山东省青岛市年中考数学试题(含标准答案)

合集下载

青岛中考数学试题及答案

青岛中考数学试题及答案

青岛中考数学试题及答案一、选择题(每题3分,共30分)1. 已知函数\( y = 2x + 3 \),当\( x = 1 \)时,\( y \)的值为多少?A. 5B. 4C. 3D. 22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 下列哪个不是二次根式?A. \( \sqrt{4} \)B. \( \sqrt{16} \)C. \( \sqrt{-9} \)D. \( \sqrt{25} \)4. 已知等腰三角形的底边长为5,两腰边长相等,求等腰三角形的周长。

A. 10B. 15C. 20D. 无法确定5. 一个圆的半径为3,求这个圆的面积。

A. 9πB. 18πC. 27πD. 36π6. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -87. 一个长方体的长、宽、高分别是4、3和2,求这个长方体的体积。

A. 24B. 36C. 48D. 528. 一个数的绝对值是5,这个数可以是?A. -5B. 5C. -5或5D. 无法确定9. 一个数的立方根是2,这个数是多少?A. 8B. 6C. 4D. 210. 一个数的倒数是2,这个数是多少?A. 1/2B. 1C. 2D. -2二、填空题(每题2分,共20分)11. 一个数的相反数是-7,这个数是________。

12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。

13. 一个数的平方是25,这个数可以是________。

14. 一个数的立方是-8,这个数是________。

15. 如果一个数的平方根是2或-2,那么这个数是________。

16. 一个圆的直径是10,这个圆的半径是________。

17. 一个长方体的长、宽、高分别是5、4和3,这个长方体的表面积是________。

18. 一个直角三角形的两条直角边分别是6和8,这个直角三角形的面积是________。

山东省青岛市中考数学试卷含答案解析

山东省青岛市中考数学试卷含答案解析

山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×1054.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含 B.内切C.相交 D.外切6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=27.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.58.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=__________.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/坐标是.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是_________天,众数是_________天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,si n31°≈,tan39°≈,sin39°≈)21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,+++…+=_________.拓广应用:计算+++…+.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t (s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人 C.1.5万人 D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内 B.内切C.相交 D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF 中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD 中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,。

2022青岛数学中考试卷(含答案解析)

2022青岛数学中考试卷(含答案解析)

