数学人教版七年级上册1.5有理数的乘方

合集下载

人教版七年级数学上册第一章1.有理数的乘方教案

人教版七年级数学上册第一章1.有理数的乘方教案

1.5.1《有理数的乘方》教案一、 教学目标(一)知识技能1、理解有理数乘方的意义, 能明确底数、指数、幂这几个概念的意义2、掌握有理数乘方的运算(二)过程与方法:通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。

(三)情感态度与价值观:1.在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性。

2.培养学生勤于思考、认真仔细和勇于探索的精神.教学重、难点:教学重点:有理数乘方的概念及运算。

教学难点:有理数乘方运算的符号法则。

二、教学设计(一)有效导入,明确目标提出问题:(1)边长为2的正方形的面积怎么计算?(2)棱长为2的正方体的体积怎么计算?(3)把一张足够大的厚度为0.1毫米的纸对折一次的厚度怎样计算?那么连续对折2次的厚度又怎样计算呢?连续对折3次,4次,...,30次又怎样计算呢? 依次引导学生完成三个问题。

导入新课。

(二)自主学习,合作探究阅读教材41页,完成以下问题:1、什么叫做乘方?什么叫做幂?2、 所代表的意义是什么?请说出 的读法。

3、什么叫做底数?什么叫做指数?n a n a学生以组为单位,展开活动,讨论交流。

教师在学生活动时,深入学生的活动中去,了解学生的讨论情况,帮助各别有困难的小组分析问题,提出思考方向。

(三)大组汇报,教师点拨1、什么是乘方?什么叫做幂?求n 个相同因数的积的运算,叫做乘方。

乘方的结果叫做幂。

对回答问题的小组进行评价,板书。

2、 所代表的意义是什么?请说出 的读法。

n 个相同的因数a 相乘,即 ,记作 ,读作“a 的n 次方”,也可读作“a 的n 次幂”。

对回答问题的小组进行评价,板书。

3、什么是底数?什么叫做指数?在 n a 中, a 叫做底数, n 叫做指数。

对回答问题的小组进行评价,板书。

教师补充提出问题:在教材,你还发现哪些其他的知识,请你提出来有同学们一起分享你的发现!教师鼓励学生发现知识,对发现知识的同学所在的小组进行评价。

人教版七年级上册课件1.5有理数的乘方

人教版七年级上册课件1.5有理数的乘方

( X ) -32 =-9; (-3)2=9
(4) 24 (2) (2) (2) (2) ; ( X )
-24=-2×2×2×2=-16
(5) ( 2)2 22 . ( X )
33
_3_或_-__3_4)2=_1_6_____
所以
(-3)2 =9
2
-3
=-9
思考:下列各数的意义,它们一样吗?
(2)2和 22 33
2 3
2
的意义是
2 3
的平方;
即2个 2 相乘; 3
22 的意义是“2的平方再除以3”。 3
(1)在64中,底数是_6__,指数是_4___;
(2)在a4中,底数是__a_,指数是_4___;
(3)在(-6)4中,底数是 _-6__, 指数是4___;
(5)(1)7=-1(6)(1)2007 =-1
(1) 1的任何次幂都为 1。
(2) -1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1。
用〉 、〈 或=号填空
1.711 __>__ 0 ( 3)5 _<____0
4
(7)8 _>___ 0
040 __=__0
0的任何正整数次幂都是0
填表:
34表示__4_个_3__ 相乘
(-2)3=__-_8___ (+1)2003 -(- 1)2002=_0__
- 14+1=__0____
手工拉面是我国的传统面食.制作时,拉面师 傅将一团和好的面,揉搓成1根长条后,手握两端 用力拉长,然后将长条对折,再拉长,再对折,每次 对折称为一扣,如此反复操作,连续扣六七次后便 成了许多细细的面条.假如拉扣了6次,你能算出 共有多少根面条吗?

