磁场 知识点精析及综合能力强化训练
新高考磁场知识点

新高考磁场知识点磁场是物质中存在的一种物理现象,通过磁场相互作用的物质称为磁性物质。
在现代物理学中,磁场是一种非常重要的概念,应用广泛,特别是在新高考物理考试中,磁场知识点经常被考察。
本文将介绍新高考磁场知识点的要点。
一、磁性物质和磁场磁性物质是指能够产生或受到磁力作用的物质,包括铁、镍、钴等。
当磁性物质中的微观小磁片(也称磁畴)的磁矩有序排列时,整个物体就具有明显的磁性。
磁场是指周围空间中磁力的存在和展现形式。
磁场可以用磁力线来表示,磁力线是表示磁场强度和方向的线条。
二、磁感线和磁感应强度磁感线是磁场中磁力线的图形表示,它是一个闭合曲线。
在磁场中,磁感线从北极(N极)指向南极(S极),并且在磁场中不会相交。
磁感应强度B表示单位面积上垂直于磁力线方向上通过该面积的磁力线数目,用符号B表示。
磁感应强度的单位是特斯拉(T)。
三、磁场中的力和洛伦兹力在磁场中,电流元所受的磁力可以通过右手定则来确定。
右手定则的具体描述为:将右手大拇指、食指和中指分别垂直放置,让电流元方向与食指方向相同,磁感应强度方向与大拇指方向相同,则手掌中间呈现的竖直方向即为磁场中电流元所受的磁力方向。
洛伦兹力是指电流元在磁场中受到的力。
洛伦兹力的大小与电流元、磁感应强度以及电流元所在位置的矢量关系有关。
洛伦兹力的方向垂直于电流元和磁感应强度的平面。
四、电流在磁场中的运动当电流通过导线时,导线中的电子会受到磁场的作用而受到力的作用,产生运动。
电流在磁场中的运动可以用楞次定律来解释。
楞次定律是指:在磁场中,当闭合回路中的磁通量发生变化时,为了阻止磁通量变化产生的反电动势,电流会沿着方向使得自己产生的磁场阻止磁通量的变化。
五、磁场中的磁力和力矩在磁场中,磁体受到的磁力可以通过磁体磁矩和磁感应强度的矢量积来求解。
磁矩是一个矢量,它的大小与磁体的磁性和形状有关,方向则由磁体的南北极确定。
力矩是指力对物体产生转动效果的物理量。
磁场中的力矩可以通过磁体磁力矩和磁感应强度之间的矢量积计算得到。
九年级上册物理磁场知识点

九年级上册物理磁场知识点
以下是九年级上册物理磁场的一些主要知识点:
1. 磁场的概念:磁场是指磁场中每一个点所具有的一种物理量,用以描述磁场对磁性
物质的作用。
2. 磁感线:磁感线是描述磁场分布的线条,磁感线是由磁场中各点的切线方向构成的。
3. 磁力线:磁力线是描述磁场对磁铁或电流的作用的线条,磁力线是磁感线在磁铁或
电流周围形成的闭合曲线。
4. 磁场的性质:磁场具有方向性、相对性和激励性三个基本性质。
5. 磁力:磁力是磁场对磁性物体或运行电荷所产生的力。
6. 磁铁:磁铁是具有磁性的物体,可以产生磁场并对其他磁性物体或电流产生作用。
7. 磁场的形成:磁场可以由静电场产生,也可以由电流产生。
8. 安培定则:安培定则是描述电流产生的磁场的方向规律,它规定:用右手握向导线,指向电流的方向,垂直向上弯曲的大拇指的方向就是产生的磁场的方向。
9. 磁场介质:磁场介质是对磁场传播和作用起重要作用的物质,如空气、铁、钢等。
10. 磁感应强度:磁感应强度是描述磁场强弱的物理量,用符号B表示,单位是特斯
拉(T)。
以上是九年级上册物理磁场的一些主要知识点,希望能对你有所帮助。
初中磁场知识点总结

初中磁场知识点总结1. 磁场的基本概念磁场是一种特殊的力场,它是由磁性物质产生的,并且可以影响周围的物质。
在磁场中,磁性物质会受到磁力的作用而产生运动或变形。
磁场是由磁铁、电流和磁性物质产生的,在磁场中,磁力作为一种力,可以使得磁性物质朝着磁场内或外的方向运动。
2. 磁场的特性磁场具有以下几个特性:(1)磁场有方向性:磁场的方向可以用标志磁力线的方向来表示,磁力线是磁场中的一种力线,它的方向与磁场的方向相同。
(2)磁场具有磁力:磁场可以给物体施加力,使其产生运动或变形。
磁力可以使得磁性物质朝着磁场内或外的方向运动,同时也可以使得两个磁性物质相互吸引或排斥。
3. 磁场的产生和表现磁场可以由磁铁、电流和磁性物质产生。
对于磁铁而言,当它受到外力或外磁场的作用时,其内部的分子会排列成一定的方向,从而产生一个磁场。
而对于电流而言,当电流通过导线时,会产生磁场,这种现象被称为安培力。