2022年山东省青岛市中考数学真题一、选择题(本大题共8小题,每小题3分,共24分),它与π的误差小于1.(2022山东青岛,1,3分)我国古代数学家祖冲之推算出π的近似值为3551130.000 000 3.将0.000 000 3用科学记数法可以表示为()A.3×10-7B.0.3×10-6C.3×10-6D.3×1072.(2022山东青岛,2,3分)北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4 506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是()A B C D的结果是() 3.(2022山东青岛,3,3分)计算(√27-√12)×√13A.√3B.1C.√5D.334.(2022山东青岛,4,3分)如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是()图①图②A B C D5.(2022山东青岛,5,3分)如图,正六边形ABCDEF内接于☉O,点M在AB上,则∠CME的度数为()A.30°B.36°C.45°D.60°6.(2022山东青岛,6,3分)如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是()A.(2,0)B.(-2,-3)C.(-1,-3)D.(-3,-1)7.(2022山东青岛,7,3分)如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为()B.√6C.2√2D.2√3A.√628.(2022山东青岛,8,3分)已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=-1,且经过点(-3,0),则下列结论正确的是() A.b>0 B.c<0C.a+b+c>0D.3a+c=0二、填空题(本大题共6小题,每小题3分,共18分)的绝对值是.9.(2022山东青岛,9,3分)-1210.(2022山东青岛,10,3分)小明参加“建团百年·我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项得分分别是9分、8分、8分,若将三项得分依次按3∶4∶3的比例确定最终成绩,则小明的最终比赛成绩为分.11.(2022山东青岛,11,3分)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节.小亮报名参加3 000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.12.(2022山东青岛,12,3分)图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果,图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是°.图①图②图③图④13.(2022山东青岛,13,3分)如图,AB是☉O的切线,B为切点,OA与☉O交于点C,以点A为圆心,以OC的长为半径作EF,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为.14.(2022山东青岛,14,3分)如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有(填写序号).①BD=8;②点E到AC的距离为3;③EM=10;3④EM∥AC.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹. 15.(2022山东青岛,15,4分)已知:Rt △ABC ,∠B =90°. 求作:点P ,使点P 在△ABC 内部,且PB =PC ,∠PBC =45°.四、解答题(本大题共10小题,共74分) 16.(2022山东青岛,16,8分)(1)计算:a−1a 2−4a+4÷(1+1a−2);(2)解不等式组:{2x ≥3(x −1),2−x 2<1.17.(2022山东青岛,17,6分)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号分别为1,2的两个球,乙口袋装有编号分别为1,2,3,4,5的五个球,两口袋中的球除编号外都相同,小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.18.(2022山东青岛,18,6分)已知二次函数y =x 2+mx +m 2-3(m 为常数,m >0)的图象经过点P (2,4). (1)求m 的值;(2)判断二次函数y =x 2+mx +m 2-3的图象与x 轴交点的个数,并说明理由.19.(2022山东青岛,19,6分)如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68°的点C 处,观光船到滨海大道的距离CB 为200米,当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40°的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C 处航行到D 处的路程.(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84,sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.48)20.(2022山东青岛,20,6分)孔子曾说:“知之者不如好之者,好之者不如乐之者.”兴趣是最好的老师,阅读、书法、绘画、手工、烹饪、运动、音乐等,各种兴趣爱好是打开创新之门的金钥匙.某校为了解学生兴趣爱好情况.组织了问卷调查活动,从全校2 200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长.对这项调查结果使用画“正”字的方法进行初步统计,得到下表:学生每周自主发展兴趣爱好时长分布统计表学生每周自主发展兴趣爱好时长频数直方图根据以上信息,解答下列问题:(1)补全频数直方图;(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第组;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为,对应的扇形圆心角的度数为°;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于2 h,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间.21.(2022山东青岛,21,6分)【图形定义】有一条高线相等的两个三角形称为等高三角形.例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D',则△ABC和△A'B'C'是等高三角形.图①图②图③【性质探究】如图①,用S △ABC ,S △A'B'C'分别表示△ABC 和△A'B'C'的面积, 则S △ABC =12BC ·AD ,S △A'B'C'=12B'C'·A'D',∵AD =A'D',∴S △ABC ∶S △A'B'C'=BC ∶B'C'. 【性质应用】(1)如图②,D 是△ABC 的边BC 上的一点.若BD =3,DC =4,则S △ABD ∶S △ADC = ; (2)如图③,在△ABC 中,D ,E 分别是BC 和AB 边上的点.若BE ∶AB =1∶2,CD ∶BC =1∶3,S △ABC =1,则S △BEC = ,S △CDE = ; (3)如图③,在△ABC 中,D ,E 分别是BC 和AB 边上的点.若BE ∶AB =1∶m ,CD ∶BC =1∶n ,S △ABC =a ,S △CDE = .22.(2022山东青岛,22,8分)如图,一次函数y =kx +b 的图象与x 轴正半轴相交于点C ,与反比例函数y =-2x 的图象在第二象限相交于点A (-1,m ),过点A 作AD ⊥x 轴,垂足为D ,AD =CD. (1)求一次函数的表达式;(2)已知点E (a ,0)满足CE =CA ,求a 的值.23.(2022山东青岛,23,8分)如图,在四边形ABCD 中,AB ∥CD ,点E ,F 在对角线BD 上,BE =EF =FD ,∠BAF =∠DCE =90°. (1)求证:△ABF ≌△CDE ;(2)连接AE ,CF ,已知 (从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF 的形状,并证明你的结论. 条件①:∠ABD =30°; 条件②:AB =BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)24.(2022山东青岛,24,10分)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克.批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱.当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱,售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?25.(2022山东青岛,25,10分)如图,在Rt△ABC中,∠ACB=90°,AB=5 cm,BC=3 cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动,速度为1 cm/s;同时,点Q从点A出发,沿AD方向匀速运动,速度为1 cm/s.PQ交AC于点F,连接CP,EQ,设运动时间为t(s) (0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ∥CD?若存在,求出t的值,若不存在,请说明理由.2022年山东省青岛市中考数学真题1.A0.000 000 3=3×10-7,故选A.2.C中心对称图形是把一个图形绕某一点旋转180度,如果能与原图形重合,我们就说这个图形是中心对称图形,排除选项A,D;轴对称图形是将一个图形沿一条直线折叠,直线两旁的部分能够互相重合,排除选项B,故选C.3.B原式=3-2=1,故选B.4.C从上向下看,其俯视图是长方形,故选C.5.D连接OC,OD,OE,正六边形ABCDEF内接于☉O,所以∠DOC=∠DOE=60°,所以∠COE=120°,根据圆周角定理得∠CME=60°,故选D.6.C将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',如图,点A'的坐标为(-1,-3),故选C.7.B∵正方形ABCD,AB=2,∴AC=2√2,∵O为对角线AC的中点,∴OA=√2.