(新课标版)备战2018高考数学二轮复习专题1.9选讲部分教学案文
(通用版)2018年高考数学二轮复习 第一部分 专题二 数列教学案 文

专题二数列[研高考·明考点][析考情·明重点]三角函数的综合问题第一讲 小题考法——等差数列与等比数列考点(一) 主要考查方式有两种:一是利用a n 与S n 的关系求通项a n 或前n 项和S n ;二是利用a n 与a n +1的关系求通项a n 或前n 项和S n .数列的递推关系式[典例感悟][典例] (1)(2017·云南调研)已知数列{a n }的前n 项和为S n ,且满足4(n +1)(S n +1)=(n +2)2a n (n ∈N *),则数列{a n }的通项公式a n =( )A .(n +1)3B .(2n +1)2C .8n 2D .(2n +1)2-1(2)(2017·成都模拟)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a nn 2=a n (n ∈N *),则数列{a n }的通项公式a n =________.[解析] (1)当n =1时,4×(1+1)×(a 1+1)=(1+2)2×a 1,解得a 1=8.当n ≥2时,4(S n+1)=n +22a n n +1,则4(S n -1+1)=n +12a n -1n ,两式相减得,4a n =n +22a n n +1-n +12a n -1n,整理得,a n a n -1=n +13n 3,所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n +13n 3×n 3n -13×…×3323×8=(n +1)3.检验知,a 1=8也符合,所以a n =(n +1)3.(2)根据a 1+a 222+a 332+…+a nn 2=a n ,①有a 1+a 222+a 332+…+a n -1n -12=a n -1,②①-②得,a nn2=a n -a n -1,即n 2a n -1=(n 2-1)a n ,所以a n a n -1=n 2n 2-1=n 2n +1n -1,所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×222+12-1×323+13-1×…×n 2n +1n -1=22×32×42×…×n 22-12+13-13+14-14+1…n -1n +1=22×32×42×…×n21×3×2×4×3×5×…×n -1×n +1 =2n n +1. [答案] (1)A (2)2n n +1[方法技巧]由a n 与S n 的关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”).(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1n =1,S n -S n -1n ≥2.[演练冲关]1.(2018届高三·广东五校联考)数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1a 2 017=( ) A.2 0171 009 B.2 0151 008 C.2 0162 017 D.2 0152 016解析:选 A 由a 1=1,a n +1=a 1+a n +n 可得a n +1-a n =n +1,利用累加法可得a n -a 1=n -1n +22,所以a n =n 2+n2,所以1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1,故1a 1+1a 2+…+1a 2 017=211-12+12-13+…+12 017-12 018=2⎝ ⎛⎭⎪⎫1-12 018=2 0171 009,故选A. 2.(2017·石家庄质检)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845D .1 830解析:选D 不妨令a 1=1,根据题意,得a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1,当n 为偶数时构成以a 2=2为首项,以4为公差的等差数列.所以{a n }的前60项和为S 60=30+2×30+30×30-12×4=1 830.3.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121.答案:121主要考查与等差比数列的通项公式、前n 项和公式有关的五个基本量间的“知三求二”运算.[典例感悟][典例] (1)(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97(2)(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8(3)(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] (1)∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98,故选C. (2)设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0.又d ≠0,则d =-2, 所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24. (3)设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 11-q 31-q =74,S 6=a11-q 61-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.[答案] (1)C (2)A (3)32[方法技巧]等差(比)数列基本运算的解题思路(1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[演练冲关]1.(2017·合肥质检)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12得⎩⎪⎨⎪⎧4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.故选C.2.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解析:设等比数列{a n }的公比为q , 则a 1+a 2=a 1(1+q )=-1,a 1-a 3=a 1(1-q 2)=-3,两式相除,得1+q 1-q 2=13,解得q =-2,a 1=1,所以a 4=a 1q 3=-8. 答案:-83.(2018届高三·河南十校联考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________.解析:∵{a n }是公差为1的等差数列, ∴S 8=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.答案:192考点(三) 主要考查利用等差、等比数列的性质求解基本量及与前n 项和有关的最值问题.等差、等比数列的性质[典例感悟][典例] (1)(2017·云南调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50(2)(2017·长沙模拟)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=( )A .4B .6C .8D .8-4 2(3)(2018届高三·湖南名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033[解析] (1)由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,所以S 9-S 6=16,S 12-S 9=32,所以S 12=(S 12-S 9)+(S 9-S 6)+(S 6-S 3)+S 3=32+16+8+4=60,故选B.(2)在等比数列{a n }中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8,故选C.(3)因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032a 1+a 4 0322=4 032a 2 016+a 2 0172>0,S 4 033=4 033a 1+a 4 0332=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032,故选C.[答案] (1)B (2)C (3)C[方法技巧]等差、等比数列性质问题的求解策略(1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)运用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.[演练冲关]1.已知等差数列{a n }中,a 1=1,前10项和等于前5项和,若a m +a 6=0,则m =( ) A .10 B .9 C .8D .2解析:选A 记数列{a n }的前n 项和为S n ,由题意S 10=S 5,所以S 10-S 5=a 6+a 7+a 8+a 9+a 10=0,又a 6+a 10=a 7+a 9=2a 8,于是a 8=0,又a m +a 6=0,所以m +6=2×8,解得m =10.2.(2017·合肥质检)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a na n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:选A 因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a n a n=1+1a n ,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7.3.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.答案:50考点(四) 主要考查等差、等比数列相结合的基本量的计算以及数列有关最值问题的求解. 等差、等比数列的综合问题[典例感悟][典例] (1)(2018届高三·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值为( )A .- 3B .-1C .-33D . 3(2)设数列{}a n 是等差数列,数列{}b n 是等比数列,记数列{}a n ,{}b n 的前n 项和分别为S n ,T n .若a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4),则a 7+a 5b 7+b 5=________.[解析] (1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,所以b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝ ⎛⎭⎪⎫-7π3=tan ⎝ ⎛⎭⎪⎫-2π-π3=-tan π3=- 3. (2)设等差数列{}a n 的公差为d ,等比数列{}b n 的公比为q . 由a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4),得⎩⎪⎨⎪⎧a 5=b 5,a 5+d =b 5q ,2a 5+3d =4b 5+b 5q ,解得⎩⎪⎨⎪⎧q =-5,d =-6a 5.故a 7+a 5b 7+b 5=2a 5+2d b 5q 2+b 5=2a 5+2-6a 525a 5+a 5=-10a 526a 5=-513. [答案] (1)A (2)-513[方法技巧]等差、等比数列综合问题的求解策略(1)对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.(2)数列的通项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列的有关最值问题.[演练冲关]1.(2017·云南调研)已知数列{a n }是等差数列,若a 1-1,a 3-3,a 5-5依次构成公比为q的等比数列,则q =( )A .-2B .-1C .1D .2解析:选C 依题意,得2a 3=a 1+a 5,2a 3-6=a 1+a 5-6,即2(a 3-3)=(a 1-1)+(a 5-5),所以a 1-1,a 3-3,a 5-5成等差数列.又a 1-1,a 3-3,a 5-5依次构成公比为q 的等比数列,因此有a 1-1=a 3-3=a 5-5,q =a 3-3a 1-1=1. 2.(2017·望江调研)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为( )A .-47B .-48C .-49D .-50解析:选C 由已知得⎩⎪⎨⎪⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得⎩⎪⎨⎪⎧a 1=-3,d =23,那么nS n =n 2a 1+n 2n -12d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,又6<203<7,从而检验n =6时,6S 6=-48,n =7时,7S 7=-49.所以nS n 的最小值为-49.3.(2017·太原模拟)设等比数列{a n }的前6项和S 6=6,且1-a 22为a 1,a 3的等差中项,则a 7+a 8+a 9=________.解析:依题意得a 1+a 3=2-a 2,即S 3=a 1+a 2+a 3=2,由等比数列的性质,知数列S 3,S 6-S 3,S 9-S 6成等比数列,即数列2,4,S 9-S 6成等比数列,于是有S 9-S 6=8,即a 7+a 8+a 9=8.答案:8[必备知能·自主补缺] (一) 主干知识要记牢 1.