北师大八年级数学下经典易错题
北师大版八年级下数学期末复习重点题、易错题

北师大版八年级下数学期末复习重点题、易错题一.填空题(共24小题)1.不等式3x﹣a≤0的正整数解是1,2,3,则a的取值范围是.2.若关于x的分式方程=的解为非负数,则a的取值范围是.3.若关于x的方程=3的解是非负数,则b的取值范围是.4.如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形A n B n∁n D n.若矩形A1B1C1D1的面积为24,那么四边形A n B n∁n D n的面积为.5.若数m使关于x的不等式组,有且仅有三个整数解,则m的取值范围是.6.已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012=.7.已知关于x的分式方程有增根,则m=.8.已知关于x的不等式组有且只有两个整数解,则实数a的取值范围是.9.已知x=+5,则代数式(x﹣2)2﹣6(x﹣2)+9的值是.10.已知+=,则的值是.11.已知关于x的分式方程﹣=1的解为正数,则a的取值范围是.12.若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是.13.在一个长为3,宽为m(m<3)的矩形纸片上,剪下一个面积最大的正方形(称为第一次操作);再在剩下的矩形上剪下一个面积最大的正方形(称为第二次操作);如此反复操作下去.若在第n次操作后,剩下的矩形为正方形,则操作终止.当n=2时,m的值为.14.已知(a2+b2+2)(a2+b2﹣2)=5,那么a2+b2=.15.从﹣3,﹣2,﹣1,0,1,2,3这7个数中任意选一个数作为m的值,则使关于x的分式方程:的解是负数,且关于x的一次函数y=(m﹣3)x﹣4的图象不经过第一象限的概率为.16.若关于x的方程=+1无解,则a的值是.17.已知关于x的不等式组只有两个整数解,则实数a的取值范围是.18.已知﹣=1,则.19.如图,直线y1=﹣2x与直线y2=kx+b相交于点A(a,2),并且直线y2=kx+b经过x轴上点B(2,0),则不等式(k+2)x+b≥0的解集是20.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2018的纵坐标为.21.有5张正面分别标有数字﹣2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使关于x的分式方程=3有正实数解的概率为.22.如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为.23.如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则点E运动过程中,DF的最小值是.24.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二.解答题(共14小题)25.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0),(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求出A′点的坐标.(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.26.在Rt△ABC中,∠ACB=90°,AC=5,以斜边AB为底边向外作等腰三角形P AB,连接PC.(1)如图1,当∠APB=90°时,①求证:PC平分∠ACB;②若PC=6,求BC的长;(2)如图2,当∠APB=60°,PC=5时,求BC的长.27.(1)因式分解:2ax3﹣8ax.(2)解不等式组:.28.先化简,再求值:,其中a=﹣1.29.在下列网格图中,每个小正方形的边长均为1个单位长度.已知△ABC在网格图中的位置如图所示.(1)请在网格图中画出△ABC向右平移7个单位后的图形△A1B1C1,并直接写出平移过程中线段BC扫过的面积.(2)请在网格图中画出△ABC以P为对称中心的图形△A2B2C2(保留作图痕迹).30.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从点B出发以2cm/s的速度向点A 运动,点Q从点A出发以1cm/s的速度向点C运动,设P、Q分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AP、AQ的长;(2)当t为何值时,△APQ是以PQ为底边的等腰三角形?(3)当t为何值时,△APQ为直角三角形?31.如图1,在Rt△ABC中,∠C=90°,AC=BC,点D,E分别在边AC,BC上,CD=CE,连接BD,点F,P,G分别为AB,BD,DE的中点.(1)如图1中,线段PF与PG的数量关系是,位置关系是;(2)若把△CDE绕点C逆时针方向旋转到图2的位置,连接AD,BE,GF,判断△FGP的形状,并说明理由;(3)若把△CDE绕点C在平面内自由旋转,AC=8,CD=3,请求出△FGP面积的最大值.32.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.33.已知在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D.(1)如图1,将线段CD绕点C顺时针旋转90°得到CF,连接AF交CD于点G.求证:AG=GF;(2)如图2,点E是线段CB上一点(CE<CB).连接ED,将线段ED绕点E顺时针旋转90°得到EF,连接AF交CD于点G.①求证:AG=GF;②若AC=BC=7,CE=2,求DG的长.34.已知如图,直线y=kx+b与x轴、y轴分别交于点A、B,与直线y=3x交于点C,且|OA﹣6|+=0,将直线y=kx+b沿直线y=3x折叠,与x轴交于点D,与y轴交于点E.(1)求直线y=kx+b的解析式及点C的坐标;(2)求△BCE的面积;(3)若点P是直线y=3x上的一个动点,在平面内是否存在一点Q,使以点A、C、P、Q为顶点的四边形是矩形?若存在,请直接写出点P、点Q的坐标;若不存在,请说明理由.35.将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=9,OC=15.