∵△ACE为等边三角形,O为AC的中点,∴OE⊥AC,∠AEO=∠CEO=30°,∴OE=√3OA=√6,故选B.8.D抛物线开口向下,则a<0.对称轴为直线x=-1,则-b2a=-1,所以b=2a<0,选项A错误;点(-3,0)关于直线x=-1的对称点为(1,0),所以抛物线与y轴交点在x轴上方,所以c>0,选项B错误;因为抛物线经过点(1,0),所以a+b+c=0,选项C错误;因为a+b+c=0,b=2a,所以3a+c=0,选项D正确.故选D.方法指导抛物线y=ax2+bx+c的系数的符号问题:(1)a的符号由抛物线的开口方向确定,开口向上,则a>0;开口向下,则a<0.(2)c的符号由抛物线与y轴的交点位置确定,交点在y轴正半轴上,则c>0;交点在y轴负半轴上,则c<0;经过原点,则c=0.(3)b的符号由对称轴的位置确定,简记为左同右异,即对称轴在y轴左侧,则a、b同号,对称轴在y轴右侧,则a、b异号;对称轴是y轴,则b=0.(4)b2-4ac的符号由抛物线与x轴的交点个数确定,与x轴有两个公共点,则b2-4ac>0;与x轴有一个公共点,则b2-4ac=0;与x轴无公共点,则b2-4ac<0.9.答案1 2解析负数的绝对值是它的相反数,所以-12的绝对值是12.10.答案8.3解析小明的最终比赛成绩为9×3+8×4+8×33+4+3=8.3(分).11.答案3 000x-3 000(1+25%)x=3解析小亮训练前的平均速度为x米/分,则比赛时小亮的平均速度为(1+25%)x米/分,根据比赛时小亮少用3分钟跑完全程可得3 000x-3 000(1+25%)x=3.12.答案60解析如图,易知∠CDE=120°,由题图②及菱形可知CD∥AB,DE∥BC,∴∠C=∠CDE=120°,∠C+∠ABC=180°,∴∠ABC=60°.13.答案4-π解析连接OB,∵AB是☉O的切线,∴∠OBA=90°,∴∠AOB+∠A=90°,∴阴影部分的面积等于三角形OAB的面积减去以OC为半径,圆心角为90度的扇形的面积,即S阴影=S△OAB-90·π·22360=12×2×4-90·π·22360=4-π.14.答案①④解析∵AB=AC,AD⊥BC,∴BD=DC=12BC=8,①正确.∵BE平分∠ABC,∴点E到AB的距离为DE=4.∵BE为∠ABC的平分线,∴点E到BC的距离等于点E到AC的距离,∴点E到AC的距离为3,②错误.由翻折可得CM=ME,在Rt△DME中,EM2=DE2+DM2,即EM2=42+(8-EM)2,解得EM=5,③错误.连接EC,根据题意知CE为∠ACB的平分线,∴∠MCE=12∠ACD.由翻折可得∠MCE=∠MEC,所以∠DME=∠MCE+∠MEC=∠ACD,∴EM//AC,④正确.方法指导(1)折叠的性质:①位于折痕两侧的图形关于折痕成轴对称;②折叠前后的两部分图形全等,对应边、对应角、周长、面积相等;③对应点的连线被折痕所在的直线垂直平分.(2)折叠相关的题目一般运用三角形全等,勾股定理等知识,结合方程思想,设出恰当的未知数,列方程来求线段长.15.解析如图,点P为所求作.16.解析 (1)原式=a−1a 2−4a+4÷a−2+1a−2=a−1(a−2)2·a−2a−1=1a−2.(2)解不等式2x ≥3(x -1)得x ≤3, 解不等式2-x2<1得x >2,∴不等式组的解集是2<x ≤3. 17.解析共有10种等可能的结果,其中两球编号之和为奇数的结果有5种,两球编号之和为偶数的结果有5种, ∴小冰获胜的概率为510=12,小雪获胜的概率为510=12,∴小冰获胜的概率与小雪获胜的概率相等, ∴这个游戏对双方公平.18.解析 (1)∵二次函数y =x 2+mx +m 2-3的图象经过点P (2,4), ∴4=4+2m +m 2-3, ∴m 2+2m -3=0, 解得m 1=1,m 2=-3, 又∵m >0, ∴m =1. (2)交点个数为2.理由:由(1)知二次函数的解析式为y =x 2+x -2,令x 2+x -2=0,则Δ=12-4×1×(-2)=9>0, ∴x 2+x -2=0有两个不相等的实根,∴二次函数y =x 2+x -2的图象与x 轴的交点个数为2. 19.解析 如图,过点C 作CF ⊥DE 于点F , 由题意得,∠D =40°,∠ACB =68°.在Rt △ABC 中,∠CBA =90°,tan ∠ACB =AB CB,∴AB =CB ·tan 68°≈200×2.48=496(米), ∴BE =AB -AE =496-200=296(米), ∵∠CFE =∠FEB =∠CBE =90°, ∵四边形FEBC 为矩形, ∴CF =BE =296(米).在Rt △CDF 中,∠DFC =90°,sin D =CF CD,∴CD =CFsin40°≈2960.64=462.5(米).答:观光船从C 处航行到D 处的路程约为462.5米.方法指导求角的三角函数值或者求线段的长时,我们通常需要观察图形将所求的角或线段转化到直角三角形中(如果没有直角三角形,就设法构造直角三角形),再利用锐角三角函数求解.20.解析 (1)补全频数直方图,如图所示.(2)三.详解:将数据按从小到大或从大到小的顺序排列后,第100,101个数据位于第三组,故中位数落在第三组. (3)30%;108.详解:第二组的学生人数占调查总人数的百分比为60÷200=30%,对应的扇形圆心角为360°×30%=108°. (4)2 200×30200=330(人).答:该校学生中约有330人需要增加自主发展兴趣爱好时间. 21.解析 (1)3∶4.(2)12;16.详解:∵BE ∶AB =1∶2,S △ABC =1,∴S △BEC =12S △ABC =12.∵CD ∶BC =1∶3,∴S △CDE =13S △BEC =16.(3)amn .详解:∵BE∶AB=1∶m,S△ABC=a,∴S△BEC=1mS△ABC=am.∵CD∶BC=1∶n,∴S△CDE=1nS△BEC=amn.22.解析(1)∵点A(-1,m)在反比例函数y=-2x的图象上,∴m=-2−1=2,∴A(-1,2),∵AD⊥x轴,∴AD=2,OD=1,∴CD=AD=2,∴OC=CD-OD=2-1=1,∴C(1,0),∵点A(-1,2),C(1,0)在一次函数y=kx+b的图象上,∴{−k+b=2,k+b=0,解得{k=−1,b=1,∴一次函数的表达式为y=-x+1.(2)在Rt△ADC中,由勾股定理得,AC=√AD2+CD2=√22+22=2√2,∴CE=AC=2√2,当点E在点C的左侧时,a=1-2√2,当点E在点C的右侧时,a=1+2√2,∴a的值为1-2√2或1+2√2.23.证明(1)∵BE=FD,∴BE+EF=FD+EF,即BF=DE,∵AB∥CD,∴∠ABF=∠CDE,又∵∠BAF=∠DCE=90°,∴△ABF≌△CDE(AAS).(2)若选择条件①,四边形AECF是菱形.证明:由(1)得△ABF≌△CDE,∴AF=CE,∠AFB=∠CED,∴AF∥CE,∴四边形AECF是平行四边形,∵∠BAF=90°,BE=EF,∴AE =12BF ,∵∠BAF =90°,∠ABD =30°, ∴AF =12BF ,∴AE =AF ,∴平行四边形AECF 是菱形. 若选择条件②,四边形AECF 是菱形. 证明:如图,连接AC 交BD 于点O , 由(1)得,△ABF ≌△CDE , ∴AF =CE ,∠AFB =∠CED , ∴AF ∥CE ,∴四边形AECF 是平行四边形,∴AO =CO , ∵AB =BC , ∴BO ⊥AC , 即EF ⊥AC ,∴平行四边形AECF 是菱形.24.解析 (1)由题意得y =8.2-0.2(x -1)=-0.2x +8.4,∴批发价y (元/千克)与购进数量x (箱)之间的函数关系式是y =-0.2x +8.4. (2)设李大爷销售这种水果每天获得的利润为w 元, 则w =[12-0.5(x -1)-y ]×10x =[12-0.5(x -1)-(-0.2x +8.4)]×10x =-3x 2+41x =-3(x−416)2+168112,∵-3<0,∴抛物线开口向下, ∵对称轴是直线x =416,∴当1≤x ≤416时,w 随x 的增大而增大, 当416≤x ≤10时,w 随x 的增大而减小,∵x 为正整数,当x =6时,w =138,当x =7时,w =140,140>138,∴李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润是140元.方法指导用二次函数解决实际问题中的最值问题的一般步骤:(1)设出实际问题中的变量;(2)建立函数关系式;(3)利用待定系数法或根据题意列等式求出函数关系式;(4)确定自变量的取值范围;(5)利用二次函数的性质求出最值,并检验最值是否符合实际意义.25.解析 (1)如图,在Rt △ABC 中,由勾股定理得, AC =√AB 2−BC 2=√25−9=4,∵△ABC 绕点A 按逆时针方向旋转90°得到△ADE , ∴AD =5,DE =3,AE =4,∠AED =90°,∠BAD =90°, ∵EQ ⊥AD , ∴∠AQE =∠AED =90°, 又∵∠EAQ =∠DAE , ∴△AQE ∽△AED , ∴AQ AE =AE AD ,∴t 4=45, ∴t =165.答:当EQ ⊥AD 时,t 的值为165.(2)如图,分别过点C ,P 作CM ⊥AD ,PN ⊥BC ,垂足分别为M ,N ,∵∠B +∠BAC =90°,∠CAM +∠BAC =90°, ∴∠B =∠CAM , 又∵∠BCA =∠AMC =90°, ∴△ABC ∽△CAM , ∴AB CA =BC AM =AC CM ,∴54=3AM =4CM,∴AM =125,CM =165,∵∠B =∠B ,∠BNP =∠BCA =90°, ∴△BPN ∽△BAC , ∴BP BA =PN AC ,∴t 5=PN4,∴PN =45t ,∴S △PBC =12·BC ·PN =12×3×45t =65t ,∵S △ABC =12·BC ·AC =12×3×4=6, S △ACD =12·AD ·CM =12×5×165=8,S △APQ =12·AQ ·AP =12t (5-t ),∴S =S △ABC +S △ACD -S △APQ -S △BPC =6+8-12t (5-t )-65t=12t 2-3710t +14.(3)存在t =6529,使PQ ∥CD.理由:假设存在某一时刻t ,使PQ ∥CD ,如图,∵AD =5,AM =125,∴DM =AD -AM =5-125=135,∵PQ ∥CD , ∴∠AQP =∠ADC , 又∵∠PAQ =∠CMD =90°, ∴△APQ ∽△MCD , ∴AP MC =AQ MD ,∴5−t165=t135,∴t =6529,∴存在t =6529,使PQ ∥CD.方法指导数学中的动点问题的大致解题思路:一般先用未知数表示发生变化的量,然后用含有未知数的代数式去表示其他相关的量,得出函数关系式,同时注意自变量的取值变化导致图形的变化.。