等差数列、等比数列等差数列 等比数列通项公式a n =a 1+(n -1)d a n =a 1q n -1(q ≠0)前n 项和公式S n =n a 1+a n2=(1)q ≠1,S n =a 11-q n 1-q =a 1-a n q1-q;(2)q =1,S n =na 1na 1+n n -12d2.判断等差数列的常用方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. (3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. 3.判断等比数列的常用方法 (1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. (2)通项公式法:a n =cq n(c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. (二) 二级结论要用好 1.等差数列的重要规律与推论(1)a n =a 1+(n -1)d =a m +(n -m )d ;p +q =m +n ⇒a p +a q =a m +a n . (2)a p =q ,a q =p (p ≠q )⇒a p +q =0;S m +n =S m +S n +mnd .(3)连续k 项的和(如S k ,S 2k -S k ,S 3k -S 2k ,…)构成的数列是等差数列.(4)若等差数列{a n }的项数为偶数2m ,公差为d ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m (a m +a m +1),S 偶-S 奇=md ,S 奇S 偶=a ma m +1.(5)若等差数列{a n }的项数为奇数2m -1,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m -1=(2m -1)a m ,S 奇=ma m ,S 偶=(m -1)a m ,S 奇-S 偶=a m ,S 奇S 偶=m m -1. [针对练1] 一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d . 由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:52.等比数列的重要规律与推论(1)a n =a 1qn -1=a m qn -m;p +q =m +n ⇒a p ·a q =a m ·a n .(2){a n },{b n }成等比数列⇒{a n b n }成等比数列.(3)连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m ,…)构成的数列是等比数列(注意:这连续m 项的和必须非零才能成立).(4)若等比数列有2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=q . (5)对于等比数列前n 项和S n ,有: ①S m +n =S m +q mS n ;②S m S n =1-q m 1-q n(q ≠±1). (三) 易错易混要明了已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.[针对练2] 已知数列{a n }的前n 项和S n =n 2+1,则该数列的通项公式为________. 解析:当n =1时,a 1=S 1=2.当n ≥2时,a n =S n -S n -1=(n 2+1)-[(n -1)2+1]=n 2-(n -1)2=2n -1, 又当n =1时,2×1-1=1≠2.∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·成都模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·兰州模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=9a 1+a 92=72.3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎪⎨⎪⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8. 6.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=8a 1+a 82=8a 4+a 52=92.7.已知数列{}a n 满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q 2+1a 1q3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2. 9.(2017·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12 C.3-52 D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 31+q2a 41+q 2=1q=25+1=5-12,故选A. 10.(2017·张掖模拟)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B.⎩⎨⎧⎭⎬⎫1,12C.⎩⎨⎧⎭⎬⎫12D.⎩⎨⎧⎭⎬⎫0,12,1解析:选Ba n a 2n =a 1+n -1d a 1+2n -1d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.11.(2018届高三·湖南十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·洛阳模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝ ⎛⎭⎪⎫-712=14.二、填空题13.(2017·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n +1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=2×1-291-2=210-2=1022.答案:1 02214.(2017·兰州模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n -2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n =n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12n -1n2=23n -n 22+n2=2-n 22+72n .记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q=a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n +2.故{a n }是等差数列,所以a n =2n ,S n =2×1+n n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=n +12-n +1+60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n+1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9 解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =-22,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.2.(2017·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n22n -12=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝ ⎛⎭⎪⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d , 依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +12,1S n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1, 因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2n n +14.(2017·兰州模拟)已知数列{a n },{b n },若b 1=0,a n =1nn +1,当n ≥2时,有b n =b n-1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n =11-12+12-13+…+1n -1-1n =1-1n =n -1n,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·石家庄质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,…,若S k =14,则a k =________. 解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+nn +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n=1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a n b n =2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n =2n2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036.答案:4 036第二讲 大题考法——数 列[典例感悟][典例1] (2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.[解] 设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3. ① (1)由a 3+b 3=5得2d +q 2=6.②联立①②解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.[备课札记][方法技巧]等差、等比数列的基本量的求解策略(1)分析已知条件和求解目标,确定为最终解决问题需要先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,即确定解题的逻辑次序.(2)注意细节.例如:在等差数列与等比数列综合问题中,若等比数列的公比不能确定,则要看其是否有等于1的可能;在数列的通项问题中,第一项和后面的项能否用同一个公式表示等.[演练冲关]1.(2017·洛阳模拟)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值并证明:a n +2-a n =2; (2)求数列{a n }的通项公式.解:(1)令n =1得2a 1a 2=4a 1-3,又a 1=1,∴a 2=12.由题可得,2a n a n +1=4S n -3,① 2a n +1a n +2=4S n +1-3.②②-①得,2a n +1(a n +2-a n )=4a n +1. ∵a n ≠0,∴a n +2-a n =2.(2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1,∴a 2k -1=1+2(k -1)=2k -1,即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12,∴a 2k =12+2(k -1)=2k -32,即n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.题型(二) 主要考查错位相减法求和、裂项相消法求和以及分组求和,且常结合数列的递推公式、周期等命题.数 列 求 和 问 题[典例感悟][典例2] 等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .[解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 则由⎩⎪⎨⎪⎧b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2,q =2,所以a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 则c n =⎩⎪⎨⎪⎧2n n +2,n 为奇数,2n -1,n 为偶数,即c n =⎩⎪⎨⎪⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1)=1-12n +1+21-4n1-4=2n 2n +1+23(4n-1). [备课札记][方法技巧]1.分组求和中分组的策略 (1)根据等差、等比数列分组. (2)根据正号、负号分组. 2.裂项相消的规律(1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多. 3.错位相减法的关注点(1)适用题型:等差数列{a n }与等比数列{b n }对应项相乘({a n ·b n })型数列求和. (2)步骤:①求和时先乘以数列{b n }的公比; ②将两个和式错位相减; ③整理结果形式.[演练冲关]2.(2017·合肥质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式;(2)若b n =2a n +a n ,求数列{b n }的前n 项和T n . 