此外,磁性物质也可以产生磁场,当一个磁性物质受到外磁场的作用时,它会成为另一个磁铁一样,产生一个磁场。
4. 磁场的测量磁场的测量可以通过磁感应计和霍尔磁发电机来进行。
磁感应计是一种用来测量磁场强度的仪器,它利用磁场对磁性物质的作用来测量磁场的大小。
而霍尔磁发电机则是一种利用霍尔效应产生电势的装置,它可以用来测量磁场的强度和方向。
5. 磁场的应用磁场在日常生活中有着广泛的应用,比如磁铁可以用来吸引铁片、指南针可以用来指出地球的方向、电磁感应可以用来发电、磁共振技术可以用来进行医学影像学等。
此外,磁场还在工业生产、交通运输、航空航天、通信技术等领域有着重要的应用价值。
6. 磁场的基本定律关于磁场的基本定律主要有安培力的定律、洛伦兹力的定律和法拉第电磁感应定律。
安培力的定律指出,当导体中有电流通过时,会产生一个磁场。
洛伦兹力的定律指出,当电荷在磁场中运动时,会受到磁场的作用力。
法拉第电磁感应定律指出,当导体中有磁场变化时,会产生感应电流。
九年级物理磁场知识点总结

九年级物理磁场知识点总结1. 磁场的基本概念磁场是由运动电荷产生的一种特殊的力场。
在磁场中,会对处于其中的磁性物体产生力的作用,使其受到磁力的影响。
磁场可以通过磁力线来描述,磁力线是一种用来表示磁场方向和强度分布的线条。
2. 磁场的性质磁场具有一些特殊的性质,这些性质包括:- 磁场的无源性:磁场没有磁荷,不存在单极子,即不存在责任的磁荷。
磁场总是由电流产生的。
- 磁场的闭合性:磁场总是从磁南极到磁北极形成闭合环路。
- 磁场的超导性:超导体能够完全排斥外部磁场,这种现象被称为迈森效应。
3. 磁场的来源磁场是由电流产生的。
电流在通过导线时,会形成一个螺旋状的磁场,这是安培环定律的基础。
另外,磁铁也可以产生磁场,这是由于磁铁内部的微观磁性有序排列形成了一个磁场。
4. 磁场的检测与测量磁场可以通过磁场强度计或者磁力计来进行检测和测量。
磁场强度计是一种能够在磁场中测量磁场强度的仪器,它可以帮助我们了解磁场的分布和强度。
磁力计则是一种能够测量磁场产生的磁力大小的仪器。
5. 磁场与运动电荷磁场对运动电荷有一定的影响,当电荷运动时,会在其周围产生一个磁场。
根据洛伦兹力的定律,当电荷在磁场中运动时,会受到一个垂直于速度和磁场方向的洛伦兹力的作用。
这一定律对于理解磁场和电荷之间的相互作用非常重要。
6. 磁场与磁性物质磁性物质是指具有自身磁性的物质,例如铁、镍、钴等金属。
当这些物质处于外部磁场中时,会受到磁力的作用而产生磁化。
磁化后的磁性物质会具有磁性,能够相互吸引或排斥。
磁铁、电磁铁就是利用这一原理制造的。
7. 磁场与电流电流在通过导线时会产生磁场,这是由于运动的电荷会产生磁场。
磁场对电流也有一定的影响,当电流通过导线时,会在周围产生一个磁场。
因此,电流和磁场是密切相关的,它们之间相互影响。
8. 磁场的应用磁场有许多重要的应用,其中一些包括:- 电磁铁:电磁铁是一种可以通过通电来产生磁场的装置,它在工业生产和实验研究中有着广泛的应用。
磁场知识点总结

磁场知识点总结1. 磁场的基本概念磁场是指物体周围存在的一种物理现象,即物体具有磁性时,周围会形成磁场。
磁场可以用于描述磁力的作用和磁力的性质。
磁场是三维空间中的一个向量场,可以用矢量表示,具有方向和大小。
2. 磁场的特性磁场具有以下几个重要特性: - 磁场是无源无旋场:磁场的散度为零,即磁通量在闭合曲面上的积分为零;磁场的旋度也为零,即磁场的环路积分为零。
- 磁场的力线是闭合曲线:磁场的力线是一种特殊的曲线,它们是闭合的,不存在起点和终点。
- 磁场的作用力是相对运动的电荷和磁场之间的相互作用力:根据洛伦兹力定律,带电粒子在磁场中受到的力与其电荷、速度和磁场强度有关。
3. 磁场的量度和单位磁场的量度使用磁感应强度(磁场强度)来表示,符号为B,单位为特斯拉(T)。
磁感应强度的大小表示磁场的强弱,方向表示磁场的方向。
4. 磁场的产生磁场可以通过以下几种方式产生: - 电流:当电流通过导线时,会在导线周围产生磁场。
根据安培环路定理,电流所产生的磁场的强度与电流强度成正比。
- 磁体:磁体是指具有磁性的物体,如铁、钢等。