青岛中考数学题含答案

青岛中考数学题含答案

2021年省市中考数学试卷一、选择题〔此题总分值24分,共有8小题,每题3分〕1.〔3分〕〔2021•〕﹣2的绝对值是〔〕B.﹣2 C.D.2A.﹣2.〔3分〕〔2021•〕以下列图形中,既是轴对称图形,又是中心对称图形的是〔〕A.B.C.D.3.〔3分〕〔2021•〕如图,正方体外表上画有一圈黑色线条,那么它的左视图是〔〕A.B.C.D.4.〔3分〕〔2021•〕,⊙O1与⊙O2的半径分别是4和6,O1O2=2,那么⊙O1与⊙O2的位置关系是〔〕A.切B.相交C.外切D.外离5.〔3分〕〔2021•〕某次知识竞赛中,10名学生的成绩统计如下:分数〔分〕60 70 80 90 100人数〔人〕 1 1 5 2 1那么以下说确的是〔〕A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.〔3分〕〔2021•〕如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是〔〕A.〔6,1〕B.〔0,1〕C.〔0,﹣3〕D.〔6,﹣3〕7.〔3分〕〔2021•〕用图中两个可自由转动的转盘做“配紫色〞游戏:分别旋转两个转盘,假设其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是〔〕A.B.C.D.8.〔3分〕〔2021•〕点A〔x1,y1〕,B〔x2,y2〕,C〔x3,y3〕都是反比例函数的图象上,假设x1<x2<0<x3,那么y1,y2,y3的大小关系是〔〕A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3二、填空题〔此题总分值18分,共有6道小题,每题3分〕9.〔3分〕〔2021•〕计算:〔﹣3〕0+=_________.10.〔3分〕〔2021•〕为改善学生的营养状况,中央财政从2021年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为_元.11.〔3分〕〔2021•〕如图,点A、B、C在⊙O上,∠AOC=60°,那么∠ABC的度数是_________.12.〔3分〕〔2021•〕如图,在一块长为22M、宽为17M的矩形地面上,要修建同样宽的两条互相垂直的道路〔两条道路各与矩形的一条边平行〕,剩余局部种上草坪,使草坪面积为300平方M.假设设道路宽为xM,那么根据题意可列出方程为_________.13.〔3分〕〔2021•〕如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,那么BB′的长度为_________.14.〔3分〕〔2021•〕如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯离杯底3cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,那么蚂蚁到达蜂蜜的最短距离为_________cm.三、作图题〔此题总分值4分〕用圆规、直尺作图,不写作法,但要保存作图痕迹.15.〔4分〕〔2021•〕:线段a,c,∠α.求作:△ABC.使BC=a,AB=c,∠ABC=∠α.结论:四、解答题〔此题总分值74分,共有9道小题〕16.〔8分〕〔2021•〕〔1〕化简:〔2〕解不等式组:.17.〔6分〕〔2021•〕某校为开展每天一小时体育活动,准备组建篮球、排球、足球、乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,也可兼报多个小组.该校对八年级全体学生报名情况进展了抽样调查,并将所得数据制成如下两幅统计图:根据图中的信息解答以下问题:〔1〕补全条形统计图;〔2〕假设该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;〔3〕综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议.〔字数不超过30字〕18.〔6分〕〔2021•〕某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购置100元的商品,就可随机抽取一奖券,抽得奖券“紫气东来〞、“花开富贵〞、“吉星高照〞,就可以分别获得100元、50元、20元的购物券,抽得“惠顾〞不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购置了100元的商品,他看到商场公布的前10000奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照惠顾出现数〔〕500 1000 2000 6500〔1〕求“紫气东来〞奖券出现的频率;〔2〕请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.19.〔6分〕〔2021•〕小丽乘坐汽车从到黄岛奶奶家,她去时经过环湾高速公路,全程约84千M,返回时经过跨海大桥,全程约45千M.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.20.〔8分〕〔2021•〕如图,某校教案楼AB的后面有筑物CD,当光线与地面的夹角是22°时,教案楼在建筑物的墙上留下高2M的影子CE;而当光线与地面夹角是45°时,教案楼顶A在地面上的影子F与墙角C有13M的距离〔B、F、C在一条直线上〕〔1〕求教案楼AB的高度;〔2〕学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离〔结果保存整数〕.〔参考数据:sin22°≈,cos22°≈,tan22°≈〕21.〔8分〕〔2021•〕:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF ⊥AC于F,点O既是AC的中点,又是EF的中点.〔1〕求证:△BOE≌△DOF;〔2〕假设OA=BD,那么四边形ABCD是什么特殊四边形?说明理由.22.〔10分〕〔2021•〕在“母亲节〞期间,某校局部团员参加社会公益活动,准备购进一批许愿瓶进展销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间的销售量y〔个〕与销售单价x〔元/个〕之间的对应关系如下列图:〔1〕试判断y与x之间的函数关系,并求出函数关系式;〔2〕假设许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w〔元〕与销售单价x〔元/个〕之间的函数关系式;〔3〕假设许愿瓶的进货本钱不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.23.〔10分〕〔2021•〕问题提出:以n边形的n个顶点和它部的m个点,共〔m+n〕个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的三个顶点和它部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的根底上,我们可看作在图①△ABC的部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形部.不妨假设点Q在△PAC部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.探究三:以△ABC的三个顶点和它部的3个点P、Q、R,共6个点为顶点可把△ABC分割成_________个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它部的m个点,共〔m+3〕个顶点可把△ABC分割成_________个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它部的m个点,共〔m+4〕个顶点可把四边形分割成_________个互不重叠的小三角形.问题解决:以n边形的n个顶点和它部的m个点,共〔m+n〕个顶点可把△ABC分割成_________个互不重叠的小三角形.实际应用:以八边形的8个顶点和它部的2021个点,共2021个顶点,可把八边形分割成多少个互不重叠的小三角形?〔要求列式计算〕24.〔12分〕〔2021•〕:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停顿运动时,点Q也停顿运动.连接PQ,设运动时间为t〔s〕〔0<t<4〕.解答以下问题:〔1〕当t为何值时,PQ⊥AB?〔2〕当点Q在BE之间运动时,设五边形PQBCD的面积为y〔cm2〕,求y与t之间的函数关系式;〔3〕在〔2〕的情况下,是否存在某一时刻t,使PQ分四边形BCDE两局部的面积之比为S△PQE:S四边形PQBCD=1:29?假设存在,求出此时t的值以及点E到PQ的距离h;假设不存在,请说明理由.2021年省市中考数学试卷参考答案与试卷解读一、选择题1.D2.C3.B4.A5.C 6.B 7.D 8.A二、填空题〔此题总分值18分,共有6道小题,每题3分〕请将9--14各小题的答案填写在第14小题后面给出的表格相应位置上.9.7.10.1.6×1010.11.150°.12.〔22﹣x〕〔17﹣x〕=300.13..14.5.四、解答题〔此题总分值74分,共有9道小题〕16.解:〔1〕原式==…4分解:〔2〕解不等式①,x>,解不等式②,x≤4,∴原式不等式组的解集为<x≤4.17.解:〔1〕∵从统计图知报名参加丙小组的有15人,占总数的30% ∴总人数有15÷30%=50人,∴报名参加丁小组的有50﹣10﹣20﹣15=5人,统计图为:〔2〕报名参加2个兴趣小组的有400×=160人〔3〕合理即可:如:利用课余时间多参加几个兴趣小组.18.解:〔1〕或5%;〔2〕平均每奖券获得的购物券金额为+0×=14〔元〕∵14>10∴选择抽奖更合算.19.解:设小丽所乘汽车返回时的平均速度是x千M/时,根据题意得:,解这个方程,得x=75,经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千M/时.20.解:〔1〕过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,那么=,解得:x=12.即教案楼的高12m.〔2〕由〔1〕可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为27m.21.〔1〕证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF〔ASA〕;〔2〕解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.22.解:〔1〕y是x的一次函数,设y=kx+b,图象过点〔10,300〕,〔12,240〕,,解得,∴y=﹣30x+600,当x=14时,y=180;当x=16时,y=120,即点〔14,180〕,〔16,120〕均在函数y=﹣30x+600图象上.∴y与x之间的函数关系式为y=﹣30x+600;〔2〕w=〔x﹣6〕〔﹣30x+600〕=﹣30x2+780x﹣3600,即w与x之间的函数关系式为w=﹣30x2+780x﹣3600;〔3〕由题意得:6〔﹣30x+600〕≤900,解得x≥15.w=﹣30x2+780x﹣3600图象对称轴为:x=﹣=13.∵a=﹣30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.23.解:探究三:如图,三角形部的三点共线与不共线时都分成了7局部,故答案为:7;分割示意图〔答案不唯一〕探究四:三角形部1个点时,共分割成3局部,3=3+2〔1﹣1〕,三角形部2个点时,共分割成5局部,5=3+2〔2﹣1〕,三角形部3个点时,共分割成7局部,7=3+2〔3﹣1〕,…,所以,三角形部有m个点时,3+2〔m﹣1〕或2m+1;…4分探究拓展:四边形的4个顶点和它部的m个点,那么分割成的不重叠的三角形的个数为:4+2〔m﹣1〕或2m+2;…6分问题解决:n+2〔m﹣1〕或2m+n﹣2;…8分实际应用:把n=8,m=2021代入上述代数式,得2m+n﹣2,=2×2021+8﹣2,=4024+8﹣2,=4030.…10分24.解:〔1〕如图①,在Rt△ABC中,AC=6,BC=8 ∴AB=.∵D、E分别是AC、AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4∵PQ⊥AB,∴∠PQB=∠C=90°又∵DE∥BC∴∠AED=∠B∴△PQE∽△ACB由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=.〔2〕如图②,过点P作PM⊥AB于M,由△PME∽△ABC,得,∴,得PM=〔4﹣t〕.S△PQE=EQ•PM=〔5﹣2t〕•〔4﹣t〕=t2﹣t+6,S梯形DCBE=×〔4+8〕×3=18,∴y=18﹣〔t2﹣t+6〕=t2+t+12.〔3〕假设存在时刻t,使S△PQE:S四边形PQBCD=1:29,那么此时S△PQE=S梯形DCBE,∴t2﹣t+6=×18,即2t2﹣13t+18=0,解得t1=2,t2=〔舍去〕.当t=2时,PM=×〔4﹣2〕=,ME=×〔4﹣2〕=,EQ=5﹣2×2=1,MQ=ME+EQ=+1=,∴PQ===.∵PQ•h=,∴h=•=〔或〕.。

