第一章(3) 概率论的基本概念

合集下载

概率论基础知识

概率论基础知识
几何性质:介于曲线y=f(x)与Ox轴之间的面积等于1。X落在区间(x1,x2]的概率P{x1<X≤x2}等于区间(x1,x2]上曲线y=f(x)之下的曲边梯形的面积。
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。

概率论讲义_带作业

概率论讲义_带作业

例 已知某类产品的次品率为0. 2 ,现从一大批这类产品中随机抽查2 0 件. 问恰好 有 件次品的概率是多少?
3) 泊松分布
概率论的基本概念 样本空间
样本点
事件
事件的概率
练习 1. 抛一枚骰子,观察向上一面的点数;事件表示“出现偶数点”
2. 对目标进行射击,击中后便停止射击,观察射击的次数;事件表示“射击次数不超 过5 次”
事件之间的关系与运算
事件语言
集合语言
样本空间
事件
的对立事件
事件 或者
分布律:如果记离散型随机变量 所有可能的取值为
值的概率,即事件
的概率为
, 取各个可能
上式称为离散型随机变量 的分布律. 分布律也可以直观的表示成下列表格:
根据概率的性质,分布律中的 应该满足下列条件: 1. 2. 例 某系统有两台机器独立运转. 设第一台与第二台机器发生故障的概率分别是 0. 1 ,0. 2. 以 表示系统中发生故障的机器数,求 的分布律.
随机变量的例子
掷一枚色子,用 记点数;
掷三枚色子,用 记点数之和;
掷一枚硬币,记
为“出现正面”,
为“出现反面”;
变量的取值是随机的,依赖于随机试验的结果
用随机变量来表示事件
设 为一个实数集合,则用
表示一个事件 ,即
例如,某射手射击某个目标,击中计1 分,未中计0 分,则计分 表示一个随机
变量,且“击中”这个事件可以表示为
第二章 随机变量及其分布
Hale Waihona Puke 第六讲 随机变量 离散随机变量
概率论的另一个重要概念是随机变量. 随机变量的引入, 使概率论的研究由个别的 随机事件扩大为随机变量所表征的随机现象的研究.

概率论与数理统计复习笔记

概率论与数理统计复习笔记

概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。

概率论的基本概念

概率论的基本概念
⑴.两件都是正品: ;
⑵.两件都是次品: ;
⑶.一件是正品、另一件是次品: ;
⑷.第二件是次品: 。
6、高射炮向敌机发射三枚炮弹,设每发炮弹击中敌机的概率为 (每发击中与否相互独立),而敌机中一弹时坠落的概率为 ,中两弹时坠落的概率为 ,中三弹时坠落的概率为 。
⑴.求敌机被击落的概率;
⑵.若敌机被击落,求它只中一弹的概率。
解:用 分别表示电话是打给 的, 分别表示 因公外出,则
⑴. ;
⑵. ;
⑶. ;
⑷. ;
⑸. 。
解:用 表示敌机中 弹, ,用 表示敌机被击落,则
, ,故


7、已知男子中有 是色盲患者,女子中有 是色盲患者,现从男女人数相等的人群中随机地选一人,问此人是色盲患者的概率为多少若已知此人是色盲患者,求此人是男性的概率。
解:用 表示所选人为男性, 表示所选人为色盲患者,则
, , ,故


8、甲、乙、丙三人独立地去破译密码,已知甲、乙、丙各自能译出密码的概率分别为 ,问三人中至少有一人能将此密码译出的概率为多少
概率论的基本概念
第一章概率论的基本概念
【内容提要】
一、随机事件及其运算关系
1.随机现象在一定条件下,可能出现不同结果(不可预先确知的)的现象。
2.随机试验在一定条件下,对随机现象进行观测或观察的过程。随机试验具有如下特点:
⑴.可以在相同条件下重复进行;
⑵.每次试验的结果不止一个,并且能事先明确试验的所有可能结果;
⑴.非负性: ,有 ;
⑵.规范性: ;
⑶.可列可加性:对任意可列无穷多个两两互斥的事件 ,有 。
则称 为事件 的概率。事件的概率有如下性质:

第一章 概率论的基本概念(第3讲)

第一章 概率论的基本概念(第3讲)