磁体可以通过磁化来产生磁场,磁场的强度与磁体的磁化强度成正比。
5. 磁场的性质磁场具有以下几个重要性质: - 磁场的极性:磁场有南极和北极之分,相同极性的磁体会相互排斥,不同极性的磁体会相互吸引。
- 磁场线:磁场线是用来描述磁场分布的曲线,它们是从磁体的北极到南极的闭合曲线。
- 磁场的磁力:磁场可以对带电粒子产生力的作用,这种力被称为磁力。
磁力的大小与电荷、速度和磁场强度有关。
6. 磁场的重要观点磁场的研究和应用涉及到很多重要观点,以下是其中几个重要观点: - 安培环路定理:安培环路定理是描述电流所产生的磁场的定理,它说明了电流所产生的磁场的强度与电流强度成正比。
- 洛伦兹力定律:洛伦兹力定律是描述带电粒子在磁场中受力的定律,它说明了带电粒子在磁场中受到的力与其电荷、速度和磁场强度有关。
史上最全磁场知识点总结

史上最全磁场知识点总结一、磁场的产生1. 磁场的产生基础磁场产生的基础是电流。
当电流通过一根直导线时,就会在它周围产生一个磁场。
这个磁场的特点是,它具有方向性,即有一个方向是“南”极,一个方向是“北”极。
并且,根据安培右手定则,可以确定电流方向与磁场方向之间的关系。
2. 磁场的产生方式除了电流产生磁场外,磁铁也能产生磁场。
在一个磁铁中,由于内部的微观磁矩的排列,就会在其周围产生一个磁场。
这种磁场是不依赖于外界条件而产生的,故而它也可以被用来作为一种磁石来应用。
二、磁场的性质1. 磁场的基本性质磁场有许多基本性质,例如,磁场是一种物质周围的力场,它具有方向性和大小的概念;磁场中有磁感应强度、磁场强度等物理量,它们可以用来描述磁场的性质;而且,磁场是一种场,它有空间分布的特性。
2. 磁场的作用磁场对于磁性物质有着磁化的作用,使得它们变得具有一定的磁性。
而且,在静电学中,我们也学到了,磁场对于运动带电粒子同样有作用,这就是洛伦兹力的作用。
这些作用是磁场在自然界中的重要表现。
三、磁场与电场的关系1. 麦克斯韦方程组麦克斯韦通过他对电磁学理论的研究,得到了著名的麦克斯韦方程组。
这个方程组很好地描述了磁场和电场之间的关系,它们通过麦克斯韦方程组联系在了一起,从而形成了电磁学理论体系。
2. 磁场与电场的作用磁场与电场之间有着多种作用,例如,它们之间的相互感应作用是电磁感应现象的基础,这种感应作用通过法拉第电磁感应定律得到了描述;而且,磁场还对于电场中的电荷有相互作用,这就是洛伦兹力的作用。
三、磁场的应用1. 磁场在物质中的应用磁场在物质中有着多种应用,例如,磁铁在物质分离、传感器、电机等方面都有着广泛的应用,它们通过磁场对于磁性物质的吸引或者排斥来达到物质分离或运动的目的。
2. 磁场在科学研究中的应用磁场不仅在物质中有着广泛的应用,而且在科学研究中也发挥了重要的作用。
例如,核磁共振成像技术就是利用了核磁共振现象对物质进行成像的技术,它在医学成像、生物物理学等方面都具有重要的应用。
高中物理磁场知识点总结及练习强化(课件)

磁场知识总结与应用强化练习
磁场是物质的一种性质,具有磁感应强度、磁场力、磁通量等特性。了解磁 场的产生、表示、测量和力学效应对于理解其应用具有重要意义。
通过应用强化练习,巩固基础知识,掌握解题技巧,提高对磁场的理解和运 用能力。
变压器
变压器利用磁场的相互感应实现电能的传输和改变电压。
磁存储器
磁存储器利用磁场的磁性储存数据,常见的例子是硬盘和磁带。
磁场的习题解析
题目 某电流在磁场中受到的力方向如何确定? 如何测量磁场的强度?
磁场中的电流心脏流动如何受到磁场力的作用?
解析 根据洛伦兹力的方向规则来确定受力方向。 可以使用霍尔效应传感器或磁通量测量方法来测 量磁场的强度。 电流在磁场中受到的力垂直于电流和磁场的平面。
磁场的磁感应强度
磁感应强度是表示磁场强度的 物理量,单位为特斯拉。它与 磁通量和面积之间的比值相关。
磁场的表示与测量
磁指南针
磁指南针由磁针和刻度盘组成, 可以指示地球上的磁北。
磁场图
磁场图通过磁感线的分布来表示 磁场的强度和方向。
霍尔效应传感器
霍尔效应传感器可以测量磁场的 强度和方向,并将其转换为电信 号输出。
高中物理磁场知识点总结 及练习强化(课件)
磁场是物质所具有的一种性质,它可以产生磁力,并对周围的物体产生作用。 本课件将介绍磁场的基本概念、产生与特性、表示与测量、力学效应、应用 以及习题解析和应用强化练习。