山东省青岛市中考数学试题含答案

山东省青岛市中考数学试题含答案

山东省青岛市初级中学学业水平考试数 学 试 题一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上. (10山东青岛)1.下列各数中,相反数等于5的数是( ).A .-5B .5C .-15D .15(10山东青岛)2.如图所示的几何体的俯视图是( ). A .B .C .D . (10山东青岛)3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ). A .精确到十分位,有2个有效数字 B .精确到个位,有2个有效数字 C .精确到百位,有2个有效数字 D .精确到千位,有4个有效数字(10山东青岛)4.下列图形中,中心对称图形有( ).A .1个B .2个C .3个D .4个(10山东青岛)5.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大(10山东青岛)6.如图,在Rt△ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离 B .相切 C .相交 D .相切或相交个数 平均 质量(g )质量的方差 甲厂 50 150 2.6 乙厂 50 150 3.1 第2题图7O-2 -4 -3 -5 y C-1 6 A2 1345 12 Bx3 4 5 第7题图BCA第6题图(10山东青岛)7.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)(10山东青岛)8.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.(10山东青岛)9-= .(10山东青岛)10.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °. (10山东青岛)11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .(10山东青岛)12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.(10山东青岛)13.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.(10山东青岛)14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. (10山东青岛)15.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:结论:x OABC第10题图· …第14题图A BCFE 'A 第13题图('B ) D ABC四、解答题(本题满分74分,共有9道小题) (10山东青岛)16.(本小题满分8分,每题4分)(1)解方程组:34194x y x y +=⎧⎨-=⎩; (2)化简:22142a a a +--. 解: 解:原式=(10山东青岛)17.(本小题满分6分)配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是 元;(2)配餐公司上周在该校销售B 餐每份的利润大约是 元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元? 解:(3)(10山东青岛)18.(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.(1)写出转动一次转盘获得45元购书券的概率;(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由. 解:(1)(2)以往销售量与平均每份利润之间的关系统计图一周销售量(份) 300~800 (不含800) 800~1200(不含1200)1200及 1200以上该校上周购买情况统计表 第18题图(10山东青岛)19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o337sin37tan37sin 48tan485410≈≈≈≈,,,解:(10山东青岛)20.(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)(2) (10山东青岛)21.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)(2)(10山东青岛)22.(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于A DB E FO CM第21题图 第19题图2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) 解:(1)(2)(3)(10山东青岛)23.(本小题满分10分)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+ =,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩ .结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: .O上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3: .验证3:结论3: .(10山东青岛)24.(本小题满分12分)已知:把Rt△ABC 和Rt△DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(图(3)供同学们做题使用)解:(1)(2)(3)二○一○年山东省青岛市初级中学学业水平考试A D BF E ) 图(1) 图(2) A B C 图(3) (用圆珠笔或钢笔画图)数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分18分,共有6道小题,每小题3分)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心; ······· 2分确定半径; ······· 3分 正确画出圆并写出结论. ······· 4分四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分) (1)34194x y x y +=⎧⎨-=⎩解:②×4得:4416x y -=,③①+③得:7x = 35, 解得:x = 5.把x = 5代入②得,y = 1.② ①∴原方程组的解为51x y =⎧⎨=⎩.········ 4分(2)解:原式 =()()21222a a a a -+-- ()()()()222222a a a a a a +=-+-+- ()()()()()2222222a a a a a a a -+=+--=+-12a =+. ······· 4分17.(本小题满分6分)解:(1)6元; ······· 2分 (2)3元;······· 4分 (3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元. ······· 6分18.(本小题满分6分)解:(1)P (获得45元购书券) = 112; ······· 2分(2)12345302515121212⨯+⨯+⨯=(元). ∵15元>10元,∴转转盘对读者更合算.······· 6分19.(本小题满分6分) 解:设CD = x . 在Rt △ACD 中,tan37ADCD ︒=, 则34AD x =, ∴34AD x =.在Rt△BCD 中,tan48° = BDCD, 则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB , ∴31180410x x +=.第19题图解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分 20.(本小题满分8分)解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········ 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分 解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ······· 8分21.(本小题满分8分)证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF . ······· 4分 (2)四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =.∴OE OF =.∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形. ······· 8分22.(本小题满分10分)解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+) 21070010000x x =-+-352b x a=-=.答:当销售单价定为35元时,每月可获得最大利润. ······· 3分(2)由题意,得:210700100002000x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. ····· 6分(3)法一:∵10a =-<0,A DB E F O CM 第21题图 法二:∵10a =-<0, ∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000.∴抛物线开口向下.∴当30≤x≤40时,w≥2000.∵x≤32,∴当30≤x≤32时,w≥2000.设成本为P(元),由题意,得:20(10500)P x=-+20010000x=-+∵200k=-<0,∴P随x的增大而减小.∴当x = 32时,P最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.··········10分23.(本小题满分10分)解:3个;·······1分验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b+=.整理得:26a b+=,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩.······3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.···5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?·······6分验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角. 根据题意,可得方程:6090120360m n c++=,整理得:23412m n c++=,可以找到惟一一组适合方程的正整数解为121mnc=⎧⎪=⎨⎪=⎩. ·······8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.)······· 10分24.(本小题满分12分)解:(1)∵点A在线段PQ的垂直平分线上,∴AP = AQ.∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,∴∠EQC = 45°.∴∠DEF =∠EQC.∴CE = CQ.由题意知:CE = t,BP =2 t,∴CQ = t.∴AQ = 8-t.在Rt△ABC中,由勾股定理得:AB = 10 cm .则AP = 10-2 t .∴10-2 t = 8-t .解得:t = 2.答:当t = 2 s 时,点A 在线段PQ 的垂直平分线上. ····· 4分(2)过P 作PM BE ⊥,交BE 于M ,∴90BMP ∠=︒.在Rt△ABC 和Rt△BPM 中,sin AC PM B AB BP==, ∴8210PM t = . ∴PM = 85t . ∵BC = 6 cm ,CE = t , ∴ BE = 6-t . ∴y = S △ABC -S △BPE =12BC AC ⋅-12BE PM ⋅= 1682⨯⨯-()186t t 25⨯-⨯ =24242455t t -+ = ()2484355t -+. ∵405a =>,∴抛物线开口向上. ∴当t = 3时,y 最小=845. 答:当t = 3s 时,四边形APEC 的面积最小,最小面积为845cm 2. ··· 8分 (3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作PN AC ⊥,交AC 于N ,∴90ANP ACB PNQ ∠=∠=∠=︒.∵PAN BAC ∠=∠,∴△PAN ∽△BAC . ∴PN AP AN BC AB AC==. ∴1026108PN t AN -==. ∴665PN t =-,885AN t =-. ∵NQ = AQ -AN ,∴NQ = 8-t -(885t -) = 35t . ∵∠ACB = 90°,B 、C (E )、F 在同一条直线上,∴∠QCF = 90°,∠QCF = ∠PNQ .∵∠FQC = ∠PQN ,∴△QCF ∽△QNP . ∴PN NQ FC CQ= . ∴636559t t t t -=- . ∵0t <<4.5 ∴663595t t -=- 解得:t = 1.答:当t = 1s ,点P 、Q 、F 三点在同一条直线上. 12分图(2)图(3)。

【真题】青岛市中考数学试题含答案

【真题】青岛市中考数学试题含答案

山东省青岛市中考数学试题第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.观察下列四个图形,中心对称图形是()A. B. C. D.2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.7510⨯ B.7510-⨯ C.60.510-⨯ D.6510-⨯3.如图,点A所表示的数的绝对值是()A.3 B.3- C.13D.13-4.计算()32335a a a-⋅的结果是()A.565a a- B.695a a- C.64a- D.64a5.如图,点A B C D、、、在O上,140AOC∠=︒,点B是AC的中点,则D∠的度数是()A.70︒ B.55︒ C.35.5︒ D.35︒6.如图,三角形纸片ABC,,90AB AC BAC=∠=︒,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知32EF=,则BC的长是()A 32.32.3 D.7.如图,将线段AB 绕点P 按顺时针方向旋转90︒,得到线段A B '',其中点A B 、的对应点分别是点A B ''、,,则点A '的坐标是( )A .()1,3-B .()4,0C .()3,3-D .()5,1- 8.已知一次函数by x c a=+的图象如图,则二次函数2y ax bx c =++在平面直角坐标系中的图象可能是( ) A .B .C . D .第Ⅱ卷(共96分)二、填空题(每题3分,满分18分,将答案填在答题纸上)9.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为22S S 甲乙、,则2S 甲 2S 乙(填“>”、“=”、“<”)10.计算:12122cos30-︒= .11.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于,x y 的方程组为 .12.已知正方形ABCD 的边长为5,点E F 、分别在AD DC 、上,2AE DF ==,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .13.如图,Rt ABC ∆,90,30B C ∠=︒∠=︒,O 为AC 上一点,2OA =,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE OF 、,则图中阴影部分的面积是 .14.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了 9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.三、作图题:本大题满分4分.15. 已知:如图,ABC ∠,射线BC 上一点D .求作:等腰PBD ∆,使线段BD 为等腰PBD ∆的底边,点P 在ABC ∠内部,且点P 到ABC ∠两边的距离相等.四、解答题 (本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(1)解不等式组:21,321614x x -⎧<⎪⎨⎪+>⎩ (2)化简:22121x x x x ⎛⎫+-⋅ ⎪-⎝⎭.17.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.八年级(1 )班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.19.某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45︒,乙勘测员在B处测得点O位于南偏西73.7︒,测得840,500AC m BC m==.请求出点O到BC的距离.参考数据:2473.7s25in︒≈,773.7c s25o︒≈,2473.7ta7n︒≈20.已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >.(1)当124y y -=时,求m 的值;(2)如图,过点B C 、分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上, 若三角形PBD 的面积是8,请写出点P 坐标(不需要写解答过程).21.已知:如图,ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB AF =;(2)若,120AG AB BCD =∠=︒,判断四边形ACDF 的形状,并证明你的结论.22.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司 按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式26y x =-+.(1)求这种产品第一年的利润1W (万元)与售价x (元/件)满足的函数关系式; (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W 至少为多少万元.23.问题提出:用若干相同的一个单位长度的细直木棒,按照下图方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法. 探究一用若干木棒来搭建横长是m ,纵长是n 的矩形框架(m n 、是正整数),需要木棒的条数. 如图①,当1,1m n ==时,横放木棒为()111⨯+条,纵放木棒为()111+⨯条,共需4条; 如图②,当2,1m n ==时,横放木棒为()211⨯+条,纵放木棒为()211+⨯条,共需7条;如图③,当2,2m n ==时,横放木棒为()221⨯+)条,纵放木棒为()212+⨯条,共需12条; 如图④,当3,1m n ==时,横放木棒为()311⨯+条,纵放木棒为()311+⨯条,共需10条;如图⑤,当3,2m n ==时,横放木棒为()321⨯+条,纵放木棒为()312+⨯条,共需17条.问题(一):当4,2m n ==时,共需木棒 条.问题(二):当矩形框架横长是m ,纵长是n 时,横放的木棒为 条, 纵放的木棒为 条. 探究二用若干木棒来搭建横长是m ,纵长是n ,高是s 的长方体框架(m n s 、、是正整数),需要木 棒的条数. 如图⑥,当3,2,1m n s ===时,横放与纵放木棒之和为()()()32131211=34⨯+++⨯⨯+⎡⎤⎣⎦条,竖放木棒为()()3121112+⨯+⨯=条,共需46条;如图⑦,当3,2,2m n s ===时,横放与纵放木棒之和为()()()3213122151⨯+++⨯⨯+=⎡⎤⎣⎦条,竖放木棒为()()3121224+⨯+⨯=条,共需75条;如图⑧,当3,2,3m n s ===时,横放与纵放木棒之和为()()()32131231=68⨯+++⨯⨯+⎡⎤⎣⎦条,竖放木棒为()()3121336+⨯+⨯=条,共需104条.问题(三):当长方体框架的横长是m ,纵长是n ,高是s 时,横放与纵放木棒条数之和 为 条,竖放木棒条数为 条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 .拓展应用:若按照如图方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒 条.24.已知:如图,四边形ABCD ,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP 、为边作平行四边形AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式; (3)当QP BD ⊥时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.11 / 11。