解:(1)∵{a n }为等差数列,∴⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎪⎨⎪⎧a 1=3,d =2,∴a n =2n +1. (2)∵b n =2a n +a n =22n +1+(2n +1)=2×4n+(2n +1),∴T n =2×(4+42+ (4))+(3+5+…+2n +1) =2×41-4n1-4+n 3+2n +12=83(4n -1)+n 2+2n . 3.(2017·天津高考)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×1-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.题型(三)主要考查等差数列与等比数列的定义、等差中项及等比中项,且常与数列的递推公式相结合命题.等差、等比数列的判定与证明[典例感悟][典例3] (2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. [解] (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q2=-6.解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =-2×[1--2n]1--2=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[备课札记][方法技巧]判定和证明数列是等差(比)数列的方法(1)定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝ ⎛⎭⎪⎫或a n +1a n 为与正整数n 无关的某一常数.(2)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列; ②若a 2n =a n -1·a n +1≠0(n ∈N *,n ≥2),则{a n }为等比数列.[演练冲关]4.(2018届高三·东北三校联考)已知数列{a n }的首项a 1>0,a n +1=3a n 2a n +1(n ∈N *),且a 1=23.(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等比数列,并求出{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n .解:(1)证明:记b n =1a n -1,则b n +1b n =1a n +1-11a n -1=2a n +13a n -11a n-1=2a n +1-3a n 3-3a n =1-a n 31-a n =13,又b 1=1a 1-1=32-1=12,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为12,公比为13的等比数列.所以1a n-1=12×⎝⎛⎭⎪⎫13n-1,即an=2×3n-11+2×3n-1.所以数列{a n}的通项公式为a n=2×3n-11+2×3n-1.(2)由(1)知,1a n=12×⎝⎛⎭⎪⎫13n-1+1.所以数列⎩⎨⎧⎭⎬⎫1a n的前n项和T n=12⎝⎛⎭⎪⎫1-13n1-13+n=34⎝⎛⎭⎪⎫1-13n+n.[解题通法点拨] 数列问题重在“化归”[循流程思维——入题快]等差数列与等比数列是我们最熟悉的两个基本数列,在高中阶段它们是一切数列问题的出发点与落脚点.首项与公差(比)称为等差(比)数列的基本量,大凡涉及这两个数列的问题,我们总希望把已知条件化归为等差或等比数列的基本量间的关系,从而达到解决问题的目的.这种化归为基本量处理的方法是解决等差或等比数列问题特有的方法,对于不是等差或等比的数列,可通过转化化归,转化为等差(比)数列问题或相关问题求解.由于数列是一种特殊的函数,也可根据题目特点,将数列问题化归为函数问题来解决.[按流程解题——快又准][典例] (2015·全国卷Ⅰ)S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和.[解题示范](1)由a2n+2a n=4S n+3,①可知a2n+1+2a n+1=4S n+1+3.②②-①,得a2n+1-a2n+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=a2n+1-a2n=(a n+1+a n)(a n+1-a n).由a n >0,得a n +1-a n =2. 又a 21+2a 1=4a 1+3, 解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17 +…+12n +1-12n +3=n32n +3.[思维升华] 对于数列的备考:一是准确掌握数列中a n 与S n 之间的关系,这是解决数列问题的基础;二是重视等差与等比数列的复习,熟悉其基本概念、公式和性质,这是解决数列问题的根本;三是注意数列与函数、不等式等的综合问题,掌握解决此类问题的通法;四是在知识的复习和解题过程中体会其中所蕴含的数学思想方法,如分类讨论、数形结合、等价转化、函数与方程思想等.[应用体验](2017·张掖模拟)已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }的通项公式与数列{b n }的通项公式; (2)令c n =b n2n +1,其中n ∈N *,记数列{c n }的前n 项和为T n ,求T n +n +22n的值.解:(1)由题意知a 1=1,∵a n =-3S n +4,∴a n +1=-3S n +1+4. 两式相减并化简得a n +1=14a n ,∴{a n }是首项为1,公比为14的等比数列,∴a n =⎝ ⎛⎭⎪⎫14n -1.b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n . (2)∵c n =b n 2n +1=2n 2n +1=n2n ,∴T n =12+222+323+…+n 2n ,① 12T n =122+223+…+n -12n +n2n +1,②①-②得,12T n =12+122+123+…+12n -n 2n +1=1-n +22n +1.∴T n =2-n +22n,即T n +n +22n=2.[课时跟踪检测] 1.(2018届高三·广西三市联考)已知数列{a n }的前n 项和为S n ,且S n =2n-1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,又b 1=log 4a 1+1=1,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n n -12d =n 2+3n4.2.(2017·福州质检)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n .解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1,所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去),所以a n =2n -1.(2)a 1+a 3+a 9+…+a 3n =(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n-1)=2×(1+3+32+ (3))-(n +1)=2×1-3n +11-3-(n +1)=3n +1-n -2.3.(2017·济南模拟)已知数列{a n }满足a 1=511,4a n =a n -1-3(n ≥2). (1)求证:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和S n .解:(1)证明:当n ≥2时,由4a n =a n -1-3得a n +1=14(a n -1+1),所以数列{a n +1}是以512为首项,14为公比的等比数列.所以a n +1=512×⎝ ⎛⎭⎪⎫14n -1=211-2n ,a n=211-2n -1.(2)b n =|11-2n |,设数列{11-2n }的前n 项和为T n ,则T n =10n -n 2.当n ≤5时,S n =T n =10n -n 2;当n ≥6时,S n =2S 5-T n =n 2-10n +50.所以S n =⎩⎪⎨⎪⎧10n -n 2,n ≤5,n 2-10n +50,n ≥6.4.(2018届高三·广东五校联考)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式; (2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解:(1)∵S n =2a n -a 1, ① ∴当n ≥2时,S n -1=2a n -1-a 1;②①-②得,a n =2a n -2a n -1,即a n =2a n -1.由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1+a 3,∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是首项为2,公比为2的等比数列.∴a n =2n.(2)∵a n =2n,∴S n =2a n -a 1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +12n +1-22n +2-2=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12n +1-1=2n-12n +1-1. 5.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式及前n 项和T n . 解:(1)证明:∵a n +S n =n , ① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1,∴a n +1-1a n -1=12,当n =1时,a 1+S 1=1,∴a 1=12,a 1-1=-12,又c n =a n -1,∴{c n }是首项为-12,公比为12的等比数列.(2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n ,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n -a n -1。
2018届高三数学第二轮复习计划与进度

2018 届高三数学第二轮复习计划高三数学备课组二轮复习承上启下,是促进知识系统化、条理化及灵活运用的关键时期,更是促进学生能力发展的关键时期,二轮复习的质量如何直接关系到高考的成败。
为了提高二轮复习的效果,现结合我校高三数学现状及学生的实际,制定二轮复习计划如下:一、指导思想巩固第一轮复习成果,完善强化知识体系,增强题目的综合性,提高思维能力、概括能力以及分析问题解决问题的能力。
概括讲就是巩固、完善、综合、提高。
二、复习安排根据本学期的复习任务,将本学期的备考工作划分为以下四个阶段:第一阶段(专题复习):从 2018 年 2 月 23 日~ 2018 年 4 月 27 日完成以主干知识为主的专题复习;第二阶段(综合演练):从 2018 年 4 月 28 日~ 2018 年 5 月 18 日完成以训练能力为主的综合训练;第三阶段(自由复习):从 2018 年 5 月 ---- 日~ 2018 年 5 月 ---- 日完成以自我完善为主的自主复习;第四阶段(强化训练):从 2018 年 5 月 ---- 日~ 2018 年 6 月 03 日完成以历年高考真题为主的模拟训练。
三、备考策略第一阶段(专题复习)备考策略(从2018年 2月 23日~2018年 4月 27日)(一)目标与任务:强化高中数学主干知识的复习,形成良好的知识网络。
强化考点,突出重点,归纳题型,培养能力。
根据高考试卷中解答题的设置规律,本阶段的复习任务主要包括以下七个知识专题:专题一:集合、函数、方程与不等式。
此专题函数和方程以及应用方程知识解决函数问题是重点,特别要注重交汇问题的训练。
每年高考中函数、方程所占的比重都非常大,一般情况是在客观题中考查集合、函数、方程与不等式的几何意义和方程的计算,属于容易题;二是在解答题中进行综合考查,主要考查用方程研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。
(新课标版)备战2018高考数学二轮复习专题1.4数列、不等式教学案文

①如果数列 { an} 是等差数列 m n p q am an a p aq( m, n, p, q N ),特别地, 当 n 为奇数时, a1 an a2 an 1 …… =2 a中 . ②等差数列 { an} 的前 n 项和为 Sn,则 Sm, S2m- Sm, S3m- S2 m,…成等差数列 .
5
通项公式;二是转化为 Sn 的递推关系,先求出 Sn 与 n 之间的关系,再求 an.
5.数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出
Sn
的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将
条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题,不等关系或恒成立问
③等差数列 { an} ,{ bn} 的前 n 项和为 An,Bn,则 an bn
A2n 1 . ④等差数列 { an} 的前 n 项和为 Sn,则数列 { Sn } 仍
B2n 1
n
是等差数列 .
( 6)等差数列的单调性:设等差数列 { an} 的公差为 d ,当 d 0 时,数列 { an} 为递增数列;当 d 0 时,
二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于
在两边,小于夹中间”得不等式的解集.含参数的不等式的求解,要对参数进行分类讨论.
一.基础知识整合 基础知识: 一.基础知识整合 1. 等差数列知识要点:
( 1)通项公式要点:
an a1 (n 1)d an am (n m) d (m, n N * , m n) .