第1.7节 事件的独立性
三、n个事件相互独立定义
n个事件 A1 , A2 , A3 ,..., An 相互独立的定义为:
P( Ai Aj ) = P( Ai )P( Aj ), i < j, i, j = 1,2,..., n P( Ai Aj Ak ) = P( Ai )P( Aj )P( Ak ), i < j < k, i, j, k = 1,2,..., n ... P( A1 A2 ...An ) = P( A1 )P( A2 )...P( An )
解: (1)设A=甲中, B=乙中, C=目标被击中, 所求
P(A|C)=P(AC)/P(C) =P(A)/[P(A)+P(B)-P(A)P(B)]
(C=A∪B)
=0.6/0.8=3/4
第1.7节 事件的独立性
二、三个事件相互独立定义
对于三个事件 A, B, C 的相互独立定义为: P ( AB ) = P ( A ) P ( B ) P ( AC ) = P ( A ) P (C ) P ( BC ) = P ( B ) P (C ) P ( ABC ) = P ( A ) P ( B ) P (C )
C
k n
pk q n−k
(k
=
0,1,L, n)
P( A1 A2 ...Ak Ak+1 Ak+2 ...An ) = pkqn−k (前k次成功)
第1.8节 独立试验序列
二、考察概率
(2) 第 k 次试验首次“成功”的概率为
qk−1 p(k = 0,1,2,L)
第1.8节 独立试验序列
三、例题:Leabharlann 第1.9节 几何概率和概率的数学定义

第1章 概率论的基本概念

第1章 概率论的基本概念

试验者
德•摩根 蒲 丰 K•皮尔逊 K•皮尔逊 维 尼
n
2048 4040 12000 24000 30000
nH
1061 2048 60199 12012 14994
fn(H)
0.5181 0.5069 0.5016 0.5005 0.4998
nA 频率 f n ( A) 具有如下基本性质: n
统计概率的性质
1. 非负性:对每个事件A有 1 P ( A) 0; 2. 规范性:对必然事件S有 P ( S ) 1;
3. 有限可加性:设A1,A2,…An是两两互不相容事件 则 P( A1 A2 ... An ) P( A1 ) P( A2 ) ... P( An )


交换律 A B B A
A B B A
结合律 ( A B) C A ( B C )
( A B) C A ( B C )
分配律 ( A B) C ( A C ) ( B C )
A ( B C ) ( A B) ( A C )
其结果可能为:
正品、次品。
其结果可能为: 红、黄、绿。
实例6 “出生的婴儿可能是男,也可能是 女”。
实例7 “明天的天气可能是晴 , 也可能是多云 或雨 ”。
在我们所生活的世界上, 充满了不确定性
如何来研究随机现象?
随机现象是通过随机试验来研究的。
问题 什么是随机试验?
1. 试验(Experiment):包括各种各样的科学实 验,也包括对客观事物的“观察”、“测量”等。 2. 随机试验(E,Random experiment):具有以 下三个特征的试验: (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果 会出现。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