磁场的基本概念
1 磁感线
磁场中的磁力线是表示磁场强度与方向的图形,通过磁感线可以观察磁场的分布。
2 磁场力
磁场中存在磁力,磁力可以作用在磁物质上,使其受到力的作用。
3 磁场的极性
磁场具有南北极性,相同极性的磁物体相互排斥,异极相吸。
物理磁场大题知识点总结

物理磁场大题知识点总结磁场是物理学中一个非常重要的概念,磁场的研究对于理解电磁现象、磁性材料和电子设备至关重要。
在这篇文章中,我们将对磁场的相关知识进行详细的总结,包括磁场的产生、性质、力度、磁场的应用等内容。
希望通过这篇文章的学习,能够对磁场有一个更加深入的理解。
一、磁场的产生1. 磁场的产生方式磁场可以由电流产生,这是安培法则的基本原理。
当电荷在空间中运动时,会产生磁场。
磁场也可以由磁体产生,这种磁场被称为静磁场。
通常来说,铁磁性材料在外部磁场的作用下会成为一个永久磁体,在磁场中产生磁场。
2. 磁场的特性磁场有方向性和大小性,方向性是指磁场的方向,大小性是指磁场的强度。
磁场的方向可以用磁力线来表示,磁力线是指磁感线的路径,它们是在磁场中,表明磁场的方向和强度的一种线条。
磁力线的特点包括:不相交,自北极走向南极,密度表示磁场的强度。
3. 磁场的单位国际制定的磁感应强度单位是特斯拉(T),1T等于1牛/安的分之一。
而国际的有关单位设置的磁通量单位是韦伯(Wb),1Wb等于1特斯拉和1平方米的乘积。
这是上述磁场中的关键参数。
二、磁场的性质1. 磁场的环绕性磁场是由磁力线构成的,磁力线是闭合的曲线,形成环绕的形状。
磁场的环绕性是磁场的一个重要特性,这种环绕性规定了磁场的特殊性。
磁力线的闭合性包括用永久磁铁等产生磁场的物体存在闭合性。
2. 磁场的相互作用当两个磁场相互作用时,会发生磁场的相互作用。
这种相互作用可以通过磁感应强度、磁力等参数进行描述。
当两个磁体相互作用时,会产生相互作用的力。
这种相互作用的力有吸引力和排斥力两种。
三、磁场的力度1. 磁感应强度在磁场中,物体所经历的磁力被称为磁感应强度。
磁感应强度是磁场的强度,用符号B表示,单位是特斯拉(T)。
在电磁学中,磁感应强度是描述磁场的重要物理量。
2. 磁场中的力在磁场中,物体受到的磁力被称为洛伦兹力。
洛伦兹力是由磁场和电场共同作用导致的物体的受力状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二物理《磁场》重难知识点精析及综合能力强化训练I. 重难知识点精析 一、知识点回顾1、磁场(1)磁场的产生:磁极周围有磁场;电流周围有磁场(奥斯特实验),方向由安培定则(右手螺旋定则)判断(即对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向);变化的电场在周围空间产生磁场(麦克斯韦)。
(2)磁场的基本性质:磁场对放入其中的磁极、电流(安培力)和运动电荷(洛仑兹力)有力的作用(对磁极一定有力的作用;对电流和运动电荷只是可能有力的作用,当电流、电荷的运动方向与磁感线平行时不受磁场力作用)。
2、磁感应强度ILF B =(条件:L ⊥B ,并且是匀强磁场中,或ΔL 很小)磁感应强度B 是矢量。
3、磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线4、安培力——磁场对电流的作用力(1)BIL F =(只适用于B ⊥I ,并且一定有F ⊥B, F ⊥I ,即F 垂直B 和I 确定的平面。
B 、I 不垂直时,对B 分解,取与I 垂直的分量B ⊥) (2)安培力方向的判定:用左手定则。
另:只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
通电环行导线周围磁场地球磁场通电直导线周围磁场5、洛仑兹力——磁场对运动电荷的作用力,是安培力的微观表现(1)计算公式的推导:如图,整个导线受到的安培力为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
由以上四式可得F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