3. 在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进
2018年高考数学二轮复习第一部分专题二数列教学案文

专题二数列[研高考·明考点][析考情·明重点]第一讲 小题考法——等差数列与等比数列[典例感悟][典例] (1)(2017·云南调研)已知数列{a n }的前n 项和为S n ,且满足4(n +1)(S n +1)=(n +2)2a n (n ∈N *),则数列{a n }的通项公式a n =( )A .(n +1)3B .(2n +1)2C .8n 2D .(2n +1)2-1(2)(2017·成都模拟)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a nn 2=a n (n ∈N *),则数列{a n }的通项公式a n =________.[解析] (1)当n =1时,4×(1+1)×(a 1+1)=(1+2)2×a 1,解得a 1=8.当n ≥2时,4(S n+1)=n +2a n n +1,则4(S n -1+1)=n +2a n -1n ,两式相减得,4a n =n +2a n n +1-n +2a n -1n,整理得,a n a n -1=n +3n 3,所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n +3n 3×n 3n -3×…×3323×8=(n +1)3.检验知,a 1=8也符合,所以a n =(n +1)3.(2)根据a 1+a 222+a 332+…+a nn 2=a n ,①有a 1+a 222+a 332+…+a n -1n -2=a n -1,②①-②得,a nn2=a n -a n -1,即n 2a n -1=(n 2-1)a n ,所以a n a n -1=n 2n 2-1=n 2n +n -,所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×22+-×32+-×…×n 2n +n -=22×32×42×…×n 2-+-+-+n -n +=22×32×42×…×n2n -n +=2n n +1. [答案] (1)A (2)2n n +1[方法技巧]由a n 与S n 的关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”).(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1n =,S n -S n -1n[演练冲关]1.(2018届高三·广东五校联考)数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1a 2 017=( ) A.2 0171 009 B.2 0151 008 C.2 0162 017 D.2 0152 016解析:选 A 由a 1=1,a n +1=a 1+a n +n 可得a n +1-a n =n +1,利用累加法可得a n -a 1=n -n +2,所以a n =n 2+n2,所以1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1,故1a 1+1a 2+…+1a 2 017=211-12+12-13+…+12 017-12 018=2⎝ ⎛⎭⎪⎫1-12 018=2 0171 009,故选A. 2.(2017·石家庄质检)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845D .1 830解析:选D 不妨令a 1=1,根据题意,得a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1,当n 为偶数时构成以a 2=2为首项,以4为公差的等差数列.所以{a n }的前60项和为S 60=30+2×30+-2×4=1 830.3.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121.答案:121主要考查与等差比数列的通项公式、前n 项和公式有关的五个基本量间的“知三求二”运算.[典例感悟][典例] (1)(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97(2)(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8(3)(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] (1)∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98,故选C. (2)设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0.又d ≠0,则d =-2, 所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24. (3)设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1-q31-q=74,S 6=a1-q 61-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.[答案] (1)C (2)A (3)32[方法技巧]等差(比)数列基本运算的解题思路(1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[演练冲关]1.(2017·合肥质检)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12得⎩⎪⎨⎪⎧4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.故选C.2.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解析:设等比数列{a n }的公比为q , 则a 1+a 2=a 1(1+q )=-1,a 1-a 3=a 1(1-q 2)=-3,两式相除,得1+q 1-q 2=13,解得q =-2,a 1=1,所以a 4=a 1q 3=-8. 答案:-83.(2018届高三·河南十校联考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________.解析:∵{a n }是公差为1的等差数列, ∴S 8=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.答案:192[典例感悟][典例] (1)(2017·云南调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50(2)(2017·长沙模拟)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=( )A .4B .6C .8D .8-4 2(3)(2018届高三·湖南名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033[解析] (1)由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,所以S 9-S 6=16,S 12-S 9=32,所以S 12=(S 12-S 9)+(S 9-S 6)+(S 6-S 3)+S 3=32+16+8+4=60,故选B.(2)在等比数列{a n }中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8,故选C.(3)因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=a 1+a 4 0322=a 2 016+a 2 0172>0,S 4 033=a 1+a 4 0332=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032,故选C.[答案] (1)B (2)C (3)C[方法技巧]等差、等比数列性质问题的求解策略(1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)运用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.[演练冲关]1.已知等差数列{a n }中,a 1=1,前10项和等于前5项和,若a m +a 6=0,则m =( ) A .10 B .9 C .8D .2解析:选A 记数列{a n }的前n 项和为S n ,由题意S 10=S 5,所以S 10-S 5=a 6+a 7+a 8+a 9+a 10=0,又a 6+a 10=a 7+a 9=2a 8,于是a 8=0,又a m +a 6=0,所以m +6=2×8,解得m =10.2.(2017·合肥质检)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a na n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:选A 因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a n a n=1+1a n ,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7.3.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.答案:50[典例感悟][典例] (1)(2018届高三·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值为( )A .- 3B .-1C .-33D . 3(2)设数列{}a n 是等差数列,数列{}b n 是等比数列,记数列{}a n ,{}b n 的前n 项和分别为S n ,T n .若a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4),则a 7+a 5b 7+b 5=________.[解析] (1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,所以b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝ ⎛⎭⎪⎫-7π3=tan ⎝ ⎛⎭⎪⎫-2π-π3=-tan π3=- 3. (2)设等差数列{}a n 的公差为d ,等比数列{}b n 的公比为q . 由a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4),得⎩⎪⎨⎪⎧a 5=b 5,a 5+d =b 5q ,2a 5+3d =b 5+b 5q ,解得⎩⎪⎨⎪⎧q =-5,d =-6a 5.故a 7+a 5b 7+b 5=2a 5+2d b 5q 2+b 5=2a 5+-6a 525a 5+a 5=-10a 526a 5=-513. [答案] (1)A (2)-513[方法技巧]等差、等比数列综合问题的求解策略(1)对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.(2)数列的通项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列的有关最值问题.[演练冲关]1.(2017·云南调研)已知数列{a n }是等差数列,若a 1-1,a 3-3,a 5-5依次构成公比为q的等比数列,则q =( )A .-2B .-1C .1D .2解析:选C 依题意,得2a 3=a 1+a 5,2a 3-6=a 1+a 5-6,即2(a 3-3)=(a 1-1)+(a 5-5),所以a 1-1,a 3-3,a 5-5成等差数列.又a 1-1,a 3-3,a 5-5依次构成公比为q 的等比数列,因此有a 1-1=a 3-3=a 5-5,q =a 3-3a 1-1=1. 2.(2017·望江调研)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为( )A .-47B .-48C .-49D .-50解析:选C 由已知得⎩⎪⎨⎪⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得⎩⎪⎨⎪⎧a 1=-3,d =23,那么nS n =n 2a 1+n 2n -2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,又6<203<7,从而检验n =6时,6S 6=-48,n =7时,7S 7=-49.所以nS n 的最小值为-49.3.(2017·太原模拟)设等比数列{a n }的前6项和S 6=6,且1-a 22为a 1,a 3的等差中项,则a 7+a 8+a 9=________.解析:依题意得a 1+a 3=2-a 2,即S 3=a 1+a 2+a 3=2,由等比数列的性质,知数列S 3,S 6-S 3,S 9-S 6成等比数列,即数列2,4,S 9-S 6成等比数列,于是有S 9-S 6=8,即a 7+a 8+a 9=8.答案:8[必备知能·自主补缺] (一) 主干知识要记牢 1.等差数列、等比数列S n =n a 1+a n2=(1)q ≠1,S n =a 1-qn1-q=a 1-a n q1-q; (2)q =1,S n =na 1na 1+n n -2d2.判断等差数列的常用方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. (3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. 3.判断等比数列的常用方法 (1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. (2)通项公式法:a n =cq n(c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. (二) 二级结论要用好 1.等差数列的重要规律与推论(1)a n =a 1+(n -1)d =a m +(n -m )d ;p +q =m +n ⇒a p +a q =a m +a n . (2)a p =q ,a q =p (p ≠q )⇒a p +q =0;S m +n =S m +S n +mnd .(3)连续k 项的和(如S k ,S 2k -S k ,S 3k -S 2k ,…)构成的数列是等差数列.(4)若等差数列{a n }的项数为偶数2m ,公差为d ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m (a m +a m +1),S 偶-S 奇=md ,S 奇S 偶=a ma m +1.(5)若等差数列{a n }的项数为奇数2m -1,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m -1=(2m -1)a m ,S 奇=ma m ,S 偶=(m -1)a m ,S 奇-S 偶=a m ,S 奇S 偶=m m -1. [针对练1] 一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d . 由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:52.等比数列的重要规律与推论(1)a n =a 1qn -1=a m qn -m;p +q =m +n ⇒a p ·a q =a m ·a n .(2){a n },{b n }成等比数列⇒{a n b n }成等比数列.(3)连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m ,…)构成的数列是等比数列(注意:这连续m 项的和必须非零才能成立).(4)若等比数列有2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=q . (5)对于等比数列前n 项和S n ,有: ①S m +n =S m +q mS n ;②S m S n =1-q m 1-q n(q ≠±1). (三) 易错易混要明了已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.[针对练2] 已知数列{a n }的前n 项和S n =n 2+1,则该数列的通项公式为________. 解析:当n =1时,a 1=S 1=2.当n ≥2时,a n =S n -S n -1=(n 2+1)-[(n -1)2+1]=n 2-(n -1)2=2n -1, 又当n =1时,2×1-1=1≠2.∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·成都模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·兰州模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=a 1+a 92=72.3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎪⎨⎪⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8. 6.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=a 1+a 82=a 4+a 52=92.7.已知数列{}a n 满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q 2+1a 1q3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2. 9.(2017·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12 C.3-52 D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3+q2a 4+q2=1q=25+1=5-12,故选A. 10.(2017·张掖模拟)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B.