人教版数学七年级上册1.5有理数的乘方教学设计

人教版数学七年级上册1.5有理数的乘方教学设计
1.从学生已有的知识出发,引导学生发现乘方与乘法的联系,降低学习难度。
2.通过丰富的实例和实际问题,激发学生的学习兴趣,提高他们解决乘方问题的积极性。
3.注重培养学生的数学思维,引导他们从不同角度分析问题,提高解决问题的灵活性。
4.针对学生的个体差异,进行有针对性的教学,帮助他们在掌握乘方知识的基础上,不断提高运算速度和准确性。
人教版数学七年级上册1.5有理数的乘方教学设计
一、教学目标
(一)知识与技能
1.了解有理数乘方的定义,理解乘方的意义,知道乘方与乘法的联系与区别。
2.掌握有理数乘方的计算法则,能够正确进行有理数乘方运算,提高计算速度和准确性。
3.能够运用有理数乘方解决生活中的实际问题,如计算面积、体积等。
(二)过程与方法
二、学情分析
学生在学习有理数乘方这一章节前,已经掌握了有理数的基本概念、加减乘除运算,具备了一定的数学基础。但在乘方运算方面,大部分学生还较为陌生,对乘方的意义、计算法则及实际应用等方面存在一定的困难。此外,学生在解决乘方问题时,可能会受到固定思维的影响,难以灵活运用乘方知识。
针对这种情况,教师在教学过程中应注重以下方面:
设计不同难度的练习题,让学生在实际操作中巩固乘方知识,提高运算速度和准确性。同时,注重引导学生运用乘方知识解决实际问题,提高他们解决问题的能力。
5.总结反馈,查漏补缺
在课堂结束时,组织学生进行总结,回顾本节课所学的乘方知识。教师根据学生的反馈,及时了解他们的学习情况,进行查漏补缺。
6.教学设想具体措施
1.培养学生的观察、分析、归纳能力,使其能够发现乘方的规律,形成自己的知识体系。
2.培养学生的合作意识和团队精神,通过小组讨论、交流,共同解决乘方运算中的问题。

人教版七年级数学上册1.乘方(1)

人教版七年级数学上册1.乘方(1)
(2)原式=-8+(-3)×(16+2)-9÷(-2)
=-8+(-3)×18-(-4.5) =-8-54+4.5 =-57.5
练一练
(1)(1)10 2 (2)3 4
解:原式= 1×2+(-8)÷4 =2+(-2) =0
(2)(5)3 3 ( 1 )4 2
解:原式 = 125 3 1
16 = 125 3
1、先算乘方,再算乘除,最后算加减; 2、同级运算,按照从左至右的顺序进行; 3、如果有括号,先做括号内的运算,按小括号、中括号、 大括号依次进行。
例1 计算: (1)2×(-3)3-4×(-3)+15;
(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).
解:(1)原式=2×(-27)-(-12)+15 =-54+12+15 =-27
怎样进行有理数的运算呢?按什么运算顺序进行呢?
通常把六种基本的代数运算分成三级.加与减是第一级运算,乘
与除是第二级运算,乘方与开方是第三级运算.运算顺序的规定
详细地讲是:先算高级运算,再算低级的运算;同级运算在一起,
按从左到右的顺序运算;如果有括号,先算小括号内的,再算中
括号,最后算大括号.
简单地说,有理数混合运算应按下面的运算顺序进行:
原式= 36 10 5 10
3
25 [( 6 9 21) ( 10)]
= 36 10 5 10
3
25 ( 6 10 9 10 21 10)
=
36 10 3 5 25 (2 6 7)
3
10
3
36
= 25 36
( 3 )3 (0.6) 2 ( 4 ) 2 1.53 23 ( 2)3

人教版数学七年级上册 乘方

人教版数学七年级上册 乘方

(-4)2 与 -42;
3 5
2

32 .
5
(-4)2 表示-4 的平方,-42 表示 4 的平方的相反数.
(-4)2 与-42 互为相反数.
3 5
2
表示
3 5
的平方,
32 5
表示
32
除以
5.