概率论的基本概念

概率论的基本概念
例 1 某城市共发行 3 种报纸甲、乙、丙,在这个城市的居民中有 45% 订阅甲报,35% 订 阅乙报,30% 订阅丙报,10% 同时订阅甲报和乙报,8% 同时订阅甲报和丙报,5% 同 时订阅乙报和丙报,3% 同时订阅甲、乙、丙报。 试求: (1)只订阅甲报的概率 (2)只订阅一种报纸的概率 (3)至少订阅一种报纸的概率 (4)不订阅任何一种报纸的概率 解: 设
而要成环,则第一步从 6 个头中任取一个,此时余下的 5 个头中有 1 个不能相 接,只可与余下的 4 个头中的任 1 个相接;第二步从未接的 4 个头中任取一个, 与余下的 2 个头中的任 1 个相接;最后从未接的 2 个头中任取一个,与余下的 最后 1 个头相接;这总共有 6 × 4 × 4 × 2 × 2 × 1 种可能的接法。 设 A : 六根草恰巧连成一个环 则所求的概率为:
P ( ABC ) = P ( A − ( B U C )) = P ( A) − P ( A( B U C ))
= P ( A) − P ( AB ) − P ( AC ) + P ( ABC ) = P ( A) − P ( AB ) − P ( AC ) + P ( ABC ) = 0.30
(2) P (只订阅一种报纸) =
另一方面:
1 , 4
P ( A) P ( B ) − P ( AB ) = P ( A)[ P ( AB ) + P ( AB )] − P ( AB ) = P ( A) P ( AB ) + P ( AB )[ P ( A) − 1]
≤ P ( A) P ( AB ) ≤ P ( A) P ( A) = P ( A)[1 − P ( A)] ≤
第一章 概率论的基本概念 主要内容: 事件的定义与运算性质; 概率的公理化定义与性质; 等可能概型; 条件概率与事件的独立性; 重 点: 等可能概型; 全概率公式与贝叶斯公式; 难 点: 全概率公式与贝叶斯公式 教学要求:理解事件的定义, 并熟练掌握事件的运算性质; 理解概率的公理化定义, 熟练掌握并能灵活运用概率的性质; 掌握等可能概型中的概率计算方法; 牢固掌握条件概率、乘法公式、全概率公式与贝叶斯公式; 理解独立性的概念, 并能运用独立性解决某些概率计算问题。 综合例题选讲
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页
广 东 工 业 大 学
下页
返回
(8)加法公式的推广(三个的情形) )加法公式的推广(三个的情形) 对三个事件 A, B , C ,有:
P ( A U B U C ) = P ( A) + P ( B ) + P (C ) − P ( AB ) − P ( AC ) − P ( BC ) + P ( ABC )
5、事件的包含 (Inclusion relation) 如果事件A发生时 事件B一定发生 发生时, 一定发生。 如果事件 发生时,事件 一定发生。 (即若 ω ∈ A, 则 ω ∈ B 。) 则称事件B包含事件 包含事件A, 则称事件 包含事件 ,记作
B பைடு நூலகம் A或 A ⊂ B.
即A为B 的子集。 的子集。 S
(2) 若 P ( A1 A2 L An−1 ) > 0 ,则有 则有
广 东 工 大 学
上页
P( A A LA ) = P(A )P(A | A )P( A | A A )LP( A | A A LA −1) 业 1 2 n 1 2 1 3 1 2 n 1 2 n
下页
返回
七、全概率公式 的样本空间, 为 的事件 B 的事件, 设S为E的样本空间,A为E的事件, 1 , B2 ,L, Bn 为S的一个 为 的样本空间 的一个 划分, 划分,且 P ( Bi ) > 0( i = 1,2,L n), 则有 P ( A) = P ( B1 ) P ( A | B1 ) + P ( B2 ) P ( A | B2 ) + L + P ( Bn ) P ( A | Bn ) 八、贝叶斯公式 设B1 , B2 ,L, Bn满足下面条件 (1) Bi B j = φ , i ≠ j; i , j = 1,2,L, n (2) B1 + B2 + L + Bn = S 且 P ( Bk ) > 0 ( k = 1,2,L, n), 则对任一具有正概率的事件A,有 有
广 东 工 业 大 学
返回
P(Bk | A) =
P(Bk )P( A| Bk )
n i=1
∑P(Bi )P(A| Bi )
贝叶斯公式
上页
下页
九、事件的独立性
、 1、定义 对事件 A、B,若 、 P(AB)=P(A)P(B)
是相互统计独立的 简称独立的。 统计独立的, 简称独立 独立的 则称事件 A与事件 B是相互统计独立的, 定理1 若 P ( A) > 0 ,则事件 A 与 B 独立的充分必要条件是 定理 P ( B | A) = P ( B ) 或( P ( B ) > 0) P ( A | B ) = P ( A) 定理2 独立,则下面三对事件均独立: 定理 若事件 A与事件 B 独立,则下面三对事件均独立:
A 与 B, A 与 B , A 与 B
上页
广 东 工 业 大 学
下页
返回
2、三个事件的独立性 、 定义3 若事件A 定义 若事件 ,B,C 满足下面三个条件 P ( AB ) = P ( A) P ( B ) P ( BC ) = P ( B ) P (C ) P ( AC ) = P ( A) P (C ) 则称三个事件A,B,C 是两两独立的。 是两两独立的。 则称三个事件 若A,B,C 还满足 P ( ABC ) = P ( A) P ( B ) P (C ) 则称此三事件A 是相互独立的。 则称此三事件 ,B,C 是相互独立的。
广 东 工 业 大 学
上页