⎩⎨⎧⎭⎬⎫1,12C.⎩⎨⎧⎭⎬⎫12D.⎩⎨⎧⎭⎬⎫0,12,1解析:选Ba n a 2n =a 1+n -d a 1+n -d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.11.(2018届高三·湖南十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·洛阳模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝ ⎛⎭⎪⎫-712=14.二、填空题13.(2017·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n +1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=-291-2=210-2=1022.答案:1 02214.(2017·兰州模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n -2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n =n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12n -1n2=23n -n 22+n2=2-n 22+72n .记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q=a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n + 2.故{a n }是等差数列,所以a n =2n ,S n =2×+n n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=n +2-n ++60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n+1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9 解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =-2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.2.(2017·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n2n -2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝ ⎛⎭⎪⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d , 依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +2,1S n =2nn +=2⎝ ⎛⎭⎪⎫1n -1n +1, 因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2n n +14.(2017·兰州模拟)已知数列{a n },{b n },若b 1=0,a n =1nn +,当n ≥2时,有b n =b n-1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n =11-12+12-13+…+1n -1-1n =1-1n =n -1n,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·石家庄质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,…,若S k =14,则a k =________. 解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+nn +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n=1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a n b n =2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n =2n2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036.答案:4 036第二讲 大题考法——数 列[典例感悟][典例1] (2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.[解] 设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3. ① (1)由a 3+b 3=5得2d +q 2=6.②联立①②解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.[备课札记][方法技巧]等差、等比数列的基本量的求解策略(1)分析已知条件和求解目标,确定为最终解决问题需要先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,即确定解题的逻辑次序.(2)注意细节.例如:在等差数列与等比数列综合问题中,若等比数列的公比不能确定,则要看其是否有等于1的可能;在数列的通项问题中,第一项和后面的项能否用同一个公式表示等.[演练冲关]1.(2017·洛阳模拟)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值并证明:a n +2-a n =2; (2)求数列{a n }的通项公式.解:(1)令n =1得2a 1a 2=4a 1-3,又a 1=1,∴a 2=12.由题可得,2a n a n +1=4S n -3,① 2a n +1a n +2=4S n +1-3.②②-①得,2a n +1(a n +2-a n )=4a n +1. ∵a n ≠0,∴a n +2-a n =2.(2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1,∴a 2k -1=1+2(k -1)=2k -1,即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12,∴a 2k =12+2(k -1)=2k -32,即n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.[典例感悟][典例2] 等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .[解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 则由⎩⎪⎨⎪⎧b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2,q =2,所以a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 则c n =⎩⎪⎨⎪⎧2n n +,n 为奇数,2n -1,n 为偶数,即c n =⎩⎪⎨⎪⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1)=1-12n +1+-4n1-4=2n 2n +1+23(4n-1). [备课札记][方法技巧]1.分组求和中分组的策略 (1)根据等差、等比数列分组. (2)根据正号、负号分组. 2.裂项相消的规律(1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多. 3.错位相减法的关注点(1)适用题型:等差数列{a n }与等比数列{b n }对应项相乘({a n ·b n })型数列求和. (2)步骤:①求和时先乘以数列{b n }的公比; ②将两个和式错位相减; ③整理结果形式.[演练冲关]2.(2017·合肥质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式;(2)若b n =2a n +a n ,求数列{b n }的前n 项和T n . 解:(1)∵{a n }为等差数列, ∴⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎪⎨⎪⎧a 1=3,d =2,∴a n =2n +1. (2)∵b n =2a n +a n =22n +1+(2n +1)=2×4n+(2n +1),∴T n =2×(4+42+ (4))+(3+5+…+2n +1) =2×41-4n1-4+n 3+2n +12=83(4n -1)+n 2+2n . 3.(2017·天津高考)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.[典例感悟][典例3] (2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. [解] (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1+q =2,a 1+q +q2=-6.解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =---n]1--=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[备课札记][方法技巧]判定和证明数列是等差(比)数列的方法(1)定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝ ⎛⎭⎪⎫或a n +1a n 为与正整数n 无关的某一常数.(2)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列; ②若a 2n =a n -1·a n +1≠0(n ∈N *,n ≥2),则{a n }为等比数列.[演练冲关]4.(2018届高三·东北三校联考)已知数列{a n }的首项a 1>0,a n +1=3a n 2a n +1(n ∈N *),且a 1=23.(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等比数列,并求出{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n .解:(1)证明:记b n =1a n -1,则b n +1b n =1a n +1-11a n -1=2a n +13a n -11a n-1=2a n +1-3a n3-3a n=1-a n -a n =13, 又b 1=1a 1-1=32-1=12,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为12,公比为13的等比数列.所以1a n -1=12×⎝ ⎛⎭⎪⎫13n -1,即a n =2×3n -11+2×3n -1.所以数列{a n }的通项公式为a n =2×3n -11+2×3n -1.(2)由(1)知,1a n =12×⎝ ⎛⎭⎪⎫13n -1+1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =12⎝ ⎛⎭⎪⎫1-13n 1-13+n =34⎝ ⎛⎭⎪⎫1-13n +n .[解题通法点拨] 数列问题重在“化归”[循流程思维——入题快]等差数列与等比数列是我们最熟悉的两个基本数列,在高中阶段它们是一切数列问题的出发点与落脚点.首项与公差(比)称为等差(比)数列的基本量,大凡涉及这两个数列的问题,我们总希望把已知条件化归为等差或等比数列的基本量间的关系,从而达到解决问题的目的.这种化归为基本量处理的方法是解决等差或等比数列问题特有的方法,对于不是等差或等比的数列,可通过转化化归,转化为等差(比)数列问题或相关问题求解.由于数列是一种特殊的函数,也可根据题目特点,将数列问题化归为函数问题来解决.[按流程解题——快又准][典例] (2015·全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.[解题示范](1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,得a n +1-a n =2. 又a 21+2a 1=4a 1+3, 解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17 +…+12n +1-12n +3=n n +.[思维升华] 对于数列的备考:一是准确掌握数列中a n 与S n 之间的关系,这是解决数列问题的基础;二是重视等差与等比数列的复习,熟悉其基本概念、公式和性质,这是解决数列问题的根本;三是注意数列与函数、不等式等的综合问题,掌握解决此类问题的通法;四是在知识的复习和解题过程中体会其中所蕴含的数学思想方法,如分类讨论、数形结合、等价转化、函数与方程思想等.[应用体验](2017·张掖模拟)已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }的通项公式与数列{b n }的通项公式; (2)令c n =b n2n +1,其中n ∈N *,记数列{c n }的前n 项和为T n ,求T n +n +22n的值.解:(1)由题意知a 1=1,∵a n =-3S n +4,∴a n +1=-3S n +1+4. 两式相减并化简得a n +1=14a n ,∴{a n }是首项为1,公比为14的等比数列,∴a n =⎝ ⎛⎭⎪⎫14n -1.b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n . (2)∵c n =b n 2n +1=2n 2n +1=n2n ,∴T n =12+222+323+…+n 2n ,① 12T n =122+223+…+n -12n +n2n +1,②①-②得,12T n =12+122+123+…+12n -n 2n +1=1-n +22n +1.∴T n =2-n +22n,即T n +n +22n=2.[课时跟踪检测] 1.(2018届高三·广西三市联考)已知数列{a n }的前n 项和为S n ,且S n =2n-1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,又b 1=log 4a 1+1=1,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n n -2d =n 2+3n4.2.(2017·福州质检)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n .解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1,所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去),所以a n =2n -1.(2)a 1+a 3+a 9+…+a 3n =(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n-1)=2×(1+3+32+ (3))-(n +1)=2×1-3n +11-3-(n +1)=3n +1-n -2.3.(2017·济南模拟)已知数列{a n }满足a 1=511,4a n =a n -1-3(n ≥2). (1)求证:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和S n .解:(1)证明:当n ≥2时,由4a n =a n -1-3得a n +1=14(a n -1+1),所以数列{a n +1}是以512为首项,14为公比的等比数列.所以a n +1=512×⎝ ⎛⎭⎪⎫14n -1=211-2n ,a n=211-2n -1.(2)b n =|11-2n |,设数列{11-2n }的前n 项和为T n ,则T n =10n -n 2.当n ≤5时,S n =T n =10n -n 2;当n ≥6时,S n =2S 5-T n =n 2-10n +50.所以S n =⎩⎪⎨⎪⎧10n -n 2,n ≤5,n 2-10n +50,n ≥6.4.(2018届高三·广东五校联考)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式; (2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解:(1)∵S n =2a n -a 1, ① ∴当n ≥2时,S n -1=2a n -1-a 1;②①-②得,a n =2a n -2a n -1,即a n =2a n -1.由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1+a 3,∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是首项为2,公比为2的等比数列.∴a n =2n.(2)∵a n =2n,∴S n =2a n -a 1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +1n +1-n +2-=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12n +1-1=2n-12n +1-1. 5.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式及前n 项和T n . 解:(1)证明:∵a n +S n =n , ① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1,∴a n +1-1a n -1=12,当n =1时,a 1+S 1=1,∴a 1=12,a 1-1=-12,又c n =a n -1,∴{c n }是首项为-12,公比为12的等比数列.(2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n ,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n -a n -1。
(新课标版)备战2018高考数学二轮复习专题1.2函数与导数教学案文

的指数函数的图像. ( 4)体会指数函数是一类重要的函数模型 .
