第二章 数字图像处理的基本概念

合集下载

第二章数字图像基础

第二章数字图像基础

总结:
A、图像质量一般随N和k的增加而增加。在极少数情况 下对固定的N,减小k能改进质量。最有可能的原因是减小k 常能可增加图像的视觉反差。
B、对具有大量细节的图像只需很少的灰度级数就可较 好地表示。
C、N×k为常数的图像主观看起来可以有较大的差异。
(6)采样和量化的原则
当限定数字图像的大小时, 为了得到质量较好的图像,一
第三部分为调色板(Palette),只是对那些需要调色板的位图文 件而言的。调色板实际上是一个数组, 共有biClrUsed个元素(如 果该值为零,则有2的biBitCount次方个元素)。数组中每个元素 的类型是一个RGBQUAD结构, 占4个字节,其定义如下:
typedef struct tagRGBQUAD{
DWORD DWORD
biClrUsed; //实际使用的颜色数,若该值为0,则使用的颜 色数为2的biBitCount次方种。
biClrImportant; //图像中重要的颜色数,若该值为0,则所 有的颜色都是重要的。
} BITMAPINFOHEADER;
其中,biCompression的有效值为BI_RGB、 BI_RLE8、 BI_RLE4、BI_BITFIELDS,这都是一些 Windows定义好的常量。由于RLE4和RLE8的压缩格式 用的不多,今后仅讨论biCompression的有效值为 BI_RGB,即不压缩的情况。
(2) BMP文件的数据存放是从下到上,从左到右的。也就 是说, 从文件中最先读到的是图像最下面一行的左边第一个像 素, 然后是左边第二个像素, 接下来是倒数第二行左边第一个 像素, 左边第二个像素。依次类推, 最后得到的是最上面一行 的最右边的一个像素。
DIB(Device Independent Bitmap)图像格式是设备无关位图 文件,描述图像的能力基本与BMP相同,并且能运行于多种硬件 平台,只是文件较大。

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理_第二章_基础知识.

数字图像处理_第二章_基础知识.
Chapter 2: Digital Image Fundamentals
2.4 图像取样和量化
2.4.3 空间 和灰度分辨 率
m
数字图像处理
Chapter 2: Digital Image Fundamentals
2.4 图像取样和量化
2.4.5 放大和收缩数字图像
放大:500×500图像,想放大1.5倍,即750×750 pixels。 先在原图像上形成一个750×750的网格,栅格的间隔 小于1,然后可采用最近邻内插法来添充。
2.3 图像感知和获取 2.3.3 用Sensor阵 列
获取图像 如面阵 CCD Sensor
m
数字图像处理
Chapter 2: Digital Image Fundamentals
2.3 图像感知和获取
2.3.4 简单的图像形成模型
用 f ( x, y) 表示图像 把 f ( x, y) i( x, y)r ( x, y)
m
数字图像处理
Chapter 2: Digital Image Fundamentals
2.4 图像取样和量化
2.4.5 放大和收缩数 字图像 缺点:可能产生 棋盘格效应。 改进的方法是采 用双线性插值。
V ( x, y) ax by cxy d
f
f(1,0)
y f(1,1)
Chapter 2: Digital Image Fundamentals
2.3 图像感知和获取
2.3.2 用线阵Sensor获取图像
图2.14(a)平板扫描仪原理。 图2.14(b)环状安装的Sensor,如医学CT。
m
数字图像处理
Chapter 2: Digital Image Fundamentals

《数字图像处理基础》课件

《数字图像处理基础》课件

数字图像的表示与存 储方式
讨论数字图像的表示方法,包 括二进制表示、向量图像和光 栅图像等。
第三章:数字图像预处理
1
图像增强
2
探讨图像增强的方法和技术,如直方图
均衡化、增强对比度等。
3
图像边缘检测
4
介绍常用的边缘检测算法,如Sobel、滤波
解释图像滤波的概念和作用,介绍常用 的滤波器及其应用。
《数字图像处理基础》 PPT课件
数字图像处理基础PPT课件将帮助您深入了解数字图像处理的原理、方法和应 用。通过本课程,您将掌握数字图像处理领域的基本概念和技巧,为将来的 进一步学习和应用打下坚实的基础。
第一章:数字图像处理概述
数字图像处理介绍
了解数字图像处理的定义和基本原理,并掌握其在各个领域中的应用。
第五章:数字图像特征提取与识别
图像特征提取
介绍图像特征提取的目的和方 法,如灰度共生矩阵和尺度不 变特征变换(SIFT)。
模板匹配
解释模板匹配的原理和应用, 讨论常见的模板匹配算法。
目标检测
探讨目标检测的技术和方法, 如基于特征的方法和深度学习 方法。
第六章:数字图像处理算法优化
1
图像处理算法优化的意义
图像二值化
讲解图像二值化的原理和算法,介绍基 于阈值的二值化方法。
第四章:数字图像分割
图像分割概述
解释图像分割的概念和作用,并 探讨常见的图像分割方法。
基于边缘分割
介绍基于边缘检测的图像分割方 法,包括Canny边缘检测和Sobel 边缘检测。
基于区域分割
讨论基于区域的图像分割方法, 如区域生长和分水岭算法。
数字图像技术趋势
讨论数字图像处理技术的趋势,如增强现实和虚拟现实的发展。