乘方的运算 例3 计算:
典例精析
(1) -32
-
2 3

(2)-23×(-32);
(3)64÷(-2)5;
(2) (-2)4 = (-2)×(-2)×(-2)×(-2) = 16.
(3)
2 3
3
=
2 3
2 3
2 3
=
8 27
.
思考:你发现负数的幂的正负有什么规律?
归纳总结
根据有理数的乘法法则可以得出: 1. 负数的奇次幂是负数,负数的偶次幂是正数;
2. 正数的任何正整数次幂都是正数, 0 的任何正整数次幂都是 0.
第一章 有理数 1.5 有理数的乘方 1.5.1 乘 方
第1课时 乘 方
学习目标
1. 理解并掌握有理数的乘方、幂、底数、指数的概念 及意义;(难点) 2. 能够正确进行有理数的乘方运算. (重点)
导入新课
情境引入 珠穆朗玛峰是世界的最高峰,它的海拔高度 是 8848.86 米.把一张足够大的厚度为 0.1 毫米的纸, 连续对折 30 次的厚度能超过珠穆朗玛峰,这是真的吗?
4. 厚度是 0.1 毫米的足够大的纸,将它对折 1 次后,厚 度为 0.2 毫米.
(1) 对折 3 次后,厚度为多少毫米 ? (2) 对折 7 次后,厚度为多少毫米 ? (3) 利用计算器计算:对折 30 次后,厚度为多少米? 是否超过珠峰的高度(8848.86 米)? 答案:(1)0.8 毫米. (2)12.8 毫米. (3)107374.1824 米,超过了珠峰的高度.

人教版七年级数学上册教案 1.5 有理数的乘方(3课时)

人教版七年级数学上册教案 1.5 有理数的乘方(3课时)

