二、数字积分法插补

合集下载

数字积分法

数字积分法

101 +)001
110
101 +)110 ① 011
101 +) 011 ① 000
经过23 = 8次累加完成积分运算,因为有5次溢出,所以 积分值等于5。
(二)数字积分直线插补
如图:直线段OA,起点位于原点,终点为A(Xe,Ye),东电 沿X、Y坐标移动的速度为Vx、Vy,则动点沿X、Y坐 标移动的微小增量为:
Y
3
A( 5 , 3 )
2 1
O 1 2 34 5
X
插补计算过程如下
累加 次数 (Δt)
X积分器
Y积分器 终点
JVx JRx
溢出 ΔX
JVy
JRy
溢出 计数器 ΔY JE
0 101 000 011 000
000
备注 初始状态
1 101 101 011 011
111 第一次累加
2 101 010 1 011 110
(一)数字积分的基本原理
如图:从时刻t=0到t,函数Y=f(t)曲线所包围的面积可表
示为:S=∫ 0f(t)dt t
Y
若将0~t的时间划分成时间
间隔为Δt的有限区间,当Δt
Y=f(t)
足够小时,可得公式:
S=∫
tf0(t)dt
=
n-1 ∑ Yi Δt
i=0
Yo
即积分运算可用一系列微小
O
矩形面积累加求和来近似。
Δt
tT
若Δt取最小基本单位“1”,则上式可简化为:
n-1 S=∑ Yi (累加求和公式或矩形公式)
i=0
这种累加求和运算,即积分运算可用数字积分器来实现,
被积函数寄存器
存放Y值

[毕业设计]逐点比较法和数字积分的直线插补

[毕业设计]逐点比较法和数字积分的直线插补

[毕业设计]逐点比较法和数字积分的直线插补随着数控技术的不断发展,数字积分已经成为了控制机床运动的一种重要手段。

直线插补作为数控机床中最基本的控制方式之一,不仅能够有效提高机床的加工精度和效率,同时也可以降低操作难度,提高工作效率,因此十分受到广大用户的欢迎。

逐点比较法和数字积分两种插补方式,它们各有优缺点。

逐点比较法是一种基于宏观视角上的插补方法,即从整体上把握机床加工大致规律,在控制过程中逐步调整每个点的位置和状态,确定合适的插补曲线。

在操作上,逐点比较法要求能够对机床加工过程有较深入的了解,能够根据加工物料、设备性能、工艺流程等因素,快速作出正确的决策,因此对操作员要求较高。

但是,由于它采用线性插补方式,使得机床加工的东西能够准确地还原成数字轨迹,大大提高了加工精度。

数字积分是一种基于微观视角上的插补方法,即从插补点的微小变化中来处理插补曲线。

数字积分可以通过数学模型对加工物料、设备性能、工艺流程等进行分析,自动计算出合适的插补曲线,使得机床能够在不同加工条件下保持较高的生产效率和精度水平。

数字积分操作简单方便,操作员只需在计算机上输入相关数据、指令等信息即可自动完成插补过程,因此广泛应用于数控机床中。

相对于逐点比较法而言,数字积分能够更好的适应复杂的加工过程,具有更高的智能化水平。

然而,数字积分也存在一些缺陷,它的主要问题是精度问题。

由于数字积分采用数学模型计算,导致其有一定的误差,尤其是在复杂曲线的情况下,其误差更大。

因此,在高精度加工场合下,逐点比较法仍旧是一种比较流行和成熟的插补方式。

综上所述,在工业加工和制造的具体应用中,我们应该根据具体情况来选择逐点比较法和数字积分两种插补方式。

对于简单加工、精度要求较低的加工应用,数字积分是比较适合的方法;而对于复杂加工、精度要求较高的加工应用,逐点比较法则更加适合。

无论是逐点比较法还是数字积分,都应该被工业加工和制造企业充分利用,以便在工业制造的过程中,更好地提高加工效率和产品质量。

插补原理

插补原理

插补开放分类:技术数控技术高新技术数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。

编辑摘要插补- 概述机构按预定的轨迹运动。

一般情况是一致运动轨迹的起点坐标、终点坐标和轨迹的曲线方程,由数控系统实施地算出各个中间点的坐标。

在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。

机床数控系统依照一定方法确定刀具运动轨迹的过程。

也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。

数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。

插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。

插补- 分类1、直线插补直线插补(Llne Interpolation)这是车床上常用的一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。