(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落至AB边上的D点,求直线EC的解析式;(2)如图2,在OA、OC边上选取适当的点M、F,将△MOF沿MF折叠,使O点落在AB边上的D′点,过D′作′DG⊥CO于点G点,交MF于T点.①求证:TG=AM;②设T(x,y),探求y与x满足的等量关系式,并将y用含x的代数式表示(指出变量x的取值范围);(3)在(2)的条件下,当x=6时,点P在直线MF上,问坐标轴上是否存在点Q,使以M、D′、Q、P为顶点的四边形是平行四边形,若存在,请直接写出Q点坐标;若不存在,请说明理由.36.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D 的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.37.如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA =2OB.(1)求直线AB的函数表达式;(2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);(3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由.38.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?参考答案一.填空题(共24小题)1.9≤a<12;2.a≥1,且a≠4;3.b ≤3且b ≠2;4.;5.﹣11<m≤﹣4;6.;7.﹣1;8.1<a≤2;9.7;10.3;11.a<且a≠0;12.﹣2<m≤﹣1或1<m≤2;13.1或2;14.3;15.;16.3或1;17.﹣1<a≤0;18.﹣5;19.x≥﹣1;20.()2017;21.;22.3;23.2;24.;11。
北师大版八年级数学下1—5单元易错题集锦(一)

北师大版八年级数学下1-5单元易错题集锦(一)一、选择题1.如图所示,AC=AD ,BC=BD ,则( ) A.CD 垂直平分AB B.AB 垂直平分CD C.CD 平分∠ACB D.以上说法均不对2.如果a>b ,c<0,那么下列不等式成立的是( )A.a+c>bB.a+c>b-cC.ac-l>bc-1D.a (c-1)<b (c-1) 3.下列各式从左到右的变形中,是因式分解的为( )A.()ab ac d a b c d ++=++B.2(2)(2)4x x x +-=- C.623ab a b =⋅ D.22816(4)x x x -+=-4.下列等式中成立的是( )A.123a b a b +=+B.212a b a b =++ C.2ab a ab b a b =-- D.a aa ba b =--++ 5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A.1个B.2个C.3个D.4个6.已知等腰三角形的一个角为50°,则其顶角为( ) A.50° B.80° C.50°或65° D.50°或80°7.下列说法中,错误的是( ) A.不等式x<5的整数解有无数多个 B.不等式x>-5的负整数解有有限个 C.不等式-2x<8的解集是x<4 D.-40是不等式2x<-8的一个解8.下列式子能直接用完全平方公式进行因式分解的是( )A.21681a a ++B.239a a -+ C.2441a a +- D.2816a a --9.(2020广东佛山华英学校期中)下列各分式中,是最简分式的是( )A.22x y x y ++B.22x y x y -+C.2x xxy + D.2xy y10.下列说法中,不正确的是( ) A.图形平移是由移动的方向和距离所决定的 B.图形旋转是由旋转中心和旋转角度所决定的 C.任意两条相等的线段都成中心对称 D.任意两点都成中心对称11.钟表上的时针走1小时旋转了_________度. 12.当x=_________时,分式225x x -+的值为0. 13.已知x ,y 是二元一次方程组23245x y x y -=⎧⎨+=⎩的解,则代数式224x y -的值为___________.14.用“>”或“<”填空:若a<b<0,则5a -_________5b -;1a _________1b;21a -_________21b -.15.如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D ,交AB 于E ,若DB=14cm ,则AC=_________.16.(2020独家原创试题)如图,已知在平面直角坐标系中,点P 的坐标为(2a +1,3a -4),则点P 到x 轴的距离为_________.17、计算及解方程。
八年级下册数学易错题练习北师大版

欢迎来主页下载---精品文档易错题练习(一)216?x?kx k。
的值是一、若是一个完全平方式,则)下列说法正确的是(二、、三角形的三条角平分线的交点到三个顶点的距离相等。
A 、等腰三角形的高、中线、角平分线重合。
B a?b a b的值都扩大为原来的2中的C、将分式倍,分式值不变。
和2a42?x4x的值是2。
0,则D、若分式的值为2x?42x?7?3(x?1)??三、解不等式组:?24x?3?1?x?33?32x65x?x?四、分解因式:3xx2x?)(?4?x五、化简求值:,其中2x?2x?2x?4精品文档.欢迎来主页下载---精品文档2x1?1?六、解分式方程:x??22xD同侧作AC,分别以 AB、AC为边在七、如图,点B为AC上一E、、AD、BCE,点P、MN分别是ACABC等边三角形和等边三角形MN CE的中点。
的度数。
2()求∠MPN)求证:(1PM=PN;ACBP按原定的人数估计共需费陈明同学准备在课外活动时组织部分同学参加电脑网络培训,八、参加活动的每个后因人数增加到原定人数的300用元,2一共只需享受优惠,480元,倍,同学平均分摊的费用比原计划少元。
求原定人数是多少人?4精品文档.精品文档---欢迎来主页下载)易错题练习(2nm hkm/h/km(上去与下来,下来时平均速度为小明爬山时,上去的平均速度为一、。