数字图像处理 贾永红

数字图像处理 贾永红

第二章基本概念贾永红武汉大学第二章讲解内容1. 图像数字化概念、数字化参数对图像质量的影响、数字化器性能评价2. 图像灰度直方图的基本概念、计算、性质及其应用3.数字图像处理算法形式与数据结构4.图像图像文件格式与特征重点:图像数字化、图像灰度直方图和图像文件BMP格式难点:图像数字化、直方图应用、图像分层结构数据教学法:灵活应用示例法、启发式、提问法等目的:1. 熟悉本章基本概念和图像处理算法形式,了解图像的特征;2.重点掌握图像数字化图像灰度直方图的基本概念及应用、2.2 成象模型3-D客观场景到2-D成像平面的中心投影。

物方点空间坐标与对应的像方点坐标满足几何透视变换关系(共线条件)。

f(x,y)---理想成像面坐标点(x,y)的亮度i(x,y)---照度分量r(x,y)---反射分量,则f(x,y)=i(x,y)×r(x,y)其中:0< i(x,y)< ∞ ,0 <r(x ,y)<12.3图像数字化图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。

模拟图像数字图像正方形点阵具体来说,就是把一幅图画分割成如图2.3.1所示的一个个小区域(像元或像素),并将各小区域灰度用整数来表示,形成一幅点阵式的数字图像。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

2.3.1采样将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

当对图像进行实际的抽样时,怎样选择各抽样点的间隔是个非常重要的问题。

关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。

不同形状的采样孔径2.3.2量化经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。

将像素灰度转换成离散的整数值的过程叫量化。

表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

一幅数字图像中不同灰度级的个数称为灰度级数,用G表示。

第二章数字图像处理基础

第二章数字图像处理基础
数字图像处理
第二章 数字图像处理基础
视觉感知要素 图像感知和获取 图像取样和量化 象素间的一些基本关系 线性和非线性操作
2.1 视觉感知要素
眼睛的构造: (人眼包含有三层膜)
眼角膜与巩膜外壳 脉络膜 (前面睫状体 虹膜 晶状体) 视网膜 (视网膜表面的分离光
接收器提供图案视觉, 分为锥状体、杆状体)
感觉的亮度区域不是简单的取决于强度,还与周围的背景有关
2.1 视觉感知要素
视觉错觉
光幻觉是人视觉系 统所特有的,迄今 还没有清楚的解释。 由于以上各种特殊 现象,在进行图像 处理时,应该采取 一些特殊的补偿措 施。
图和背景反转的图形
在错觉 中,眼 睛填上 了不存 在的信 息或错 误地感 知物体 的几何 特点。
2.1 视觉感知要素
辨别光强度变化的能力
典型实验
韦伯比
可辨别增I C量/的I 50%IC
图2.5 用于描述亮度辨别特性的基本实验
图2.6 作为强度函数的典型韦伯比
当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以察觉间变化,一 般观察者可以辨别12到24级不同强度的变化.
低照明级别,亮度辨别(杆状体)较差;高照明级别,亮度辨别(锥状体)较好。
几何错觉图形
2.2 光和电磁波谱
电磁波谱可以用波长( )、频率( )或能量来描述
c 光速
E hv
h 普朗克常量
为波长, 为频率, E为电磁波能量
光速c 2.998 108 m/s 普朗克常数 h=6.626068 ×10-34 m2 kg / s
2.2 光和电磁波谱
电磁波是能量的一种,任何有能量的物体,都会释放电磁波。
D8距离:D8(p,q)=max(|x-s|,|y-t|) (距离小于等于r的像素形成中心在(x,y)的方形)

数字图像处理-z2图像的基本知识

数字图像处理-z2图像的基本知识
由于f(x,y)的值是能量的记录 故其是非负有界的实数。 由于f(x,y)的值是能量的记录,故其是非负有界的实数。 的值是能量的记录, 综上,因为人的视野有限,所以,人看到的平面图像是一个 综上,因为人的视野有限,所以, 二元、有界、非负的连续(指模拟光学图像)函数。 二元、有界、非负的连续(指模拟光学图像)函数。
14
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
空间分辨率
1、采样点数
M M N ↑
(采样间隔 ↓ ) 空间分辨率↑ 空间分辨率↑ ∆y
∆x
2、G不变, N ↓ 图像中各细节区域边缘出现“棋盘- 图像中各细节区域边缘出现“棋盘- 马 赛克”效应,即像素粒子变粗。 赛克”效应,即像素粒子变粗。
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
非均匀采样
– 灰度级变化大区域精确采样,平滑区域粗采样。 灰度级变化大区域精确采样,平滑区域粗采样。
非均匀量化
– 灰度级变化剧烈处,人眼分辨力差,边界附近 灰度级变化剧烈处,人眼分辨力差, 较少灰度级; 较少灰度级; – 平缓区域较多灰度级,避免假轮廓 平缓区域较多灰度级,
7
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 计算机中数字图像的表示
I = f (m, n)

I = f ( x, y ) 模拟光学图像的数字化
结果。 结果。 在计算机中可用一矩阵表示,其中 在计算机中可用一矩阵表示,
0 ≤ m ≤ M − 1,0 ≤ n ≤ N − 1
f(m,n)称为图像元素,简称像素 pixel) 其取值为灰度 f(m,n)称为图像元素,简称像素(pixel),其取值为灰度 像素( 称为图像元素 grey),一幅图像的灰度种类称为灰度级 ),一幅图像的灰度种类称为灰度级( level)。 (grey),一幅图像的灰度种类称为灰度级(grey level)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档