1.5有理数的乘方1.5.1乘方(第1课时)一、基本目标【知识与技能】1.理解有理数乘方的意义,能正确区分幂的底数与指数.2.能进行有理数的乘方运算,并能进行有理数的混合运算.【情感态度与价值观】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.二、重难点目标【教学重点】乘方的意义,利用乘方运算法则进行有理数乘方运算.【教学难点】理解一个负数的奇次幂和偶次幂的符号,有理数混合运算的顺序.环节1自学提纲,生成问题【5 min阅读】阅读教材P41~P44的内容,完成下面练习.【3 min反馈】(一)乘方1.求n个相同因数的积的运算叫乘方,乘方的结果叫做幂.2.在式子a n(n为正整数)中,a叫底数,n叫指数,a n叫幂.读作a的n次方或a的n 次幂.3.在94中,底数是9,指数是4,读作9的4次方,或9的4次幂.一个数可以看作这个数本身的一次方,例如5就是5的一次方.指数1通常省略不写.4.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.5.计算:(1)(-3)4;(2)-34;(3)⎝⎛⎭⎫-233; (5)(-1)2018. 解:(1)原式=81. (2)原式=-81. (3)原式=-827. (4)原式=1. (二)有理数的混合运算做有理数的混合运算时,先乘方,再乘除,最后加减;同级运算,从左到右进行;如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-2)100+(-2)101;(2)(-0.25)2017×42018.【互动探索】(引发学生思考)观察算式的特点,利用乘方的意义进行简算.【解答】(1)原式=(-2)100+(-2)×(-2)100=(1-2)×(-2)100=(-1)×2100=-2100.(2)原式=(-0.25)2017×4×42018=(-0.25×4)2017×4=(-1)2017×4=(-1)×4=-4.【互动总结】(学生总结,老师点评)灵活运用乘方的定义的逆应用,把底数相同的幂转化成指数也相同后,再逆应用运算律解答问题.【例2】计算:(1)-14+|3-5|-16÷(-2)×12; (2)6×⎝⎛⎭⎫13-12-32÷(-12). 【互动探索】(引发学生思考)利用有理数的混合运算顺序进行计算.【解答】(1)原式=-1+2-16×⎝⎛⎭⎫-12×12=-1+2+4=5.(2)原式=6×13-6×12-9×⎝⎛⎭⎫-112 =2-3+34=-14. 【互动总结】(学生总结,老师点评)计算有理数的混合运算,正确掌握运算法则是解题关键.活动2 巩固练习(学生独学)1.一根长1 m 的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( C )A.⎝⎛⎭⎫123 mB .⎝⎛⎭⎫125 m C.⎝⎛⎭⎫126 mD .⎝⎛⎭⎫1212 m2.计算:(1)⎝⎛⎭⎫-172; (2)-1.52;(3)8+(-3)2×(-2);(4)-14-16×[2-(-3)2]; (5)-33+(-1)2018÷16+(-5)2; (6)(-0.125)2016×82018.解:(1)原式=149. (2)原式=-2.25. (3)原式=-10. (4)原式=16. (5)原式=4. (6)原式=64.活动3 拓展延伸(学生对学)【例3】阅读下列材料:求1+2+22+23+...+22017的值,可令S =1+2+22+23+...+22017,则2S =2+22+23+24+ (22018)所以2S -S =22018-1,故S =22018-1.仿照以上推理,求1+5+52+53+…+52017的值.【互动探索】根据题目提供的信息,设S =1+5+52+53+…+52017,用5S -S 整理即可得解.【解答】设S =1+5+52+53+ (52017)则5S =5+52+53+54+ (52018)所以5S -S =52018-1,故S =52018-14. 【互动总结】(学生总结,老师点评)本题考查了乘方,读懂题目提供的信息,是解题的关键,注意整体思想的利用.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的乘方⎩⎪⎨⎪⎧ 乘方的定义负数的奇、偶次幂有理数的混合运算请完成本课时对应练习!1.5.2 科学记数法(第2课时)一、基本目标【知识与技能】理解科学记数法的意义和特征,能够用科学记数法表示大数.【过程与方法】通过收集一些大数,让学生感受大数的普遍存在以及数学与现实的联系,同时增强活动性和趣味性.【情感态度与价值观】正确使用科学记数法表示数,表现出一丝不苟的精神.二、重难点目标【教学重点】会用科学记数法表示大数.【教学难点】掌握10n的特征以及科学记数法中n与数位的关系.环节1自学提纲,生成问题【5 min阅读】阅读教材P44~P45的内容,完成下面练习.【3 min反馈】1.把下面各数写成幂的形式.(1)100=102;(2)1000=103;(3)10000=104;(4)100000=105.2.一个大于10的数都可以表示成a×10n的形式,其中a的取值范围是大于等于1且小于10的数,n是正整数,用这种方法表示数叫做科学记数法.3.用科学记数法表示数时,整数的位数与10的指数的关系是整数位数-1=指数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】用科学记数法表示下列各数:(1)24 800 000;(2)-5 764.3;(3)361万.【互动探索】(引发学生思考)科学记数法中的n怎样确定?【解答】(1)24 800 000=2.48×107.(2)-5 764.3=-5.7643×103.(3)361万=3 610 000=3.61×106.【互动总结】(学生总结,老师点评)对于一个绝对值大于10的有理数,用科学记数法表示时,a是原数的小数点向左移动后的结果,n是比原数整数位数少1的正整数.【例2】将下列用科学记数法表示的数还原成原数.(1)1.2×105;(2)2.3×107;(3)3.6×108;(4)-4.2×106.【互动探索】(引发学生思考)将用科学记数法表示的数还原成原数怎样确定位数?【解答】(1)1.2×105=120 000.(2)2.3×107=23 000 000.(3)3.6×108=360 000 000.(4)-4.2×106=-4 200 000.【互动总结】(学生总结,老师点评)把用科学记数法表示的绝对值大于10的有理数化成原数时,只需把小数点向右移动n位即可,不足的用零补充.活动2巩固练习(学生独学)1.2017年,山西省接待入境游客95.71万人次,实现海外旅游创汇3.5亿美元,同比增长分别为6.38%、10.32%;累计接待国内游客5.6亿人次,实现国内旅游收入5338.61亿元,同比增长分别为26.49%、26.27%.实现旅游总收入约5360亿元,同比增长26.21%.数据5360亿元用科学记数法可表示为(B)A.0.536×1012元B.5.36×1011元C.53.6×1010元D.536×109元2.用科学记数法表示出下列各数.(1)30 060;(2)15 400 000;(3)123 000.解:(1)3.006×104.(2)1.54×107.(3)1.23×105.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解:(1)20 100.(2)607 000.(3)-3000.活动3拓展延伸(学生对学)【例3】比较下列两个数的大小.(1)-3.65×105与-1.02×106;(2)1.45×102017与9.8×102018.【互动探索】根据有理数的大小比较方法对比比较用科学记数法表示的数的方法.【解答】(1)|-3.65×105|=3.65×105,|-1.02×106|=1.02×106.因为1.02×106>3.65×105,所以-3.65×105>-1.02×106.(2)因为9.8×102018=98×102017,98>1.45,所以1.45×102017<9.8×102018.【互动总结】(学生总结,老师点评)比较用科学记数法表示的数时,利用乘方的意义,把10的指数转化成相同的,然后比较a 的大小,若a 大,则原数就大;若a 小,则原数就小.环节3 课堂小结,当堂达标(学生总结,老师点评)科学记数法⎩⎪⎨⎪⎧ 用科学记数法表示数还原用科学记数法表示的数比较用科学记数法表示的数请完成本课时对应练习!1.5.3 近似数(第3课时)一、基本目标【知识与技能】了解近似数的概念,能按要求取近似数.【过程与方法】在认识、理解近似数的过程中感受大数目近似数的使用价值,增强学生的应用意识,提高应用能力.二、重难点目标【教学重点】近似数、精确度和有效数字的意义.【教学难点】由给出的近似数求其精确度及有效数字,按给定的精确度或有效数求一个数的近似数.环节1自学提纲,生成问题【5 min阅读】阅读教材P45~P46的内容,完成下面练习.【3 min反馈】1.在现实生活与生产实践中,能准确地表示一些量的数,称为准确数;近似数是与实际的准确数非常接近的数.2.下列各个数据中,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克;(2)现在的气温是-2 ℃;(3)1 m等于100 cm;(4)教窒里有50张课桌;(5)由于我国人口众多,人均森林面积只有0.128公顷.解:(1)小琳称得体重为38千克,是近似数.(2)现在的气温是-2 ℃,是近似数.(3)1 m等于100 cm,是准确数.(4)教室里有50张课桌,是准确数.(5)由于我国人口众多,人均森林面积只有0.128公顷,是近似数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按照括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0238(精确到0.001);(2)2.605(精确到0.1);(3)20 543(精确到百位).【互动探索】(引发学生思考)什么是精确度?怎样求一个数的近似数?【解答】(1)0.0238(精确到0.001)≈0.024.(2)2.605(精确到0.1)≈2.6.(3)20 543(精确到百位)≈2.05×104.【互动总结】(学生总结,老师点评)近似数一般是由四舍五入得到的,当用四舍五入法取近似值时,近似数的末位数字0不能省略.活动2 巩固练习(学生独学)1.下列说法正确的是( C )A .近似数32与32.0的精确度相同B .近似数5万与近似数5000的精确度相同C .近似数0.0108有3个有效数字2.近似数1.02×105精确到了千位.3.把489 960按四舍五入法保留三个有效数字是4.90×105.4.用四舍五入法,对下列各数按括号中的要求取近似数:(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46 021(精确到百位).解:(1)0.63. (2)8.(3)131.0. (4)4.60×104.活动3 拓展延伸(学生对学)【例2】已知有理数x 的近似值是5.40,则x 的取值范围是________.【互动探索】如果近似值5.40是“四舍”得到的,那么原数x 最大是5.4+0.004=5.404;如果近似值5.40是“五入”得到的,那么原数x 最小是5.40-0.005=5.395.原数x 的取值范围是5.395<x <5.404.【答案】5.395<x <5.404【互动总结】(学生总结,老师点评)本题考查了准确值的取值范围,如果近似值是“四舍”得到的,那么原数最大;如果近似值是“五入”得到的,那么原数最小.环节3 课堂小结,当堂达标(学生总结,老师点评)近似数⎩⎪⎨⎪⎧ 求一个数的近似数精确度、有效数已知近似数求原数请完成本课时对应练习!。