的路径是同一条路)则小明的上去与下来这一全部过程的平均速度是'?AB'C A,°后得到15将等腰直角三角形ABC绕A点旋转如图,二、),则图中阴影部分的面积为(若AC=1B'33333、 D、 B A、 C、BC'C63x?1?3?x??解不等式组:三、?xx1???362?218??1)((a?1)?12a2分解因式:四、x?12x?11?(x?)?x化简求值选一个你认为合适的数代入求值。
五、,然后给2xxx?x精品文档.欢迎来主页下载---精品文档2?x1??1六、解分式方程:x?x?33AABC?、、OB内一点,连接OB、OCO七、如图,点是,并将AB GD、G依次连接,得到四边形DEFG。
八年级下册数学易错题练习(北师大版)

易错题练习(一)一、若162+-kx x 是一个完全平方式,则k 的值是 。
二、下列说法正确的是( )A 、三角形的三条角平分线的交点到三个顶点的距离相等。
B 、等腰三角形的高、中线、角平分线重合.C 、将分式24a b a +中的a 和b 的值都扩大为原来的2倍,分式值不变. D 、若分式4242+-x x 的值为0,则x 的值是2。
三、解不等式组:⎪⎩⎪⎨⎧-≥+-<-x x x x 321334)1(372四、分解因式:x x x 6523++五、化简求值:42)223(2-÷--+x x x x x x ,其中4=x六、解分式方程:xx x --=-21122七、如图,点B 为AC 上一 ,分别以AB 、AC 为边在AC 同侧作等边三角形ABC 和等边三角形BCE,点P 、M 、N 分别是AC 、AD 、CE 的中点。
(1)求证:PM=PN ;(2)求∠MPN 的度数.八、陈明同学准备在课外活动时组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,享受优惠,一共只需480元,参加活动的每个同学平均分摊的费用比原计划少4元.求原定人数是多少人?易错题练习(2)一、小明爬山时,上去的平均速度为m h km /,下来时平均速度为n h km /(上去与下来的路径是同一条路)则小明的上去与下来这一全部过程的平均速度是 。
二、如图,将等腰直角三角形ABC 绕A 点旋转15°后得到''C AB ∆,若AC=1,则图中阴影部分的面积为( )A 、33 B 、33 C 、3 D 、63 三、解不等式组:⎪⎩⎪⎨⎧<-->+361213x x x x四、分解因式:18)1(12)1(22+---a a五、化简求值xx x x x x x ----÷-21)12(1,然后给x 选一个你认为合适的数代入求值。
北师大版八年级数学下册分式与分式方程中的易错题(附答案)

北师大版八年级数学下册分式与分式方程中的易错题(附答案)易错专题:分式与分式方程中的易错题类型一:求分式的值,忽略分母不为0的情况。
1.若分式的值为零,则x的值为()。
A。
-4 B。
4 C。
±4 D。
-4或42.若分式 2/(x+x-12) = 1/3,则x的值是()。
A。
3或-3 B。
-3 C。
3 D。
9类型二:自主取值再求值,忽略分母或除式不为0的情况。
3.先化简分式 (2/(x-1))·(2/(x-4)) + 1/(x-1),其中x是从{-1.0.1.2}中选取的一个合适的数,然后代入求值。
类型三:解分式方程不验根。
4.解方程:(1-x)/(x-2) = -2.类型四:无解时忽略分式方程化为一次方程后未知数系数为0的情况。
5.若关于x的分式方程 (2m+x)/(2x-6) - 1 = 0 无解,则m 的值为()。
A。
-1.5 B。
1 C。
-1.5或2 D。
-0.5或-1.56.已知关于x的分式方程 (2a-x-1)/(a+x) = 0 无解,求a的值。
类型五:已知方程根的情况求参数的取值范围时忽略分母为0时参数的值。
7.若关于x的分式方程 m/x - (m+2)/(x-2) = 2 的解为正数,则满足条件的正整数m的值为()。
A。
1.2.3 B。
1.2 C。
1.3 D。
2.38.若关于x的分式方程 (x^m)/(x-2) - 2/(x-2) = 0 的解为正数,则满足条件的正整数m的值为()。
A。
1.2.3 B。
1.2 C。
1.3 D。
2.39.已知关于x的分式方程 (a-x)/(x+1) = 1 的解为负数,求a 的取值范围。
因式分解、分式和分式方程(易错必刷44题18种题型)—八年级数学下学期期末(北师大版)(解析版)

因式分解和分式方程(易错必刷44题18种题型专项训练)➢因式分解的意义 ➢因式分解-运用公式法 ➢提公因式法与公式法的综合运用 ➢因式分解-十字相乘法等 ➢分式有意义的条件 ➢分式有意义的条件 ➢分式的值➢因式分解-提公因式法➢因式分解-运用公式法➢因式分解-分组分解法➢因式分解的应用➢分式的值为零的条件➢分式的值为零的条件➢ 分式的基本性质 ➢分式的加减法 ➢分式的化简求值➢分式方程的解 ➢解分式方程➢分式方程的增根 ➢分式方程的应用一.因式分解的意义(共5小题)1.若多项式x 2﹣ax ﹣1可分解为(x ﹣2)(x +b ),则a +b 的值为( )A .2B .1C .﹣2D .﹣1【答案】A【解答】解:∵(x ﹣2)(x +b )=x 2+bx ﹣2x ﹣2b =x 2+(b ﹣2)x ﹣2b =x 2﹣ax ﹣1,∴b ﹣2=﹣a ,﹣2b =﹣1,∴b =0.5,a =1.5,∴a+b=2.故选:A.2.下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)【答案】D【解答】解:A a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A错误;B2x2+2x=2x2(1+)中不是整式,故B错误;C(x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;D x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.故选:D.3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【答案】C【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m=,n=.【答案】见试题解答内容【解答】解:根据题意得:x2﹣8x+m=(x﹣10)(x+n)=x2+(n﹣10)x﹣10n∴n﹣10=﹣8,﹣10n=m解得m=﹣20,n=2;故应填﹣20,2.5.