3.对数函数:(1)理解对数的概念及其运算性质, 知道用换底公式将一般对数转化成自然对数或常用对数;
了解对数在简化运算中的作用 . ( 2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,
会画底数为 2, 10, 1/2 的对数函数的图像. ( 3)体会对数函数是一类重要的函数模型; ( 4)了解指数函数
解函数奇偶性的含义 . ( 5)会运用基本初等函数的图像分析函数的性质
.
2.指数函数: ( 1)了解指数函数模型的实际背景 . ( 2)理解有理指数幂的含义,了解实数指数幂的意义,
掌握幂的运算 .
( 3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为
2,3,10,1/2 ,1/3
,ln(
a )) 单调递减,在 (ln(
a ),
2
2
) 单调递增.
e2x ,所以 f (x) 0 .②若 a 0 ,则由( 1)得,当 x
ln a 时, f ( x) 取得最
2
小值,最小值为 f (ln a) a2 ln a .从而当且仅当 a2 ln a 0 ,即 a 1 时, f ( x) 0 .
( 4) 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的 复合函数 (仅限于形如 f( ax+b )的复合函数) 的导数 . 常见基本初等函 数的导数公式和常用导数运算公式:
(C 为常数 ) ;
, n ∈N+;
;
;
;
(a>0, 且 a≠1);
;
(a>0, 且 a≠1).
常用的导数运算法则:法则 1
2018版高考数学二轮复习 第2部分 必考补充专题教学案 理

第2部分必考补充专题
必考补充专题中的7讲在高考考查中较为简单,题型为选择、填空题及选修“二选一”,属送分题型,通过一轮复习,大多数考生已能熟练掌握,为节省宝贵的二轮复习时间,迎合教师与考生的需求,本部分做构建知识体系和针对训练.
本文档仅供文库使用。
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt 文件格式。
2。
2018届高三数学二轮复习计划

宾阳中学2018届高三数学备课组第二轮复习计划为使二轮复习有序进行,使我们的复习工作卓有成效并最终赢得胜利,在校、年级领导指导下,结合年级2018届高考备考整体方案的基础上,经数学基组研究,制定本工作计划。
一、成员:韦胜华(基组长)、黎锦勇、文育球、韦振、施平凡、候微、张善军、蓝文斌、陈卫庆、黄凤宾、李雪凤、韦衍凤、梁建祥、卢焕荣、黄恩端、林祟标。
本届高三学生由于高一、高二赶课较快,训练量较少,所以基础相对薄弱,数学的五大能力:计算能力、逻辑推理能力、空间想象能力、抽象概括能力、数据处理能力都较差,处理常规问题的通解通法未能落实到位,常见的数学思想还未形成。
二、努力目标及指导思想:1、承上启下,使知识系统化、条理化,促进灵活应用。
2、强化基础夯实,重点突出,难点分解,各个击破,综合提高。
三、时间安排:2018年1月下旬至4月中旬。
四、方法与措施:(一)重视《考试大纲》(以2018年为准)与《考试说明》(参照2017年的考试说明)的学习,这两本书是高考命题的依据,是回答考什么、考多难、怎样考这3个问题的具体规定和解说。
(二)重视课本的示范作用,虽然2018年高考是全新的命题模式,但教材的示范作用绝不能低估。
(三)注重主干知识的复习,对于支撑学科知识体系的重点知识,要占有较大的比例,构成数学试题的主体。
(四)注重数学思想方法的复习。
在复习基础知识的同时,要进一步强化基本数学思想和方法的复习,只有这样,在高考中才能灵活运用和综合运用所学的知识。
(五)注重数学能力的提高,数学能力包括空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。
(六)注重数学新题型的练习。
以高考试题为代表,构建新题型。
备注:时间上若有变动(如模考、联考等)往后(或前)推移,每一位高三老师必须严格按要求去做。
广西宾阳中学高三数学基组2017年12月21日。
(新课标版)备战2018高考数学二轮复习专题1.6圆锥曲线教学案

y2 1
3
【答案】 B
x2 y2 【解析】双曲线 C: a2 b 2 1 ( a> 0, b> 0) 的渐近线方程为 y
b x ,椭圆中: a
2
2
2
2
2
a 12, b 3, c a b 9,c 3 ,椭圆,即双曲线的焦点为
3,0 ,据此可得双曲线中的方程组:
b5
a2 c2 a2 b2 ,解得: a 2
A. 6 3
【答案】 A
B. 3 3
C. 2 3
D. 1 3
4 .【2017 课标 1,理】已知双曲线
C:
x2 a2
y2 b2
1 (a>0, b>0)的右顶点为 A,以 A为圆心, b 为半径作圆
A,圆 A与双曲线 C的一条渐近线交于 M、 N两点 . 若∠ MAN=60°,则 C的离心率为 ________.
由题设可知
2
=16(4 k
2
m 1)
0 . ,设 A( x1, y1), B( x2, y2),则 x1+x2=
8km 4k 2
1
,
x 1x2 =
4m2 4k 2
4. 1
而 k1 k2
y1 1 x1
y2 1 x2
kx1 m 1 kx2 m 1
x1
x2
ቤተ መጻሕፍቲ ባይዱ2 kx1 x2 (m 1)( x1 x2 ) . 由题设 k1 k2 x1 x2
c3
4, b 2
x 5 ,则双曲线 C 的方程为
4
y2 1 . 故选 B.
5
7.【 2017 课标 3,理 20】已知抛物线 C: y2=2x,过点( 2,0 )的直线 l 交 C与 A, B 两点,圆 M是以线段 AB 为直径的圆 . ( 1)证明:坐标原点 O在圆 M上;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1.9 选讲部分一.考场传真1. 【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.2.【2017课标1,文23】已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而112x -<≤.所以()()f x g x ≥的解集为1{|1}2x x --<≤. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.3.【2017课标II ,文22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.4.【2017课标II ,文23】已知330,0,2a b a b >>+=.证明: (1)55()()4a b a b ++≥; (2)2a b +≤. 【解析】(1)()()556556a b a b a ab a b b ++=+++()()23333442a b a b ab a b =+-++()2224ab a b =+- 4≥(2)因为()3322333a b a a b ab b +=+++()23ab a b =++()()2324a b a b +≤++()3324a b +=+,所以()38a b +≤,因此2a b +≤.5.【2017课标II ,文23】在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为l 3与C 的交点,求M 的极径.6.【2017课标3,文23】已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【解析】(1)()3<121123>2,x f x x ,x ,x --⎧⎪=--≤≤⎨⎪⎩,当<1x -时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤,当>2x 时,由()1f x ≥解得>2x .所以()1f x ≥的解集为{}1x x ≥. (2)由()2f x x x m≥-+得212m x x x x ≤+---+,而x x x x xx x x+---+≤--+2212+1+2x ⎛⎫≤ ⎪⎝⎭2355=--+244,且当32x =时,2512=4x x x x +---+.故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.二.高考研究 【考纲解读】 1.考纲要求选修4-4 坐标系与参数方程1.考纲要求:①理解坐标系的作用,能在极坐标系中用极坐标表示点的位置,能进行极坐标和直角坐标的互化;②了解参数方程,了解参数的意义,能选择适当的参数写出直线、圆、椭圆的参数方程;③掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.2.命题规律:高考试题对参数方程和极坐标的考查,主要考查直线和圆的参数方程,椭圆的参数方程,参数方程与普通方程的互化,极坐标与直角坐标的互化,极坐标方程与直角坐标方程的互化,结合解析几何中有关曲线的图形及性质、三角函数、平面向量等在求点的坐标、参数的值或范围、曲线的方程、有关线段的长度或最值等方面命制题目,考查学生的转化能力,分析问题、解决问题的能力,以及数形结合思想、方程思想等思想方法的应用.该知识点为高考选考内容之一,试题以解答题形式为主,难度一般中档偏下. 选修4-5 不等式选讲1.考纲要求:①理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:-+a-≤-;②会利用绝对值的几何意义求解以下类型的不等式:cbax≤b+、abaa+b≤cc+、bcx≥-;③了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放x-+bbcax≥+、a缩法.2.命题规律:高考试题对不等式选讲的考查,主要考查绝对值不等式,柯西不等式,基本不等式等知识,主要考查绝对值不等式的解法,绝对值不等式的最值,绝对值不等式的恒成立问题,利用柯西不等式,基本不等式求最值,题目难度一般为中、低档,着重考查利用数形结合的能力以及化归与转化思想.高考对这部分要求不是太高,会解绝对值不等式,会利用柯西不等式求最值,而解绝对值不等式是高考的热点,备考中应严格控制训练题的难度.高考对这部分要求不是太高,高考中有选择题和填空的形式,新课标等以选做题的形式考查.3.学法导航1.在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性.2. 将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x,y有范围限制,要标出x,y的取值范围.3.