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思
3、进行乘方运算应先定符号后计算。
目标检测
1、在46中,底数是,指数,
2、(-4)7读做;
3、(-4)12的结果是数(填“正”或“负”);
4、计算:=;
5、计算:(-1)2n+(-1)2n+1=;
课后作业
教材p47立完成,师生共同订正
通过练习使学生对这节课的知识得以巩固,加深理解
对折3次可裁成8张,即2×2×2张;
问题(1):
若对折10次可裁成几张?请用一个算式表示(不用算出结果)
2×2×2×2×2×2×2×2×2×2
有10个2相乘
若对折100次,算式中有几个2相乘?
在这个积中有100个2相乘。这么长的算式有简单的记法吗?
问题(2):
2个a相加可记为:a+a=a×2
边长为a的正方形的面积可记为:
七、教学评价设计
在探索法则的教学环节中,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个引导者、合作者、组织者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。在练习设计中,设置不同难度的计算题,让不同的学生都得到训练,得到提高。为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了一定的试题教学,难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。
a×a=a2
3个a相加可记为:a+a+a=a×3
棱长为a的正方体的体积可记为:
a×a×a=a3
4个a相加可记为:a+a+a+a=a×4
那么4个a相乘可记为:
a×a×a×a=a4
n个a相加可记为:a+a+…+a=a×n
n个a相乘可记为:a×a×…×a=an