仔细阅读下面的例题,并解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解法一:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n,∴解得n=﹣7,m=﹣21.∴另一个因式为x﹣7,m的值为﹣21.解法二:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)∴当x=﹣3时,x2﹣4x+m=(x+3)(x+n)=0即(﹣3)2﹣4×(﹣3)+m=0,解得m=﹣21∴x2﹣4x+m=x2﹣4x﹣21=(x+3)(x﹣7)∴另一个因式为x﹣7,m的值为﹣21.问题:仿照以上一种方法解答下面问题.(1)若多项式x2﹣px﹣6分解因式的结果中有因式x﹣3,则实数p=.(2)已知二次三项式2x2+3x﹣k有一个因式是2x+5,求另一个因式及k的值.【答案】见试题解答内容【解答】解:(1x+a,得x2﹣px﹣6=(x﹣3)(x+a)则x2﹣px﹣6=x2+(a﹣3)x﹣3a,∴,解得a=2,p=1.故答案为:1.(2)设另一个因式为(x+n),得2x2+3x﹣k=(2x+5)(x+n)则2x2+3x﹣k=2x2+(2n+5)x+5n∴,解得n=﹣1,k=5,∴另一个因式为(x﹣1),k的值为5.二.公因式(共1小题)6.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx【答案】D【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.三.因式分解-提公因式法(共2小题)7.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.40【答案】C【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.8.把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是()A.(x﹣y)(﹣a﹣b+c)B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c)D.﹣(y﹣x)(a+b﹣c)【答案】B【解答】解:﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y),=a(y﹣x)﹣b(y﹣x)﹣c(x),=(y﹣x)(a﹣b﹣c).故选:B.四.因式分解-运用公式法(共2小题)9.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为.【答案】见试题解答内容【解答】解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.10.分解因式:(4a+b)2﹣4(a+b)2.【答案】3(2a+b)(2a﹣b).【解答】解:(4a+b)2﹣4(a+b)2=(4a+b)2﹣(2a+2b)2=(4a+b+2a+2b)(4a+b﹣2a﹣2b)=(6a+3b)(2a﹣b)=3(2a+b)(2a﹣b).五.提公因式法与公式法的综合运用(共3小题)11.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2 C.ab(a+1)(a﹣1)D.ab(a2﹣1)【答案】C【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.12.因式分解:(1)4m2n﹣8mn2﹣2mn(2)m2(m+1)﹣(m+1)(3)4x2y+12xy+9y(4)(x2﹣6)2+2(x2﹣6)﹣15.【答案】见试题解答内容【解答】解:(1)4m2n﹣8mn2﹣2mn=2mn(2m﹣4n﹣1);(2)m2(m+1)﹣(m+1)=(m+1)(m2﹣1)=(m+1)2(m﹣1);(3)4x2y+12xy+9y=y(4x2+12x+9)=y(2x+3)2;(4)(x2﹣6)2+2(x2﹣6)﹣15=(x2﹣6﹣3)(x2﹣6+5)=(x2﹣9)(x2﹣1)=(x+3)(x﹣3)(x+1)(x﹣1).13.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解下列问题:(1)因式分解:9+6(x﹣y)+(x﹣y)2=.(2)因式分解:(a+b)(a+b﹣8)+16.(3)证明:若n为正整数,则式子(n+1)(n+2)(n+3)(n+4)+1的值一定是某一个整数的平方.【答案】见试题解答内容【解答】解:(1)将“x﹣y”看成整体,令x﹣y=A,则原式=A2+6A+9=(A+3)2再将“A”还原,得:原式=(x﹣y+3)2故答案为:(x﹣y+3)2;(2)因式分解:(a+b)(a+b﹣8)+16.将“a+b”看成整体,令a+b=A,则原式=A(A﹣8)+16=A2﹣8A+16=(A﹣4)2再将“A”还原,得:原式=(a+b﹣4)2;(3)证明:(n+1)(n+2)(n+3)(n+4)+1=(n+1)(n+4)•(n+3)(n+2)+1=(n2+5n+4)(n2+5n+6)+1令n2+5n=A,则原式=(A+4)(A+6)+1=A2+10A+25=(A+5)2=(n2+5n+5)2∵n为正整数,∴n2+5n+5是整数,∴式子(n+1)(n+2)(n+3)(n+4)+1的值是某一个整数的平方.六.因式分解-分组分解法(共1小题)14.已知整数a,b满足2ab+4a=b+3,则a+b的值是()A.0或﹣3B.1C.2或3D.﹣2【答案】A【解答】解:由2ab+4a=b+3,得:2ab+4a﹣b﹣2=1∴(2a﹣1)(b+2)=1,∵2a﹣1,b+2都为整数,∴或,解得或,∴a+b=0或﹣3.故选:A.七.因式分解-十字相乘法等(共2小题)15.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为()A.1B.5C.﹣1D.﹣5【答案】A【解答】解:∵多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,﹣6=﹣3×2.∴2x2+ax﹣6=(2x﹣3)(x+2)=2x2+x﹣6.∴a=1.