(2)洛伦兹力方向的判定:在用左手定则时,四指若为正电荷运动的方向,则拇指为洛仑兹力方向;而对负电荷而言,受洛仑兹力方向与正电荷相反。
(3)带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:Bqm T Bqmv r π2,==。
由于F 始终与V 垂直,所以洛仑兹力一定不做功。
6、速度选择器正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v =。
在本图中,速度方向必须向右。
①这个结论与离子带何种电荷、电荷多少都无关。
②若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
二、典型题举例1、导线在安培力作用下的受力分析例1. 光滑导轨与水平面成α角,导轨宽L 。
匀强磁场磁感应强度为B 。
金属杆长也为L ,质量为m ,水平放在导轨上。
当回路总电流为I 1时,金属杆正好能静止。
求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?解:画出金属杆的截面图。
由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。
根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。
当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。
(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
2、带电粒子在复合场中的运动例2. 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。
则该带电微粒必然带_____,旋转方向为_____。
若已知圆半径为r ,电场强度为E 磁感应强度为B ,则线速度为_____。
解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;再由EBrg v Bqmv r mg Eq ===得和3、带电粒子在有界的匀强磁场中运动的问题B通电直导线周围磁场 通电环带电粒子进入有界匀强磁场中运动时,其轨迹是一段或多段圆弧,解决问题的关键:根据洛仑兹力方向时刻垂直于粒子运动方向指向轨迹圆心的特点,正确判定和画出轨迹圆心的位置和所对应的圆心角,因为圆心和圆心角一旦确定,有关圆运动的半径在磁场中运动的时间等问题就可以根据已知条件迎刃而解。
注意分析粒子运动轨迹所具有的对称性,简化时问题的分析和处理,注意粒子的周期性重复性,防止因解答结果的片面性而遗漏部分答案。
例3. 如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少? 解:正负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距2r ,由图还看出经历时间相差2T /3。
答案为射出点相距Bemv s2=,时间差为Bqm t 34π=∆。
关键是找圆心、找半径和用对称。
II.重难知识点荐入1.磁场的产生磁体 、 电流 、 变化的电场 周围有磁场。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
(但这并不等于说所有磁场都是由运动电荷产生的,因为麦克斯韦发现变化的电场也能产生磁场。
) 2.磁场的基本性质:磁场对放入其中的 磁极 和 电流 有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
3.磁场方向:五种表述是等效的①磁场的方向②小磁针静止时N 极指向③N 极的受力方向 ④磁感线某点的切线方向⑤磁感应强度的方向4.磁感线⑴用来形象地描述磁场中各点的磁场 强弱 和 方向 的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的 疏密 表示磁场的强弱。