2024年山东省青岛市中考数学试卷(含答案)

2024年山东省青岛市中考数学试卷(含答案)

2024年山东省青岛市中考数学试卷一、选择题:本题共9小题,每小题3分,共27分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.“海葵一号”是完全由我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60000立方米.将60000用科学记数法表示为( )A. 6×103B. 60×103C. 0.6×105D. 6×1042.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.实数a,b,c,d在数轴上对应点的位置如图所示,这四个实数中绝对值最小的是( )A. aB. bC. cD. d4.如图所示的正六棱柱,其俯视图是( )A. B. C. D.5.下列计算正确的是( )A. a+2a=3a2B. a5÷a2=a3C. (−a)2⋅a3=−a5D. (2a3)2=2a66.如图,将正方形ABCD先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转90°,得到四边形A′B′C′D′,则点A的对应点A′的坐标是( )A. (−1,−2)B. (−2,−1)C. (2,1)D. (1,2)7.为筹备运动会,小松制作了如图所示的宣传牌,在正五边形ABCDE和正方形CDFG中,CF,DG的延长线分别交AE,AB于点M,N,则∠FME的度数是( )A. 90°B. 99°C. 108°D. 135°8.如图,A,B,C,D是⊙O上的点,半径OA=3,AB=CD,∠DBC=25°,连接AD,则扇形AOB的面积为( )A. 54πB. 58πC. 52πD. 512π9.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=−1,则过点M(c,2a−b)和点N(b2−4ac,a−b+c)的直线一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共6小题,每小题3分,共18分。

山东省青岛市中考数学试卷(解析版)

山东省青岛市中考数学试卷(解析版)