故选A.16.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1B.1C.﹣7D.7【答案】A【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.八.因式分解的应用(共8小题)17.已知x2+2x﹣1=0,则x4﹣5x2+2x的值为()A.0B.﹣1C.2D.1【答案】A【解答】解:∵x2+2x﹣1=0,∴x2=1﹣2x,x4﹣5x2+2x=(x2)2﹣5x2+2x=(1﹣2x)2﹣5(1﹣2x)+2x=1﹣4x+4x2﹣5+10x+2x=4x2+8x﹣4=4(1﹣2x)+8x﹣4=4﹣8x+8x﹣4=0,故选:A.18.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=()A.1B.3C.5D.不能确定【答案】B【解答】解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8,⇒ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8,⇒ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0,⇒ab(a﹣b﹣1)2+2(ab﹣2)2=0,∵a、b均为正数,∴ab>0,∴a﹣b﹣1=0,ab﹣2=0,即a﹣b=1,ab=2,解方程,解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),∴a2﹣b2=4﹣1=3.故选:B.19.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是()A.61,63B.63,65C.65,67D.63,64【答案】B【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.20.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.2022【答案】A【解答】解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.21.已知x2+x+1=0,则x2019+x2018+x2017+…+x+1的值是()A.0B.1C.﹣1D.2【答案】B【解答】解:原式=(x2019+x2018+x2017)+(x2016+x2015+x2014)+•+(x3+x2+x)+1=x2017(x2+x+1)+x2014(x2+x+1)+•+x(x2+x+1)+1=0+0+0+•+0+1=1.故选:B.22.已知a+b=2,则a2﹣b2+4b的值为.【答案】见试题解答内容【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.23.a,b,c是△ABC的三边,若(a2+b2)(a﹣b)=c2(a﹣b),则△ABC的形状是三角形.【答案】见试题解答内容【解答】解:∵(a2+b2)(a﹣b)=c2(a﹣b)∴(a﹣b)(a2+b2﹣c2)=0∴a﹣b=0或a2+b2﹣c2=0,①当a﹣b=0时,解得:a=b,此时△ABC是等腰三角形;②直角三角形,理由如下,如图所示:在△ABC中,设AB=c,AC=b,BC=a,∠ACB=90°,四个全等直角三角拼接成边长为c的大正方形,边长为a﹣b的小正方形,由面积的和差得:S正方形ABMN=S正方形CDEF+4•S△ABC,∴=a2﹣2ab+b2+2ab=a2+b2∴a2+b2﹣c2=0即△ABC是直角三角形;故答案为等腰或直角.24.阅读材料:若m2﹣2mn+2n2﹣4n+4=0,求m,n的值.解:∵m2﹣2mn+2n2﹣4n+4=0,∴(m2﹣2mn+n2)+(n2﹣4n+4)=0,∴(m﹣n)2+(n﹣2)2=0,∴(m﹣n)2=0,(n﹣2)2=0,∴n=2,m=2.(1)a2+b2+6a﹣2b+10=0,则a=,b=.(2)已知x2+2y2﹣2xy+8y+16=0,求xy的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣8b+18=0,求△ABC的周长.【答案】见试题解答内容【解答】(1)解:由:a2+b2+6a﹣2b+10=0,得:(a+3)2+(b﹣1)2=0,∵(a+3)2≥0,(b﹣1)2≥0,∴a+3=0,b﹣1=0,∴a=﹣3,b=1.故答案为:﹣3;1.(2)由x2+2y2﹣2xy+8y+16=0得:(x﹣y)2+(y+4)2=0∴x﹣y=0,y+4=0,∴x=y=﹣4∴xy=16.答:xy的值为16.(3)由2a2+b2﹣4a﹣8b+18=0得:2(a﹣1)2+(b﹣4)2=0,∴a﹣1=0,b﹣4=0,∴a=1,b=4;已知△ABC的三边长a、b、c都是正整数,由三角形三边关系知c=4,∴△ABC的周长为9.九.分式有意义的条件(共1小题)25.当x=时,分式无意义.【答案】见试题解答内容【解答】解:根据题意得:x(x﹣1)=0,解得x1=0,x2=1.故答案为:0或1.十.分式的值为零的条件(共1小题)26.如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或0【答案】B【解答】解:根据题意,得:|x|﹣1=0且x+1≠0,解得,x=1.故选:B.十一.分式的值(共1小题)27.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1【答案】D【解答】解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1﹣(﹣1)+1=1,故选:D.十二.分式的基本性质(共3小题)28.若=2,则=.【答案】见试题解答内容【解答】解:由=2,得x+y=2xy则===.故答案为.29.若把分式中的x和y都变为原来的3倍,那么分式的值()A.变为原来的3倍B.变为原来的C.变为原来的D.不变【答案】B【解答】解:用3x和3y代替式子中的x和y得:,则分式的值变为原来的.故选:B.30.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.十三.分式的加减法(共2小题)31.