一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等. 数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x和y方向. 插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y方向走一小段,直到在实际轮廓上方以后,再向x方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补.2、圆弧插补圆弧插补(Circula : Interpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。

数控机床插补原理

数控机床插补原理
将对应的位置增量数据(如、),再与采样所获得的实际位置反馈值 相比较,求得位置跟踪误差。位置伺服软件就根据当前的位置误差 计算出进给坐标轴的速度给定值,并将其输送给驱动装置,通过电 动机带动丝杠和工作台朝着减少误差的方向运动,以保证整个系统 的加工精度。由于这类算法的插补结果不再是单个脉冲,而是一个 数字量,所以,这类插补算法适用于以直流或交流伺服电动机作为 执行元件的闭环或半闭环数控系统中。
对圆弧,提供起点、终点、顺圆或逆圆、以及圆心相对于起点的位置。为满
足零件几何尺寸精度要求,必须在刀具(或工件)运动过程中实时计算出满足 线形和进给速度要求的若干中间点(在起点和终点之间),这就是数控技术中
插补(Interpolation)的概念。据此可知,插补就是根据给定进给速度和给定
轮廓线形的要求,在轮廓已知点之间,确定一些中间点的方法,这种方法称 为插补方法或插补原理。
Xm+1=Xm+1, Ym+1=Ym
新的偏差为
Fm+1=Ym+1Xe-Xm+1Ye=Fm-Ye
若Fm<0时,为了逼近给定轨迹,应向+Y方向进给一步,走一步后新的坐标值为
Xm+1=Xm, Ym+1=Ym +1
新的偏差为
Fm+1=Fm+Xe
4. 终点判别法
逐点比较法的终点判断有多种方法,下面主要介绍两种:
直到∑为零时,就到了终点。
2.2
不同象限的直线插补计算
上面讨论的为第一象限的直线插补计算方法,其它三个象
限的直线插补计算法,可以用相同的原理获得,表5-1列出了
四个象限的直线插补时的偏差计算公式和进给脉冲方向,计 算时,公式中Xe,Ye均用绝对值。
表1-1 四个象限的直线插补计算

第3章-插补原理

第3章-插补原理

Y积分器
计t数 器JVX为(XeJ)E,JR均X 为溢三出位Jvy(Ye) JRy 溢出
终点计 数器
JE
备注
二0进制1存01 放器00。0
011 000
000
初始状态
1
101 101
011 011
001 第一次迭代
2
101 010
1
011 110
010
X溢出
3
101 111
011 001
1
011
Y溢出
∑=8-1=7
4
F<0
+Y
F4=F3+xe=-2+6=4
∑=7-1=6
5
F>0
+X
F5=F4-ye=4-4=0
∑=6-1=5
6
F=0
+X
F6=F5-ye=0-4=-4
∑=5-1=4
7
F<0
+Y
F7=F6+xe=-4+6=2
∑=4-1=3
8
F>0
+X
F8=F7-ye=2-4=-2
∑=3-1=2
9
F<0
4
101 100
1
011 100
100
X溢出
5
101 001
1
011 111
101
X溢出
6
101 110
011 010
1
110
Y溢出
7
101 011
1
011 101
111
件加工的要求,现在的数控系统已很少采用这类算法 了。
4
*

数字积分法(DDA)插补直线参考程序

数字积分法(DDA)插补直线参考程序

数字积分法(DDA)插补直线参考程序Sub 插补X()标志X = 0If 余数X >= Q Then余数X = 余数X Mod Qx动点= x动点+ 1: 标志X = 1 End IfEnd SubSub 插补Y()标志Y = 0If 余数Y >= Q Then余数Y = 余数Y Mod Qy动点= y动点+ 1: 标志Y = 1End IfEnd SubSub 插补Z()标志Z = 0If 余数Z >= Q Then余数Z = 余数Z Mod Qz动点= z动点+ 1: 标志Z = 1 End IfEnd SubSub 插补公共()余数X = 余数X + x终点余数Y = 余数Y + y终点余数Z = 余数Z + z终点插补X插补Y插补Z插补记录= 插补记录+ 1End SubSub 插补()Dim c As Integer插补记录= 0: 余数X = 0: 余数Y = 0: 余数Z = 0: 划轮廓线PSet (z原点, x原点), vbRedSelect Case 象限标志Case 1: '第一象限插补Do Until 插补记录= Q插补公共Line -Step(z步长×标志Z, x步长×标志X), vbRedLoopCase 2: '第二象限插补c = x终点: x终点= z终点: z终点= -cc = x步长: x步长= z步长: z步长= -cDo Until 插补记录= Q插补公共Line -Step(x步长×标志X, z步长×标志Z), vbRed LoopCase 3: '第三象限插补x终点= -x终点: z终点= -z终点x步长= -x步长: z步长= -z步长Do Until 插补记录= Q插补公共Line -Step(z步长×标志Z, x步长×标志X), vbRed LoopCase 4: '第四象限插补c = x终点: x终点= -z终点: z终点= cc = x步长: x步长= -z步长: z步长= cDo Until 插补记录= Q插补公共Line -Step(x步长×标志X, z步长×标志Z), vbRed LoopEnd SelectEnd Sub。