青岛市中考数学试卷 (考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.81-的相反数是( ). A .8 B .8- C .81 D .81- 【答案】C【解析】试题分析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数,知:81-是81 考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).【答案】A【解析】试题分析:利用知识点:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,知:选项A 是轴对称图形,但不是中心对称图形;选项B 和C,既是轴对称图形又是中心对称图形;选项D 是中心对称图形,但不是轴对称图形.考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A 、众数是6吨B 、平均数是5吨C 、中位数是5吨D 、方差是34 【答案】C【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:方差;平均数;中位数;众数4.计算326)2(6m m -÷的结果为( ).A .m -B .1-C .43D .43- 【答案】D【解析】试题分析:()4386)2(666326-=-÷=-÷m m m m 考点:(1)、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;(3)、幂的乘方运算5. 如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A.)2,4(-B.)4,2(-C. )2,4(-D.)4,2(-【答案】B【解析】试题分析:将△ABC 绕点O 逆时针旋转90°后,图形如下图(所以B1的坐标为)4,2考点:(1)、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;(3)、幂的乘方运算6. 如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD 的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD∵∠AED=20°∴∠ABD=∠AED=20°∵AB 是⊙O 的直径∴∠ADB=90°∴∠BAD=70°∴∠BCD=110°考点:圆的性质与计算7. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23 C .721 D .7212 【答案】D【解析】试题分析:∵平行四边形ABCD ,AC =2,BD =4∴AO=1,BO=2∵3=AB∴△ABO 是直角三角形,∠BAO=90°∴BC=()7232222=+=+AC AB在直角△ABC 中 AE BC AC AB S ABC ⋅=⋅=∆2121 AE ⋅=⨯7212321 AE=7212 考点:平行四边形的性质,勾股定理,面积法求线段长度8. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y = 图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C , 则△PCO 的面积为( )A 、2B 、4C 、8D 、不确定【答案】A【解析】试题分析:如下图,把点A (4,1--),B (2,2)代入)0(≠+=k b kx y 得22--=x y ,即k=-2,b=-2所以反比例函数表达式为xy 4= 设P (m ,n ),则nm 4=,即mn=4 △PCO 的面积为21OCPC=21mn=2 考点: 一次函数、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫. 65 000 000用科学计数法可表示为______________________.【答案】7105.6⨯【解析】试题分析:科学记数法的表示形式为a ×n 10的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.所以,65 000 000用科学计数法可表示为7105.6⨯考点:科学记数法的表示方法10.计算.__________6)6124(=⨯+【答案】13 【解析】131********16246)6124(=+=+=⨯+⨯=⨯+考点:无理数运算11. 若抛物线m x x y +-=62与x 轴没有交点,则m 的取值范围是_____________°【答案】9>m【解析】二次函数m x x y +-=62,a=1,b= -6,c = m ∵若抛物线m x x y +-=62与x 轴没有交点∴△<0即()01462<⨯⨯--m 解得9>m考点:△=0抛物线与x 轴有1交点;△>0抛物线与x 轴有2交点;△<0抛物线与x 轴有0交点;12.如图,直线AB 与CD 分别与⊙O 相切于B 、D 两点,且AB ⊥CD ,垂足为P ,连接BD.若BD =4,则阴影部分的面积为___________________.【答案】42-π【解析】如下图连接OB ,OD∵直线AB 与CD 分别与⊙O 相切于B 、D 两点∴AB ⊥OB ,PC ⊥OD∵AB ⊥CD∴BOPD 是正方形∴2222==BD r∴()42222221224121r 4122-=⨯-=⋅-=-=∆πππOD OB S S S BODBOD 扇形阴考点:弓形面积13,如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32【解析】如下图∵∠ABC =∠ADC =90°,E 为对角线AC 的中点∴A ,B ,C ,D 四点共圆,圆心是E ,直径AC∵∠BAD =58°∴∠BED =116°∴∠EBD=32°考点:圆心角性质定理,等腰三角形性质14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为____.【答案】48+123【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.利用知识点:主府长对正,主左高平齐,府左宽相等,得该几何体底面正六边形,AB=4,正六边形被分成6个全等的等边三角形,边长AC=236322166=⨯⨯⨯==∆AOD S S 底 842=⨯=侧S该几何体的表面积为2底S +6侧S =48+123考点:三视图,等边三角形,正六边形三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:四边形ABCD .求作:点P .使∠PCB =∠B ,且点P 到AD 和CD 的距离相等.结论:考点:尺规作图,角平分线性质定理 【解析】利用基本尺规作图:“画一个角等于已知角”,∠PCB =∠B ;要使点P 到AD 和CD 的距离相等,需作∠ADC 的角平分线.【解答】作图过程略四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)解不等式组⎪⎩⎪⎨⎧-+≥-23221<x x x (2)化简:b b a a b a 222)(-÷-; (1)考点:解不等式组【解析】解得1-<x ,解得x <10-,利用知识点:同小取小,得不等式组的解集为:10-<x【解答】 由①得:1-<x ;由②得:x <10-.所以不等式组的解集为:10-<x(2)考点:分式的化简【解析】先对每个分式的分子、分母分解因式,在约分化简计算【解答】原式ba ab a b a b b b a a +=+-⨯-=))(()(17.(本小题满分6分)小华和小军做摸球游戏,A 袋中装有编号为1,2,3的三个小球,B 袋中装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若B 袋摸出的小球的编号与A 袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由. 考点:列表或画树状图求概率【解析】通过列表,共有9种等可能结果,偶数有4种等可能结果,94)(=小华胜P ,95)(=小军胜P ∴不公平 【解答】列表如下 B 袋 A 袋4 5 6 1 3 4 52 23 43 1 2 3共有94种等可能结果94)(=小华胜P ;则小军胜的概率为95941=- ∵9594≠,∴不公平.18.(本小题满分6分)某中学开展了“手机伴我健康行”主题活动.他们随机抽取部分学生进行“手机使用目的”和“每周使用手机时间”的问卷调查,并绘制成如图①②的统计图.已知“查资料”人人数是40人.请你根据以上信息解答以下问题(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_______________.(2)补全条形统计图(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数 考点:统计图【解析】(1)1—40%-18%-5%=35%,360×35%=126°(2)利用“查资料”人人数是40人,查资料”人占总人数40%求出总人数100,再求出32人(3)用部分估计整体【解答】(1)126° (2)40÷40%-2-16-18-32=32人 (3)1200×1003232+=768人 19.(本小题满分6分)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长(结果保留整数)(参考数据:73.1351267tan 13567cos 131267sin ≈≈︒≈︒≈︒;;;)考点:三角函数的应用 【解析】作BD ⊥AC 于点D ,利用和AB=520,求AD=480;利用和AB=520,求BD=200; 利用和BD=200,求CD=116;∴AC=596【解答】解:如图,作BD ⊥AC 于点D ,在Rt △ABD 中,∠ABD=67°131267sin ==︒AB AD ,∴)(4801312km AB AD ==13567cos ≈=︒AB BD ,∴)(200135km AB BD ==在Rt △BCD 中,∠CBD=30°3330tan ==︒BD CD ,∴)(11633km BD CD ≈=∴)(596km DA CD AC ≈+= 答:AC 之间的距离约为596km. 20.(本小题满分8分)A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中21,l l 表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题: (1)表示乙离开A 地的距离与时间关系的图像是________(填21l l 或); 甲的速度是__________km/h ;乙的速度是________km/h. (2)甲出发后多少时间两人恰好相距5km ?考点:一次函数的应用【解析】(1)乙离开A 地的距离越来越远,图像是2l ; 甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20(2)分类讨论:①相遇前:521=-y y 得h x 3.1=;②相遇后:由512=-y y 得h x 5.1= 【解答】解:(1)2l ; 30; 20;(2)由图可求出60301+-=x y ,10202-=x y由521=-y y 得h x 3.1=;由512=-y y 得h x 5.1= 答:甲出发后1.3h 或者1.5h 时,甲乙相距5km.21.(本小题满分8分)已知:如图,在菱形ABCD 中,点E ,O ,F 分别是边AB ,AC ,AD 的中点,连接CE 、CF 、OF . (1)求证:△ BCE ≌△DCF ;(2)当AB 与BC 满足什么条件时,四边形AEOF 正方形?请说明理由.考点:菱形,全等三角形,正方形【解析】(1)利用SAS 证明△ BCE ≌△DCF(2)先证明AEOF 为菱形,当BC ⊥AB ,得∠BAD =90°,再利用知识点:有一个角是90°的菱形是正方形.【解答】(1)证明:∵四边形ABCD 为菱形∴AB=BC=CD=DA ,∠B=∠D又E 、F 分别是AB 、AD 中点,∴BE=DF∴△ABE ≌△CDF (SAS )(2)若AB ⊥AD ,则AEOF 为正方形,理由如下 ∵E 、O 分别是AB 、AC 中点,∴EO ∥BC , 又BC ∥AD ,∴OE ∥AD ,即:OE ∥AF同理可证OF ∥AE ,所以四边形AEOF 为平行四边形 由(1)可得AE =AF所以平行四边AEOF 为菱形因为BC ⊥AB ,所以∠BAD =90°,所以菱形AEOF 为正方形. 22.(本小题满分10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨31,下表是去年该酒店豪华间某两天的相关记录: 旺季淡季 未入住房间数10日总收入(元) 24 00040 000 (1(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?考点:列分式方程解应用题,二次函数最值问题 【解析】(1)∵旺季每间比淡季上涨31,∴旺季每间是淡季131,根据此等量关系列分式方程解应用题(2)设上涨m 元,利润为w .价格每增加25元,每天入住房间数减少1间,∴入住房间数,得利润表达式,再求最值!【解答】解:(1)设有x 间豪华间,由题可得xx 40000)311(1024000=+- 解得50=x ,经检验50=x 是原方程的根则:)/(8005040000间元=答:该酒店豪华间有50间,旺季每间价格为800元.(2)设上涨m 元,利润为w ,则4000018251)2550)(800(2++-=-+=m m m m w因为0251<-=a ,所以抛物线开口向下所以当2252=-=abm 时,42025=最大w 23.(本小题满分10分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求不等式2|1|<-x 的解集 (1)探究|1|-x 的几何意义如图①,在以O 为原点的数轴上,设点A '对应点的数为1-x , 由绝对值的定义可知,点A '与O 的距离为|1|-x , 可记为:A 'O=|1|-x .将线段A 'O 向右平移一个单位, 得到线段AB ,,此时点A 对应的数为x ,点B 的对应数是1, 因为AB= A 'O ,所以AB=|1|-x .因此,|1|-x 的几何意义可以理解为数轴上x 所对应的点A 与1所对应的点B 之间的距离AB.(2)求方程|1|-x =2的解因为数轴上3与1-所对应的点与1所对应的点之间的距离都为2,所以方程的解为1,3-(3)求不等式2|1|<-x 的解集因为|1|-x 表示数轴上x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数x 的范围.请在图②的数轴上表示2|1|<-x 的解集,并写出这个解集探究二:探究22)()(b y a x -+-的几何意义 (1)探究22y x +的几何意义如图③,在直角坐标系中,设点M 的坐标为),(y x ,过M 作MP ⊥x 轴于P ,作MQ ⊥y 轴于Q ,则点P 点坐标(0,x ),Q 点坐标(y ,0),|OP|=x ,|OQ|=y ,在Rt △OPM 中,PM =OQ =y ,则222222||||y x y x PM OP MO +=+=+=因此22y x +的几何意义可以理解为点M ),(y x 与原点O (0,0)之间的距离OM(2)探究22)5()1(-+-y x 的几何意义如图④,在直角坐标系中,设点 A '的坐标为)5,1(--y x ,由探究(二)(1)可知,A 'O=22)5()1(-+-y x ,将线段 A 'O 先向右平移1个单位,再向上平移5个单位,得到线段AB ,此时A 的坐标为(y x ,),点B 的坐标为(1,5).因为AB= A 'O ,所以 AB =22)5()1(-+-y x ,因此22)5()1(-+-y x 的几何意义可以理解为点A (y x ,)与点B (1,5)之间的距离.(3)探究22)4()3(+++y x 的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程. (4)22)()(b y a x -+-的几何意义可以理解为:_________________________. 拓展应用:(1)22)1()2(++-y x +22)5()1(+++y x 的几何意义可以理解为:点A ),(y x 与点E )1,2(-的距离与点AA ),(y x 与点F____________(填写坐标)的距离之和. (2)22)1()2(++-y x +22)5()1(+++y x 的最小值为____________(直接写出结果)考点:信息题 【解析】探究一(3):2|1|<-x 的解集就是数轴上x 所对应的点与1所对应的点之间的距离小于2的点所对应的数,利用数轴可知31<<x -探究二(3):根据题目信息,22)4()3(+++y x 的几何意义可以理解为点A (y x ,)与点B (4,3--)之间的距离.拓展应用:根据题目信息知是与点F (5,1--)的距离之和.22)1()2(++-y x +22)5()1(+++y x 表示点A ),(y x 与点E )1,2(-的距离与点A ),(y x 与点F (5,1--)的距离之和.∴最小值为E )1,2(-与点F (5,1--)的距离5【解答】解:探究一(3)解集为:31<<x -探究二(3)如图⑤,在直角坐标系中,设点 A '的坐标为)4,3(++y x , 由探究(二)(1)可知, A 'O=22)4()3(+++y x ,将线段 A 'O 先向左平移3个单位,再向下平移4个单位, 得到线段AB ,此时A 的坐标为(y x ,),点B 的坐标为(4,3--). 因为AB= A 'O ,所以 AB =22)4()3(+++y x ,因此22)4()3(+++y x 的几何意义可以理解为点A (y x ,)与点B (4,3--)之间的距离. 拓展应用 (1)(5,1--) (2)5 24.(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°.如图②,△EFP 从图①的位置出发,沿BC 方向匀速运动,速度为1cm/s ;EP 与AB 交于点G .同时,点Q 从点C 出发,沿CD 方向匀速运动,速度为1cm/s.过Q 作QM ⊥BD ,垂足为H ,交AD 于M ,连接AF ,PQ ,当点Q 停止运动时,△EFP 也停止运动.设运动时间为t (s )(0<t <6),解答下列问题: (1)当 t 为何值时,PQ ∥BD ?(2)设五边形 AFPQM 的面积为 y (cm 2),求 y 与 t 之间的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使8:9:=ABCD AFPQM S S 矩形五边形? 若存在,求出 t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻 t ,使点M 在PG 的垂直平分线上? 若存在,求出 t 的值;若不存在,请说明理由.(3)假使存在t ,使8:9:=ABCD AFPQM S S 矩形五边形则5498ABCD ==矩形S y ,即54211725812=+-t t 整理得036202=+-t t ,解得(舍去)>618,221==t t答:当t=2,8:9:=ABCD AFPQM S S 矩形五边形(4)易证△PBG ∽△PEF ,∴FE FP BG BP =,即68=BG t ,∴t BG 43=则t AG 436-=2743)6(438+=--=-=t t MD AD AM作MN ⊥BC 于N 点,则四边形MNCD 为矩形所以MN=CD=6,CN=)6(43t MD -=,故:PN=427)6(43)8(tt t -=---若M 在PG 的垂直平分线上,则GM=PM ,所以22PM GM =,所以2222MN PN AM AG +=+即:22226)427()2743()436(+-=++-tt t整理得:032172=-t t ,解得(舍去)0,173221==t t .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省青岛市年中考数学试题(含答案)————————————————————————————————作者:————————————————————————————————日期:青岛市2017年中考数学试卷(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分. 要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.81-的相反数是( ).A .8B .8-C .81 D .81-2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ). A 、众数是6吨 B 、平均数是5吨 C 、中位数是5吨 D 、方差是344.计算323)2(6m m -÷的结果为( ).A .m -B .1-C .43 D .43- 5. 如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A.)2,4(-B.)4,2(-C. )2,4(-D.)4,2(-6,如图,AB 是⊙O 的直径,C ,D ,E 在⊙O 上, 若∠AED =20°,则∠BCD 的度数为( ) A 、100° B 、110° C 、115° D 、120°7. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23 B .23C .721D .7212 8. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y =图像上的一个动点,O 为坐标原点,过P 作y 轴的吹吸纳,垂足为C , 则△PCO 的面积为( )A 、2B 、4C 、8D 、不确定第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。