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【答案】B【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.32.分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和;(2)若分式的值为整数,求x的整数值.【答案】见试题解答内容【解答】解:(1)由题可得,==2﹣;(2)===x﹣1+,∵分式的值为整数,且x为整数,∴x+1=±1,∴x=﹣2或0.十四.分式的化简求值(共1小题)33.先化简,再求值:,然后从0,1,2,3四个数中选择一个恰当的数代入求值.【答案】,﹣.【解答】解:原式=(﹣)•=•=,∵x≠3,0,2,∴当x=1时,原式==﹣.十五.分式方程的解(共4小题)34.若关于x的分式方程﹣1=无解,则m的值.【答案】见试题解答内容【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.35.若方程的根为正数,则k的取值范围是()A.k<2B.﹣3<k<2C.k≠﹣3D.k<2且k≠﹣3【答案】A【解答】解:方程两边都乘以(x+3)(x+k)得:3(x+k)=2(x+3),3x+3k=2x+6,3x﹣2x=6﹣3k,x=6﹣3k,∵方程的根为正数,∴6﹣3k>0,解得:k<2,∵分式方程的解为正数,x+3≠0,x+k≠0,x≠﹣3,k≠3,即k的范围是k<2,故选:A.36.已知关于x的分式方程=1的解是非负数,则m的取值范围是.【答案】见试题解答内容【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.37.若关于x的方程有正整数解,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数a的和为.【答案】﹣4.【解答】解:方程的解为x=,根据题意,得,解得a<1,a为奇数且a≠﹣5.∵不等式的解集为﹣5≤x<,且只有3个整数解,∴﹣3<≤﹣2,解得﹣7<a≤1.综上:﹣7<a<1,a为奇数且a≠﹣5,∴a=﹣3,﹣1.∵﹣3﹣1=﹣4,∴符合条件的所有整数a的和为﹣4故答案为:﹣4.十六.解分式方程(共2小题)38.解方程:(1);(2).【答案】(1)无解;(2)x=﹣2.【解答】解:(1),原分式方程可化为:+2=,﹣3+2(x﹣4)=1﹣x,﹣3+2x﹣8=1﹣x,2x+x=1+8+3,3x=12,x=4,检验:把x=4代入(x﹣4)=0,∴原分式方程无解;(2),原分式方程可化为:﹣1=,1+4x﹣(x﹣2)=﹣3,1+4x﹣x+2=﹣3,4x﹣x=﹣3﹣1﹣2,3x=﹣6,x=﹣2,检验:把x=﹣2代入(x﹣2)≠0,∴原分式方程解为x=﹣2.39.代数式的值比代数式的值大4,则x=.【答案】见试题解答内容【解答】解:由题意得:﹣=4,x+2=4(2x﹣3),解得:x=2,检验:当x=2时,2x﹣3≠0,∴x=2是原方程的根,故答案为:2.十七.分式方程的增根(共1小题)40.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣1【答案】B【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.十八.由实际问题抽象出分式方程(共1小题)41.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.【答案】见试题解答内容【解答】解:原计划用的时间为:,实际用的时间为:.所列方程为:,故答案为:.十九.分式方程的应用(共3小题)42.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【答案】见试题解答内容【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了a天,乙加工了b天,则由题意得,由①得b=75﹣1.5a③将③代入②得150a+120(75﹣1.5a)≤7800解得a≥40,当a=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.43.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【答案】见试题解答内容【解答】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件由题意得:5000≤100y+90(55﹣y)≤5050解得5≤y≤10∴共有6种选购方案.44.某项工程,乙队单独完成所需天数是甲队单独完成所需天数的1.5倍;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天刚好如期完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为2.5万元,乙队每天的施工费用为2万元,工程预算的施工费用为160万元.①若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?②若要求施工总费用不超预算又要如期完工,问甲工程队至少需要施工几天?【答案】见试题解答内容【解答】解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要1.5x天.根据题意,得:(10+30)+×30=1,解得x=60.经检验,x=60是原方程的根.∴1.5x=60×1.5=90.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)①设甲、乙两队合作完成这项工程需要y天,(+)y=1,解得:y=36,36×(2.5+2)=162(万元),∵162>160,∴不够,需追加162﹣160=2(万元),答:不够用,需追加预算2万元;②甲工程队需要施工a天,乙工程队需要施工b天,根据题意得:,由①得:2b=180﹣3a③,把③代入②得:2.5a+180﹣3a≤160,a≥40,∴甲工程队至少需要施工40天.。
北师大版数学八年级下册_易错11_分式的四则运算易错(解析版)-八下期末突破易错挑战满分