P( A U A ULU A UL = P( A ) + P( A ) +L+ P( A ) +L ) 1 2 k 1 2 k
下页
返回
2、概率的性质 、 (1) P (Φ ) = 0 ) 两两不相容, (2)有限可加性 若 A1 , A2 ,L , An两两不相容,则有 )
A U B ={A发生或B发生}= {ω | ω ∈ A, 或ω ∈ B } 发生}
A B
AUB
互斥, 若A与B互斥,常将 A U B 简记为 A + B .
广 东 工 业 大 学
上页
下页
返回
9、事件的差(Difference of events) 事件的差(Difference “事件A发生,但事件B不发生”为一事件,称为A与B的差, 事件A发生,但事件B不发生”为一事件,称为A 的差, 记为A − B . A − B = { A发生且 不发生} = {ω | ω ∈ A且ω ∉ B } 发生且B A− B A
广 东 工 业 大 学
上页
下页
返回
四、几何概型 如果一个试验具有以下两个特点: 如果一个试验具有以下两个特点: 样本空间S是一个大小可以计量的几何区域 如线段、 是一个大小可以计量的几何区域( 1、样本空间 是一个大小可以计量的几何区域(如线段、 平面、立体); 平面、立体); 2、向区域内任意投一点,落在区域内任意点处都是“等可 、向区域内任意投一点,落在区域内任意点处都是“ 能的” 能的”。 那么,事件 的概率由下式计算 的概率由下式计算: 那么,事件A的概率由下式计算:
A
B为A的对立事件,当且仅当 的对立事件,
(1)AB = φ (2)A+ B = S
上页
广 东 工 业 大 学
下页
返回
11、 11、事件间的运算法则 (1)交换律: A U B = B U A )交换律:
AI B = B I A
(2)结合律: ( A U B ) U C = A U ( B U C ) )结合律:
上页
广 东 工 业 大 学
B A
下页
返回
6、事件的积(Product of events) 事件的积(Product “二事件A,B同时发生”也是一个事件,称为事件A 同时发生”也是一个事件, 的积事件(交事件)。 A )。记为 与事件B的积事件(交事件)。记为 I B .
A I B ={A发生且B发生}= {ω | ω ∈ A, 且ω ∈ B } 发生}
(9)加法公式的推广(任意 个的情形) 个的情形) )加法公式的推广(任意n个的情形 对n 个事件 A1 , A2 ,L, An , 有 P ( A1 U A2 U L U An ) = ∑ P ( Ai ) −
i =1 n 1≤ i < j ≤ n
∑ P ( Ai A j )
广 东 工 业 大 学
AIB
A B
简记为AB 简记为
广 东 工 业 大 学
上页
下页
返回
7、互不相容(互斥)事件(Incompatible events) 互不相容(互斥)事件(Incompatible
如果A 如果 A 、 B 不能在同一次试验同时发生 , 则称 A 、 B 为 不能在同一次试验同时发生, 则称A 互不相容事件(或称A 互斥) 互不相容事件(或称A、B互斥)。 互斥, 为不可能事件, 若事件A与B互斥, AB为不可能事件,即AB = φ. 则 为不可能事件
B
S
广 东 工 业 大 学
上页
下页
返回
10、 对立事件(Opposite 10、 对立事件(Opposite events) “事件A不发生”是一个事件,称为A的对立事件(或 不发生”是一个事件, 对立事件( 逆事件), 逆事件), A. 记为 A = { A 不发生 } = {ω | ω ∈ S且ω ∉ A} = S − A A
A与 互 ⇔ AB = φ B 斥
互不相容事 件的关系
广 东
A
B
两两互斥:若一些事件中任意两个都互斥, 两两互斥:若一些事件中任意两个都互斥,则称这些事件是 两两互斥的。 两两互斥的。
上页
工 业 大 学
下页
返回
8、事件的并(和)(Union of events) 事件的并( “二事件A,B至少发生一个”也是一个事件,称为 至少发生一个”也是一个事件, 的并事件(和事件)。 A )。记为 事件A与事件B的并事件(和事件)。记为 U B .
A的 测度 P ( A) = Ω的 测度
上页
广 东 工 业 大 学
下页
返回
五、条件概率 定义1 定义 对事件A, B,若 P ( A) > 0, 则称 若 A发生的条件 发生的条件 件下B发生的 件下 发生的 条件概率
P( AB) P(B| A) = P(A)
为事件B在条件 发生 下的条件概率 为事件 在条件A[发生 下的条件概率 在条件 发生]下的条件概率. 六、乘法定理 若P ( A) > 0, 则有 P( AB) = P( A)P(B| A) 若P ( B ) > 0, 则有 P( AB) = P(B)P( A| B)
P( A U A ULU A ) = P( A ) + P( A ) +L+ P( A ) 1 2 n 1 2 n
有 (3)若 ⊂ B,则 P(B− A) = P(B) − P( A), 且有P ( B ) ≥ P ( A). ) A
(4) 减法公式 对任意两事件A,B,有 对任意两事件A,B, P(B− A) = P(B) − P( AB) (5)对任意事件 ,有 0 ≤ P ( A) ≤ 1 )对任意事件A, (6)对任意事件A, 有 P ( A) = 1 − P ( A) 对任意事件 , (7)加法公式 对任意两事件 、B有 对任意两事件A、 有 P( AUB) = P( A) + P(B) − P( AB).
广 东 工 业 大 学
上页
下页
返回
六、乘法定理 若P ( A) > 0, 则有 P( AB) = P( A)P(B| A) 若P ( B ) > 0, 则有 P( AB) = P(B)P( A| B) 乘法定理的推广: 乘法定理的推广 (1) 若P(AB)>0,则有 则有
相关文档
最新文档