⑵磁感线是 封闭 曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:M⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
5.磁感应强度:ILF B(条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。
磁感应强度是矢量。
单位是 特斯拉 ,符号为T 。
由磁场本身决定,和放不放入电流无关。
6.安培力 (磁场对电流的作用力) (1)安培力方向的判定⑴用左手定则。
⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。
可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
例1. 如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。
分析的关键是画出相关的磁感线。
例2. 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。
水平面 对磁铁的摩擦力大小为___。
解:本题有多种分析方法。
⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示)的合力竖直向上。
磁铁对水平面的压力减小,但不受摩擦力。
⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。
⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
例3. 电视机显象管的偏转线圈示意图如右,即时电流方向如图 所示。
该时刻由里向外射出的电子流将向哪个方向偏转?解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。
电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。
(本题用其它方法判断也行,但不如这个方法简洁)。
(2)安培力大小的计算F =BLI sin α(α为B 、L 间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。
例4. 如图所示,光滑导轨与水平面成α角,导轨宽L 。
匀强磁场磁感应强度为B 。
金属杆长也为L ,质量为m ,水平放在导轨上。
当回路总电流为I 1时,金属杆正好能静止。
求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?解:画出金属杆的截面图。
由三角形定则得,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。
根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。
当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。
(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
例6. 如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。
电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后的水平位移为s 。
求闭合电键后通过铜棒的电荷量Q 。
解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I Δt ,最终7.洛伦兹力 (1)洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的 微观解释 。
公式F= qvB 。
条件是v 与B 垂直。
(2)洛伦兹力方向的判定:在用左手定则时,四指必须指电流方向(不是速度方向),即 正电荷 定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。