2020-2021学年八年级数学下册期末突破易错挑战满分(北师大版)易错11分式的四则运算易错【典型例题】1.(2021·湖北荆州市·八年级期末)计算:(1)222221538x yy x⎛⎫⋅⎪⎝⎭.(2)2222324424x x xx x x x⎛⎫-+-÷⎪-+--⎝⎭.【答案】(1)原式224241598x yy x=⋅256y=;(2)()()()()22322222x x xx x xx⎡⎤-+=-÷⎢⎥-+--⎢⎥⎣⎦31222xx x x⎛⎫=-÷⎪---⎝⎭()3232xx xx-=⨯-=--【点睛】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.【专题训练】一、解答题1.(2020·江苏苏州市·八年级期中)若5(1)(1)11x A B x x x x -=++-+-,求A 、B 的值. 【答案】解:∵5(1)(1)(1)(1)(1)(1)x A x B x x x x x --++=+-+-, ∵x -5=(A +B )x +(-A +B ),∵15A B A B +=⎧⎨-+=-⎩, 解得:32A B =⎧⎨=-⎩. 【点睛】本题考查分式的运算,解题的关键是熟练运用分式运算法则,本题属于基础题型.2.(2020·江苏苏州市·八年级期中)计算:(1)221111x x x x x ÷--+-; (2)11a a a ---. 【答案】(1)原式=21(1)(1)11x x x x x x ÷-+-+- =2(1)(1)x x x +-·(x +1)-1x x - =211x x x x --- =1x x -;(2)原式=2111a a a a ---- =211a a a -++-. 【点睛】本题主要考查分式的混合运算,掌握分式的通分和约分,是解题的关键.3.(2021·山东青岛市·九年级一模)化简:(2221244x x x x x x ---+++)4x x-÷; 【答案】解:(1)(2221244x x x x x x ---+++)4x x-÷ ()()()221242x x x x x x x ⎡⎤--=-⎢⎥+--+⎢⎥⎣⎦ ()()()()()222142x x x x x x x x -+--=--+ ()()2442x x x x x -=--+ ()212x =-+2144x x =-++; 【点睛】本题考查的是分式的化简,,掌握以上运算是解题的关键.4.(2021·陕西宝鸡市·八年级期末)化简:212(1)11a a a a a +-+÷++.【答案】212(1)11a a a a a +-+÷++ (1)(1)111(2)a a a a a a +-++=⋅++ 211(2)a a a a a +=⋅++ 2a a =+. 【点睛】本题考查了分式的混合运算,整式的混合运算,熟练掌握运算法则是解本题的关键.5.(2021·四川绵阳市·八年级期末)计算:22111221x x x x x x ⎛⎫+-÷-- ⎪-+⎝⎭. 【答案】 解:原式2222111(1)x x x x x ---=÷--21111x x x -=÷-- 2111x x x =--- 1(1)(1)(1)(1)x x x x x x +=-+-+- 221111x x =-=--.【点睛】本题考查了分式的混合运算,熟知分式混合运算的法则是解答此题的关键.6.(2021·湖北武汉市·八年级期末)分式的运算:(1)3223322a b a c cd d a ⎛⎫⎛⎫÷⋅ ⎪ ⎪-⎝⎭⎝⎭(2)22221244a b a b a b a ab b---÷+++ 【答案】解:(1)3223322a b a c cd d a ⎛⎫⎛⎫÷⋅ ⎪ ⎪-⎝⎭⎝⎭ 633239224a b d c c d a a =- 3368a b cd =-(2)22221244a b a b a b a ab b---÷+++ ()()()2212a b a b a b a b a b +-=-++- 21a b a b +=-+ 2a b a b a b a b++=-++ b a b=-+ 【点睛】本题考查的是分式的混合运算,掌握分式的混合运算的运算顺序与运算法则是解题的关键.7.(2021·山东潍坊市·八年级期末)化简:221111x x x ⎛⎫÷- ⎪-+⎝⎭【答案】 解:221111x x x ⎛⎫÷- ⎪-+⎝⎭, 2211111x x x x x +⎛⎫=÷- ⎪-++⎝⎭, 221·1x x x x +=-, ()()21·11x x x x x +=+-, 21x =-;【点睛】本题考查了分式的运算和分式化简,解题关键是熟练运用分式的运算法则和运算顺序解题.8.(2020·浙江杭州市·七年级期末)若345x y z ==,求22223232x xy z x xy z -++-的值;【答案】 解:设345x y z k ===, ∵x =3k ,y =4k ,z =5k ,∵22223232x xy z x xy z -++-=()()()()2222333425332345k k k k k k k k -⨯⨯+⨯⨯+⨯⨯-=22222293650272425k k k k k k -++-=2326; 【点睛】 本题考查了分式的基本性质,分式的化简求值,解题的关键是掌握运算法则.9.(2020·浙江杭州市·七年级期末)计算:222111x x x x x x --⎛⎫+-÷ ⎪++⎝⎭ 【答案】 解:222111x x x x x x --⎛⎫+-÷ ⎪++⎝⎭=()()()11221111x x x x x x x x -+⎡⎤-+÷⎢⎥⎦-+++⎣ =()21221111x x x x x x x ⎛⎫--++⨯ ⎪++⎝-⎭ =()()21111x x x x x ⨯-+-+ =1x x-; 【点睛】本题考查了分式的混合运算,解题的关键是掌握各自的运算方法.10.(2021·山东聊城市·八年级期末)化简下列分式(1)3265224a y ab a b y by ⎛⎫⎛⎫--⋅÷ ⎪ ⎪⎝⎭⎝⎭; (2)2211122x x x -⎛⎫-÷ ⎪++⎝⎭. 【答案】 解:(1)3265224a y ab a b y by ⎛⎫⎛⎫--⋅÷ ⎪ ⎪⎝⎭⎝⎭63235648a y ab by b y a =⋅⋅2a b=. (2)2211122x x x -⎛⎫-÷ ⎪++⎝⎭ ()()()211111x x x x x +-=⋅+-+ 21x =+. 