解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于认识方程所表示的曲线,从而达到化陌生为熟悉的目的,这是转化与化归思想的应用.4.使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.5.用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.一.基础知识整合 基础知识:1.极坐标与直角坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(),x y 和(),ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如下表:若圆心为00,M ,半径为r 的圆方程为0002cos 0r --+-=.注意:(1)在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置). (2)在极坐标系下,点的极坐标不惟一性易忽视.极坐标(),ρθ ,()(),2k k Z ρθπ+∈,()(),2k k Z ρπθπ-++∈表示同一点的坐标.3.常见曲线的参数方程的一般形式(1)经过点()000,P x y ,倾斜角为α的直线的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数).设P 是直线上的任一点,则t 表示有向线段0P P的数量.(2)圆的参数方程cos sin x r y r θθ=⎧⎨=⎩ (θ为参数).(3)圆锥曲线的参数方程椭圆)0(12222>>=+b a b y a x 的参数方程为cos sin x a y b θθ=⎧⎨=⎩ (θ为参数).双曲线22221(0,0)x y a b a b -=>>的参数方程为sec tan x a y b ϕϕ=⎧⎨=⎩ (ϕ为参数).抛物线px y 22=的参数方程为222x pt y pt⎧=⎨=⎩ (t 为参数).4.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么,()()x f t y g t =⎧⎪⎨=⎪⎩就是曲线的参数方程. 5.绝对值三角不等式(1)定理1:如果,a b 是实数,则a b a b a b -≤±≤+,对于a b a b +≤+,当且仅当0ab ≥时,等号成立.(2)定理2:如果,,a b c 是实数,则a c a b b c -≤-+-,当且仅当()()0a b b c --≥时,等号成立. 6.绝对值不等式的解法(1)含绝对值的不等式x a <与x a >的解集:(2)ax b c +≤(0c >)和ax b c +≥ (0c >)型不等式的解法: ①ax b c c ax b c +≤⇔-≤+≤; ②ax b c ax b c +≥⇔+≤-或ax b c +≥;(3)x a x b c -+-≥( 0c >)和x a x b c -+-≤ (0c >)型不等式的解法: ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.7.易错点形如x a x b c -+-≥的不等式解法在讨论时应注意分类讨论点处的处理及c 的符号判断,若0c <则不等式解集为R .8.不等式证明的方法(1)比较法:①求差比较法:知道0a b a b >⇔->,0a b a b <⇔-<,因此要证明a b >只要证明0a b ->即可,这种方法称为求差比较法.②求商比较法:由01aa b b>>⇔>且0,0a b >>,因此当0,0a b >>时,要证明a b >,只要证明1ab>即可,这种方法称为求商比较法. (2)综合法:利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法. (3)分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法. (4)反证法和放缩法:①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫作反证法.②证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,这种方法叫作放缩法. 9.几个常用基本不等式 (1)柯西不等式:①柯西不等式的代数形式:设1212,,,a a b b 均为实数,则()()()2222212121122a a bb a b a b ++≥+ (当且仅当1212a ab b =时,等号成立). ②柯西不等式的向量形式:设,αβ为平面上的两个向量,则αβαβ⋅≥⋅ .③二维形式的三角不等式:设1212,,,x x y y R ∈.④柯西不等式的一般形式:设1212,,,,,,,n n a a a b b b 为实数,则()()()222222212121122n n n n aa ab b b a b a b a b ++++++≥+++ ,当且仅当1212n na a ab b b === 时,等号成立.(2)平均值不等式: 定理:如果,,a b c 为正数,则3a b c ++≥a b c ==时,等号成立. 我们称3a b c++为正数,,a b c ,,a b c 的几何平均值,定理中的不等式为三个正数的算术—几何平均值不等式,简称为平均值不等式.一般形式的算术—几何平均值不等式:如果12,,,n a a a为n 个正数,则12n a a a n+++≥ 当且仅当12n a a a === 时,等号成立.易错点:使用柯西不等式或平均值不等式时易忽视等号成立的条件. 二.高频考点突破 考点1 极坐标【例1】已知极坐标系中的曲线2cos sin ρθθ=与曲线πsin 4ρθ⎛⎫+= ⎪⎝⎭交于A ,B 两点,求线段AB 的长.分析: 由将cos ,sin x y ρθρθ==极坐标方程2cos sin ρθθ=及πsin 4ρθ⎛⎫+= ⎪⎝⎭2x y =,2x y +=,联立方程组解得交点坐标()1,1A ,()2,4B -,根据两点间距离公式求线段AB 的长.【规律方法】1. 确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. 2.极坐标与直角坐标的互化(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正向重合;③取相同的单位长度. (2)直角坐标方程化为极坐标方程比较容易,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如cos ρθ,sin ρθ,2ρ的形式,进行整体代换.(3)直角坐标(),x y 化为极坐标(),ρθ的步骤①运用()222tan 0x y yx x ρθ⎧=+⎪⎨=≠⎪⎩②在[)0,2π内由()tan 0yx xθ=≠求θ时,由直角坐标的符号特征判断点所在的象限. (4)直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行. 3.求曲线的极坐标方程求曲线的极坐标方程的步骤:(1)建立适当的极坐标系,设(),P ρθ是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.4.注意: (1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.5.曲线的极坐标方程的应用:解决极坐标方程问题一般有两种思路.一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.要注意题目所给的限制条件及隐含条件.【举一反三】在平面直角坐标系xOy 中,曲线C 的方程为2220x x y -+=,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为()4R πθρ=∈.(1)写出C 的极坐标方程,并求l 与C 的交点,M N 的极坐标;(2)设P 是椭圆2213x y +=上的动点,求PMN ∆的面积的最大值.考点2 参数方程【例2】在平面直角坐标系中,曲线C 的参数方程为5cos sin x y αα=⎧⎨=⎩(α为参数),点P 的坐标为.(1)试判断曲线C 的形状为何种圆锥曲线;(2)已知直线l 过点P 且与曲线C 交于A ,B 两点,若直线l 的倾斜角为45︒,求||||PA PB ⋅的值.分析:(1)利用平方法消去参数可得22125x y +=,则曲线C 为椭圆;(2)可设直线l 的方程为cos 45sin 45x t y t ⎧=︒⎪⎨=︒⎪⎩(其中t 为参数),代入22125x y +=,得213670t t +-=,根据韦达定理及直线参数方程的几何意义可得 ||||PA PB ⋅的值.【规律方法】1.在求出曲线的参数方程后,通常利用消参法得出普通方程.一般地,消参数经常采用的是代入法和三角公式法,但将曲线的参数方程化为普通方程,不只是把其中的参数消去,还要注意,x y 的取值范围在消参前后应该是一致的,也就是说,要使得参数方程与普通方程等价,即它们二者要表示同一曲线.2.直线的参数方程及应用根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:(1)直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-;(2)定点0M 是弦12M M 的中点⇒120t t +=;(3)设弦12M M 中点为M ,则点M 对应的参数值122M t t t +=(由此可求12M M 及中点坐标). 3.圆与圆锥曲线的参数方程及应用解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角坐标方程.4.化参数方程为普通方程的方法: 化参数方程为普通方程的基本思路是消去参数,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④恒等式(三角的或代数的)消元法.参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围,这一点最易忽视.5.利用直线参数方程中参数的几何意义求解问题的方法 经过点()000,P x y ,倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数).