弧交于点F ,则EF 的长为 .
7.(08泰安)如图所示,ABC △是直角三角形,90ABC ∠= ,以AB 为直径的
⊙O 交AC 于点E ,点D 是BC 边的中点,连结DE . (1)求证:DE 与⊙O 相切;
(2)若⊙O
3DE =,求AE .
8.(2012潍坊,19,8分)如图,AB 是O ⊙的直径,C D 、是O ⊙上的两点,且.AC CD =
(1)求证:OC BD ∥; (2)若BC 将四边形OBDC 分成面积相等的两个三角形,试确定四边形OBDC 的形状.
第二部分:与圆有关的计算
1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对
的弧长为 ,弧长公式为 .
2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= 2
R π⨯ = = . 3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高) 4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长)
例1 (08金华)如图,CD 切⊙O 于点D ,连结OC ,交⊙O 于点B ,过点B 作弦AB ⊥OD ,
点E 为垂足,已知⊙O 的半径为10,si n ∠COD =
5
4
.(1)求弦AB 的长;(2)CD 的长; (3)劣弧AB 的长.(结果保留三个有效数字,sin53.130.8
≈,π≈3.142)
例3 (08庆阳)如图,线段AB 与⊙O 相切于点C ,连结OA 、OB ,OB 交⊙O 于点D ,
已知6cm OA OB ==
,AB =.
求(1)⊙O 的半径; (2)图中阴影部分的面积.
O
A
C
B
D
1.(2011青岛,7,3分)7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【 】 A .17cm B .4cm C .15cm D .3cm
2.(2010潍坊,10,3分)已知一个圆锥的侧面展开图是一个半径为9,圆心角为120°的扇形,则该圆锥的底面半径等于( ). A .9 B. 27 C. 3 D. 10
3.(2011潍坊,9,3分)如图.半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切.则小圆扫过的阴影部分的面积为( ). A .I7π B .32π C .49π D .80π
4.(2009潍坊,11,3分)如图,在Rt ABC △中,
908c m 6c m
A B C A B B C ∠===°,,,分别以A C 、为圆心,以2
AC
的长为半径作圆,将Rt ABC △截去两.44.个扇形,则剩余(阴影)部分的面积为( )cm 2.
图1
图2
A.
25
24π
4
-B.
25
π
4
C.
5
24π
4
-D.
25
24π
6
-
5.(2012青岛,14,3分)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在
杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 cm.
6.(2011山西)如图,△ABC是等腰直角三角形,∠ACB=90°,AB=AC,把△ABC 绕点A按顺时针方向旋转45°后得到△AB’C’,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是___________ (结果保留π)。

7.如图,已知AB是⊙O的直径,点C在⊙O上,且13
AB=,5
BC=.(1)求sin BAC
∠的值;
(2)如果OD AC
⊥,垂足为D,求AD的长;
(3)求图中阴影部分的面积(精确到0.1).。

相关文档
最新文档