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。

教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。

本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但乘方作为一个新的概念,需要学生从新的角度去理解。

学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.乘方的意义和运算规则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.实例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。

2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。

例如,2的3次方表示2乘以自己3次,即2×2×2=8。

3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。

可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。

4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。

例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5、有理数的乘方
一、教学目标:
(1)知识与技能:让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。

(2)过程与方法:在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中体会转化的数学思想,并感受到数学的简洁美。

(3)情感、态度和价值观:让学生通过观察、推理,归纳出有理数乘方的符号法则,培养学生的符号意识,增进学生学好数学的自信心;让学生经历知识的拓展过程,发展学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

二、教学重难点:
1.教学重点:有理数乘方的意义及运算。

2.教学难点:有理数乘方中幂,指数,底数的概念及其相互间关系的理解。

三、教学过程设计:
第一环节:创设情境,引入新课
师:上节课我们学习了什么内容?
生:有理数的除法
师:只要知道一句话是?
生:先确定符号,除以一个数等于乘以这个数的倒数。

师:好。

现在问问同学们,你们喜不喜欢吃牛肉面?
生:喜欢!
师:你们见过拉面师傅拉面条吗?先用一根很粗的面条,把两头捏起来拉长,一根变成了几根?
生:两根。

师:然后再把两头捏起来拉长,两根变成了几根?
生:四根。

师:再把4根捏起来拉长,会变成多少根呢?像这样4次5次后,变成了多少根呢?好,现在同学们先猜想一下然后把准备好的绳子拿出来,每个小组做一做来验证一下。

同学们得到什么规律?
生:每次得到绳子的个数都是上一次的2倍。

板书:第一次:2=21(读作:2的1次方)
第二次:4=2×2=22(读作:2的2次方)
第三次:8=2×2×2=23
第四次:16=2×2×2×2=24
师:第十次多少根?第n次呢?数学需要简洁美,这些式子美吗?
生:不美,不简洁。

师:那我们怎么简记呢?这就是我们这节课要学的内容---有理数的乘方。

第十次: 2×2×2………×2=210
………………………
第n次:2×2×2………×2=2n(读作:2的n次方)
师:所以5×5×5=53 1×1×1×1=14 6×6……6=6n如果是a×a×a×a……×a怎么记呢?
生:a n
师:对了。

像这样求n 个相同因数a 的积的运算叫做乘方。

乘方的结果叫做幂。

a 叫做底数,n 叫做指数。

读作a 的n 次方或a 的n 次幂。

这就是我们这节课要学习的内容。

有理数的乘方。

例如9 5的底数是9,指数是5,表示9×9×9×9×9,读作9的5次方或9的5次幂
活动目的:通过活动增强趣味性,吸引学生的注意力,并且很快找到规律,自己发现问题,从而理解有理数乘方在现实生活中的意义,让学生切实感受到生活中处处有数学。

第二环节:熟悉概念,加深理解(做开火车的游戏)
1.填空:
(1)7 4的底数是_______,指数是________,表示_________读作_________
(2)(-2)10的底数是_______,指数是________,表示_________读作_________
(3)( -1/3)8的指数是________,底数是________表示_________读作_______,
2. 计算:① 53 ;② (-3)4;③ (-1/2)
3.
活动目的:找同学上黑板做,其他同学独立完成,做完后同桌互相交换练习本并批改,目的是让学生熟悉概念,加深理解。