若,A B 为直线l 上两点,其对应的参数分别为12,t t ,线段AB 的中点为M ,点M 所对应的参数为0t ,则以下结论在解题中经常用到: (1) 1202t t t +=;(2) 1202t t PM t +==;(3) 21AB t t =-;(4) 12PA PB t t ⋅=⋅. 【举一反三】【2018山东、湖北部分高中调研】已知曲线1C 、 2C 的参数方程分别为1:C()5{ 4x cos y sin θθθ==为参数, ()21:{ x tcos C t y tsin θθ=+=为参数. 求曲线1C 的普通方程;(2)已知点P 的直角坐标为(1,0),若曲线1C 与曲线2C 交于,A B 两点,求PA PB ⋅的取值范围.考点3 绝对值不等式的解法【例3】【2018辽宁鞍山中学二模】已知函数()211f x x x =+--.(1)求不等式()2f x <的解集;(2)若关于x 的不等式()22a f x a ≤-有解,求实数a 的取值范围. 分析:(1)按零点分段法去绝对值,分别在每一段内解一次不等式求出x 的范围,然后求并集就得到不等式的解集;(2)分区间去掉绝对值,把f(x)化为分段函数,分别求出每一段函数的值域,综合可求得函数的最小值;()2,2a f x a ≤-有解等价于()2f x min 2a a ≤-,由此解出a 的范围即可.【规律方法】1.解含有绝对值不等式时,去掉绝对值符号的方法主要有:公式法、分段讨论法、平方法、几何法等.这几种方法应用时各有利弊,在解只含有一个绝对值的不等式时,用公式法较为简便;但是若不等式含有多个绝对值时,则应采用分段讨论法;应用平方法时,要注意只有在不等式两边均为正的情况下才能运用.因此,在去绝对值符号时,用何种方法需视具体情况而定.2. 含绝对值不等式的常用解法(1)基本性质法:对0a >,x a a x a <⇔-<<,x a x a >⇔>或x a <-.(2)平方法:两边平方去掉绝对值符号.这适应于两边都是正数的绝对值不等式.(3)零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.用零点分段法解绝对值不等式的步骤:①求零点; ②划区间,去掉绝对值符号; ③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.(5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.3.证明绝对值不等式主要有三种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明;(2)利用三角不等式a b a b a b -≤±≤+进行证明;(3)转化为函数问题,数形结合进行证明.4对于求y x a x b =-+-或y x a x b =---型的最值问题利用绝对值三角不等式更方便.形如y x a x b =-+-的函数只有最小值,形如y x a x b =---的函数既有最大值又有最小值.【举一反三】【2018广西贺州桂梧高中联考】已知函数()()130f x x a x a =-+--≠的一个零点为2.(1)求不等式()2f x ≤的解集;(2)若直线2y kx =-与函数()f x 的图象有公共点,求k 的取值范围.考点4 不等式的证明【例4】【2018湖南株洲两校联考】设函数22f x x x =+()﹣﹣(I )解不等式2f x ≥() ;(Ⅱ)当01x R y ∈,<< 时,证明: 11221x x y y+≤+-﹣﹣ 分析: ()1运用绝对值的定义,去掉绝对值,得到分段函数,再由各段求范围,最后求并集即可.()2由分段函数可得()f x 的最大值,再由基本不等式求得111y y+-的最小值,即可得证. 【解析】(Ⅰ)由已知可得: ()4,22,22 4,2x f x x x x ≥⎧⎪=-<<⎨⎪-≤-⎩,由2x ≥时, 42>成立; 22x ﹣<<时, 22x ≥,即有1x ≥,则为12x ≤<.所以()2f x ≥的解集为{|1}x x ≥;(II )证明:由(Ⅰ)知, 224x x +≤﹣﹣,由于01y <<,则()1111112224111y y y y y y y y y y⎛⎫-⎡⎤+=++-=++≥+= ⎪⎣⎦---⎝⎭,则有11221x x y y +--≤+- 【规律方法】1. 绝对值不等式的证明:含绝对值不等式的证明题主要分两类:一类是比较简单的不等式,往往可通过公式法、平方法、换元法等去掉绝对值转化为常见的不等式证明题,或利用绝对值三角不等式性质定理:a b a b a b -≤±≤+,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.2. 利用柯西不等式证明不等式:使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式对这个式子进行缩小或放大,从而证得问题.利用柯西不等式求最值的一般结构为:()()222221222212111111n n a a a n a a a ⎛⎫++++++≥+++= ⎪⎝⎭ ,在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.3.放缩法证明不等式的技巧(1)放缩法原理简单,但放缩技巧性强,而且应用广泛,常用的放缩法有增项、减项,利用分式的性质、函数的性质、不等式的性质等.其理论依据是不等式的传递性,使用此方法时要注意把握放大或缩小的度,既不能放的过小,也不能放过了头.常见的放缩依据和技巧是不等式的传递性.缩小分母、扩大分子,分式值增大;缩小分子、扩大分母,分式值减小;每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头.(2)常见的放缩技巧有:①()()211111k k k k k >>-+ (2,k k N *≥∈);>>2k -1+k >22k >2k +k +1(k ≥2,且k ∈N *). 4.对于多项式的大小比较问题通常可以用比较法,而比较法中最常用的是作差法和作商法.作差法中作差后的关键是对差的符号进行判断,通常运用配方、因式分解等方法,作商法要注意两式的符号. 用作商法证明不等式应注意:10A A B B B ⎫>⎪⇒>⎬⎪>⎭. 10A A B B B ⎫>⎪⇒<⎬⎪<⎭.因此,用作商法必须先判定符号.5.应用不等时注意以下几点:(1)使用均值不等式求最值时,必须满足“一正、二定、三相等”的条件,且注意变形配凑技巧.(2)基本不等式及其变式中的条件要准确把握.如222a b ab +≥(,a b R ∈),a b +≥(,a b R +∈)等.(3)含绝对值三角不等式:a b a b a b a b -≤-≤±≤+中等号成立的条件应注意a b a b +≤+中0ab ≥,而a b a b -≤+中0ab ≤等.(4)分析法证明不等式的每一步都是寻求不等式成立的充分条件.(5)换元法证明不等式时要注意换元后新元的取值范围忽视它会导致错误结论或无法进行下去.(6)用数学归纳法证明不等式时,关键是配凑合适的项便于应用归纳假设.(7)应用柯西不等式关键是分析、观察所给式子的特点,从中找出柯西不等式的必备形式特点及等号成立的条件.(8)柯西不等式及排序不等式中,i i a b (i =1,2,…,n )均为实数,而平均值不等式中i a 为正数. 【举一反三】设函数12)(-=x x f(1)解关于x 的不等式)1()2(+≤x f x f ;(2)若实数b a ,满足2=+b a ,求)()(22b f a f +的最小值.1. 已知()|1||2|f x x x =-+-.(1)求函数()lg(()2)g x f x =-的定义域;(2)若()f x 的最小值为m ,,,,a b c R a b c m ∈++=,证明:22213a b c ++≥.押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.2. 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞ ,求实数m 的值;(2)若不等式()2|23|2y ya f x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞ .由|2|21x m ≤+,得1122m x m --≤≤+,所以,由122m +=,解得32m =. (2)不等式()2|23|2y y a f x x ≤+++等价于|21||23|22y ya x x --+≤+,由题意知max (|21||23|)22y y a x x --+≤+.因为|21||23||(21)(23)|4x x x x --+≤--+=,所以242y ya +≥,即[2(42)]y y a ≥-对任意y ∈R 都成立,则max [2(42)]y y a ≥-.而22(42)2(42)[]42y y y y +--≤=,当且仅当242y y=-,即1y =时等号成立,故4a ≥,所以实数a 的最小值为4.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐. 3. 在平面直角坐标系xOy 中,曲线1C的参数方程为,22x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为4cos 2sin ρθθ=+.(Ⅰ)求1C 的极坐标方程与2C 的直角坐标方程;(Ⅱ)设点P的极坐标为7π)4,1C 与2C 相交于,A B 两点,求PAB △的面积. 押题依据 极坐标方程和参数方程的综合问题一直是高考命题的热点.本题考查了等价转换思想,代数式变形能力,逻辑推理能力,是一道颇具代表性的题.4. 已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 的极坐标方程为221613sin ρθ=+. (1)求曲线C 的直角坐标方程;(2)已知直线l 的参数方程为112cos 1sin x t y t θθ=+⎧⎨=+⎩(t 为参数),直线l 交曲线C 于,A B 两点,若(2,1)M 恰好为线段AB 的三等分点,求直线l 的斜率.【解析】(1)由曲线C 的极坐标方程为221613sin ρθ=+,得2223sin 16ρρθ+=,所以曲线C 的直角坐标方程为221164x y +=. (2)将直线l 的参数方程112cos 1sin x t y t θθ=+⎧⎨=+⎩(t 为参数)代入曲线C 的直角坐标方程,得押题依据将椭圆和直线的参数方程、圆和射线的极坐标方程相交汇,考查相应知识的理解和运用,解题中,需要将已知条件合理转化,灵活变形,符合高考命题趋势.。