数字积分插补

数字积分插补

ì D x = kxe = k (2 N - 1) < 1 ï ï í ï D y = kye = k (2 N - 1) < 1 ï î
所以
1 k< N 2 - 1
一般取
1 k< N 2
ì ï 2N - 1 ï D x = kxe = <1 ï N ï 2 ï í ï 2N - 1 ï D y = ky = <1 ï e N ï 2 ï î
Y积分器
△X
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1
注 Y终
101 101 100 100 011 010 010 001 001 000 修正Yi 修正Xi 修正Yi 修正Xi 修正Yi 修正Yi 修正Yi 初始
X终
101 101 101 101 101 101 101 100 100 011 011 001 001 001 000
1
011 011
1 1 1
010 001 000
X、Y溢出 y溢出 X,Y溢出
1
011
3) DDA法圆弧插补 DDA法圆弧插补的积分表达式 由 V VX VY
R = Yi = Xi = K
Y B
VX = KYi
VY = KX i
V
Vx
Vy
P A X
令 则
Dt = 1
1 K= N 2
O
R
ì ï 1 m ïX= Yi ï N å ï 2 i= 1 ï í ï 1 m ïY = Xi ï N å ï 2 i= 1 ï î
ì D x = kxeD t ï ï í ï D y = kyeD t ï î
各坐标轴的位移量为 n t ì ï ï x= ï ò0 kxe dt = k å= 1 xeD t ï i ï í n ï ï y = t ky dt = k ï å= 1 yeD t ò0 e ï ï i î

插补原理与刀具补偿原理

插补原理与刀具补偿原理

2
3 4 5
F1=-3 F2=-1 F3=1
F4=-2
∑=0
一、逐点比较法第一象限直线插补
2.硬件实现
一、逐点比较法第一象限直线插补
3.软件实现
二、逐点比较法第一象限圆弧插补
1.基本原理 在圆弧加工过程中,要描述刀具位置与被加工圆 弧之间的相对位置关系,可用动点到圆心的位置的距 离大小来反映
(1)偏差函数 任意加工点Pi(Xi,Yi),偏差函数Fi可表示为
(累加形式)
其中,m为累加次数(容量)取为整数,m=0〜2N-1,共2N 次(N为累加器位数)。 令△t =1,mK =1,则K =1/m=1/2N。
m Xe X Xe N i 1 2 m Ye Y Ye N i 1 2



(2)结论:直线插补从始点走向终点的过程,可以看作是各坐标轴每经过一 个单位时间间隔,分别以增量kxe(xe / 2N )及k (ye / 2N )同时累加的过程。 累加的结果为:
E (Xe、Ye)
B(Xb,Yb) Cቤተ መጻሕፍቲ ባይዱXc,Yc) o X
则取函数F=YXe -XYe来判别插补点和直线的偏差,且F 被称为偏差函数。 所以,任意动点I的判别方程 Fi为: Fi=YiXe -XiYe 若 Fi=0,则动点恰好在直线上; Fi>0,动点在直线上方; Y Fi< 0,动点在直线下方。 A(Xa,Ya)
DDA直线插补:以Xe/2N 、ye/2N (二进制小数,形式上即Xe、
ye
)作为被积函数,同时进行积分(累加),N为累加器的位数, 当累加值大于2N -1时,便发生溢出,而余数仍存放在累加器中。 积分值=溢出脉冲数代表的值+余数 当两个积分累加器根据插补时钟脉冲同步累加时,用这些溢出 脉冲数(最终X坐标Xe个脉冲、Y坐标ye个脉冲)分别控制相应坐标 轴的运动,加工出要求的直线。 (3)终点判别 累加次数、即插补循环数是否等于2N可作为DDA法直线插补判 别终点的依据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档