第三环节:例题讲解,规范格式
师:细心的同学发现了:有些数加括号了,有些数没有加括号,加不加到底有什么不同呢?我们来看这道题。

1.请指出下列各组数的异同。

(每个同学独立思考然后找到不同之处)
结论:
(1)负数的乘方,在书写时一定要把整个负数, 用小括号括起来.分数的乘方,在书写的时一定要把整个分数用小括号括起来.
(2)看清楚底数和指数以及括号,位置不同意义不同。

2.我们一起来算一算:①3)2(--; ② 42-;③432
-. 活动目的: 培养学生的归纳抽象能力,建立符号感。

例题讲解是为了熟悉有理数的乘方运算,并规范幂的书写格式。

然后通过书上的练习,让学生对需要注意的地方自然而然记住了,无需死记硬背。

第四环节:课堂练习,分层推进
a
n 底数 指数 运算的结果叫做幂
4(2)-和42-26()5和265
根据“符号”找朋友:
(1)(-2)3 (2)(-3)2
课前老师备好下列卡片,让每个学生计算卡片上的数,找出与上面2个式子符号相同的“朋友”,并贴在黑板上。

活动目的:通过做游戏的方式,让学生自己总结归纳得到结论:负数的偶数次的幂是正数,负数的奇数次的幂是负数,正数的任何次方都是正数.0的任何次方都得0.从而让学生感受到归纳的数学思想,再通过判断正误题,达到加深印象的目的。

第五个环节:联系拓广,发散思维
计算:1.
2.
活动目的:第1题可让学生感悟逆向思维。

一个数的平方是16,学生很容易认为这个数是4,而忽略-4;第2题主要是引导学生认识到2n表示偶数,2n+1表示奇数。

从而体会到-1的偶次方为1.奇次方为-1.
第六个环节:课堂小结,当堂测试
用提问的方式由学生完成课堂小结。

如:“本节课同学们学到了哪些知识?”“乘方运算与四则运算有何联系?”
活动目的:培养学生的表达能力,激励学生展示自我,认识自我,建立自信.
当堂测试:
1、①在(-6)3中底数是 ,指数是 .
②在(-6/5)4中底数是 ,指数是 .
2、① (-2)3 = ②(-1/3)4 = ③ (-1)101 = ④-12 =
3、什么数的平方等于16? 什么数的平方等于0?
4、任何一个有理数的2次幂是( )
(A)正数(B)负数(C)非正数(D)非负数
5、(1) ( -0.125)8×(1/8)7 (2) 22002×(-1/2)2003
第七环节:布置作业
书上59页习题2.13,知识技能1、2、
活动目的:复习巩固检测本节知识,训练提高运算技能,以及应用数学知识解决实际问题的能力.
四、教学反思
有理数乘方是同学们又接触到的一种新的运算,是初中数学教学的重点之一,也是初中数学教学的一个难点。

所以我在教这一节课的教学中要从有理数乘方的意义,有理数乘方的符号法则,有理数乘方运算顺序,有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。

要求学生深刻理解有理数乘方的意义,注意以下几点:
一、乘方是一种特殊的乘法运算。

相当于“+、-、×、÷”。

教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。

强调幂的意义,幂的意义与“和、差、积、商”一样。

二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。

法则是:正数的任何次幂是正数,0的任何正整数次幂是0,负数的奇次幂是负数,负数的偶数次幂是正数,教师在教学时强调做乘方时先确定符号。

从学生的作业情况反馈的信息表明,教学设计中因缺乏负数乘方与乘方的相反数的练习,使得学生在阅读上和计算中产生了混淆,造成了错误,因此在今后的教学设计中应作适当调整.如设计一个(-2)4和-24列表辨析,帮助学生区别负数乘方与乘方的相反数这两个概念.
(-2)-2
写法有括号无括号
读法负2的4次方2的4次方的相
反数
意义4个(-2)相乘
即(-2)×(-2)
×(-2)×(-2)4个2相乘的积的相反数
即-(2×2×2×2)
结果16 -16
另外,对那些在数学学习上有特殊需求的学生,可在联系拓广中适当补充一两个有思维难度的题目,以满足他们的学习需求,如“试比较有理数a与a2的大小”,像这样的题,一方面是字母表示了数,另一方面需要分类讨论,这对学生而言,无疑是一个挑战,这样做很有意义.。

相关文档
最新文档