65 000 000用科学计数法可表示为______________________。

10.计算.__________6)6124(=⨯+11. 若抛物线mxxy+-=62与x轴没有交点,则m的取值范围是_____________°12.如图,直线AB与CD分别与⊙O相切于B、D两点,且AB⊥CD,垂足为P,连接BD.若BD=4,则阴影部分的面积为___________________。

13,如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE、ED、BD,若∠BAD=58°,则∠EBD的度数为__________度.14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为____。

三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:四边形ABCD.求作:点P.使∠PCB=∠B,且点P到AD和CD的距离相等。

结论:四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)解不等式组⎪⎩⎪⎨⎧-+≥-23221<xxx(2)化简:bbaaba222)(-÷-;小华和小军做摸球游戏,A袋中装有编号为1,2,3的三个小球,B袋中装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若B袋摸出的小球的编号与A袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.18.(本小题满分6分)某中学开展了“手机伴我健康行”主题活动.他们随机抽取部分学生进行“手机使用目的”和“每周使用手机时间”的问卷调查,并绘制成如图①②的统计图。

已知“查资料”人人数是40人。

请你根据以上信息解答以下问题(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_______________。

(2)补全条形统计图(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长(结果保留整数) (参考数据:73.1351267tan 13567cos 131267sin ≈≈︒≈︒≈︒;;;)20.(本小题满分8分)A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中21,l l 表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题: (1)表示乙离开A 地的距离与时间关系的图像是________(填21l l 或); 甲的速度是__________km /h ;乙的速度是________km /h 。

(2)甲出发后多少时间两人恰好相距5km ?已知:如图,在菱形ABCD 中,点E ,O ,F 分别是边AB ,AC ,AD 的中点, 连接CE 、CF 、OF . (1)求证:△ BCE ≌△DCF ;(2)当AB 与BC 满足什么条件时,四边形AEOF 正方形?请说明理由.22.(本小题满分10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨31,下表是去年该酒店豪华间某两天的相关记录:旺季 淡季 未入住房间数100 日总收入(元) 24 00040 000(1)该酒店豪华间有多少间?旺季每间价格为多少元(2)今年旺季来临,豪华间的间数不变。

经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间。

不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?23.(本小题满分10分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题。

下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用. 探究一:求不等式2|1|<-x 的解集 (1)探究|1|-x 的几何意义如图①,在以O 为原点的数轴上,设点A '对应点的数为1-x , 由绝对值的定义可知,点A '与O 的距离为|1|-x , 可记为:A 'O =|1|-x 。

将线段A 'O 向右平移一个单位, 得到线段AB ,,此时点A 对应的数为x ,点B 的对应数是1, 因为AB = A 'O ,所以AB =|1|-x 。

因此,|1|-x 的几何意义可以理解为数轴上x 所对应的点A 与1所对应的点B 之间的距离AB 。

(2)求方程|1|-x =2的解因为数轴上3与1-所对应的点与1所对应的点之间的距离都为2,所以方程的解为1,3-(3)求不等式2|1|<-x 的解集因为|1|-x 表示数轴上x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数x 的范围。

请在图②的数轴上表示2|1|<-x 的解集,并写出这个解集探究二:探究22)()(b y a x -+-的几何意义 (1)探究22y x +的几何意义如图③,在直角坐标系中,设点M 的坐标为),(y x ,过M 作MP ⊥x 轴于P ,作MQ ⊥y轴于Q ,则点P 点坐标(0,x ),Q 点坐标(y ,0),|OP |=x ,|OQ |=y ,在Rt △OPM 中,PM =OQ =y ,则222222||||y x y x PM OP MO +=+=+=因此22y x +的几何意义可以理解为点M ),(y x 与原点O (0,0)之间的距离OM (2)探究22)5()1(-+-y x 的几何意义如图④,在直角坐标系中,设点 A '的坐标为)5,1(--y x ,由探究(二)(1)可知, A 'O =22)5()1(-+-y x ,将线段 A 'O 先向右平移1个单位,再向上平移5个单位,得到线段AB ,此时A 的坐标为(y x ,),点B 的坐标为(1,5)。

因为AB = A 'O ,所以 AB =22)5()1(-+-y x ,因此22)5()1(-+-y x 的几何意义可以理解为点A (y x ,)与点B (1,5)之间的距离。

(3)探究22)4()3(+++y x 的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程。

(4)22)()(b y a x -+-的几何意义可以理解为:_________________________. 拓展应用:(1)22)1()2(++-y x +22)5()1(+++y x 的几何意义可以理解为:点A ),(y x 与点E )1,2(-的距离与点AA ),(y x 与点F ____________(填写坐标)的距离之和。

(2)22)1()2(++-y x +22)5()1(+++y x 的最小值为____________(直接写出结果)24.(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

如图②,△EFP 从图①的位置出发,沿BC 方向匀速运动,速度为1cm /s ;EP 与AB 交于点G .同时,点Q 从点C 出发,沿CD 方向匀速运动,速度为1cm /s 。

过Q 作QM ⊥BD ,垂足为H ,交AD 于M ,连接AF ,PQ ,当点Q 停止运动时,△EFP 也停止运动.设运动时间为t (s )(0<t <6),解答下列问题:(1)当 t 为何值时,PQ ∥BD ?(2)设五边形 AFPQM 的面积为 y (cm 2),求 y 与 t 之间的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使8:9: ABCD AFPQM S S 矩形五边形? 若存在,求出 t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻 t ,使点M 在PG 的垂直平分线上? 若存在,求出 t 的值;若不存在,请说明理由.参考答案一、选择题号 1 2 3 4 5 6 7 8 答案 CACDBBDA二、填空题号 910 11121314 答案7105.6⨯ 139>m 42-π 3248+123三、作图 略 四、解答题16、(1)由①得:1-<x ;由②得:x <10-。

相关文档
最新文档