【点睛】本题考查了分式的混合运算,解题的关键是掌握有关运算法则,以及注意分子、分母的因式分解,通分、约分.11.(2020·浙江杭州市·七年级期末)计算:22122()121x x x x x x x x ----÷+++ 【答案】 解:原式2(1)(1)(2)(1)(1)(21)x x x x x x x x x -+--+=⋅+- 221(1)(1)(21)x x x x x x -+=⋅+- 21x x +=. 【点睛】本题考查了分式的混合运算,解题的关键是掌握运算法则.12.(2021·山东泰安市·九年级期末)计算:2244x y xy y x x x ⎛⎫ ⎪⎝---⎭÷ 【答案】解:原式22244x y x xy y x x--+=÷ ()222x y x x x y -=⋅-12x y=-; 【点睛】本题主要考查分式的混合运算以及分式的化简,掌握分式的通分和约分,是解题的关键.13.(2021·江苏九年级专题练习)计算:2121122a a a a -+⎛⎫-÷ ⎪-⎝⎭【答案】 解:2121122a a a a -+⎛⎫-÷ ⎪-⎝⎭=212(1)(1)a a a a --⋅- =2a 【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.14.(2021·山东威海市·八年级期末)计算:(1)222111a a a a ++---; (2)2224222x x x x x x --⎛⎫÷-+ ⎪++⎝⎭【答案】解:(1)222111a a a a++---, =()()221111a a a a a ++++--, =()()()()()()22111111a a a a a a ++++-+-, =()()()()221111a a a a ++++-,=()()()()1311a a a a +++-, =31a a +-; (2)2224222x x x x x x --⎛⎫÷-+ ⎪++⎝⎭=()22244222x x x x x x x ⎛⎫---÷- ⎪+++⎝⎭=()22222x x x x x x --÷++,=()()22·22x x x x x x -++--, =21x -【点睛】本题考查了分式的混合运算及分式的化简,正确运用分式的运算法则进行运算是解题的关键.15.(2021·四川成都市·九年级期末)化简代数式22421(1)39x x x x -+-÷+-.【答案】 解:22421(1)39x x x x -+-÷+- ()()()23334331x x x x x x +-+⎛⎫=- ⎪++⎝⎭- ()()()233131x x x x x +--=+- 3=.1x x -- 【点睛】本题考查的是分式的化简,掌握分式的加减乘除混合运算是解题的关键.16.(2021·湖南邵阳市·八年级期末)计算:2214111212x x x x x -⎛⎫-÷+ ⎪--++⎝⎭【答案】 原式=()()()21211222x x x x x x --⋅+-+-+=1122x x x -+++=2x x +. 【点睛】 本题考查二次根式的计算和分式的计算,解题的关键是掌握二次根式的运算法则和分式的运算法则.。
【最新北师大版】数学八下易错题(含答案)

八年级下册易错题第一章 三角形的证明1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是(D ) A .7㎝ B .9㎝ C .12㎝或者9㎝ D .12㎝考查知识点:三角形的基本知识及等腰三角形边的关系:任意两边之和大于第三边,等腰三角形两腰相等, 因此只能是:5cm ,5cm,2cm.2.一个等腰三角形的一个角是40°,则它的底角是(D ) A .40° B .50° C .60° D .40°或70°考查知识点:三角形的内角和及等腰三角形两底角相等:①当40°是顶角时,底角就是70°;②40°就是一个底角.3.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则最长边上的高是(D )A.2.4cmB.3cmC.4cmD. 4.8cm提示:设最长边上的高为h,由题意可得△ABC 是直角三角形,利用面积相等求,即h .10.218.6.21 解得h=4.84.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是3或33. 解:①三角形是钝角三角形时,如图1,∵∠ABD=30°∴AD=21AB=21×6=3, ∵AB=AC , ∴∠ABC=∠ACB=21∠BAD=21(90°-30°)=30°, ∴∠ABD=∠ABC ,∴底边上的高AE=AD=3;②三角形是锐角三角形时,如图2,∵∠ABD=30° ∴∠A=90°-30°=60°, ∴△ABC 是等边三角形,∴底边上的高为23×6=33 综上所述,底边上的高是3或335.到三角形三个顶点的距离相等的点是三角形(B )的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高考查的知识点:三角形三边垂直平分线的交点到到三角形三个顶点的距离相等【归纳为:点到点距离相等,为垂直平分线上的点】还有一个:三角形三个内角平分线的交点到三角形三边的距离相等【归纳为:点到线的距离相等,为角平分线的交点,此时的距离有“垂直”】6.如图,在△ABC 中,AB=5,AC=3,BC 的垂直平分线交AB 于D ,交BC 于E ,则△ADC 的周长等于8考查的知识点:垂直平分线上的点到线段两端点的距离相等7. 用反证法证明:一个三角形中至少有一个内角小于或等于60°.答案:已知:△ABC , 求证:△ABC 中至少有一个内角小于或等于60° 证明:假设△ABC 中没有一个内角小于或等于60°,即每一内角都大于60° 则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180° 即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立. ∴△ABC 中至少有一个内角小于或等于60°考查知识:反证法,用反证法进行证明时先写出已知、求证,再假设求证的反面成立,推出与题设、定理等相矛盾的结论,从而肯定原结论成立【注意:反证法一般很少用到,除非是题目要求用反证法证明,否则一般不考虑该方法】8. 如图所示,∠AOB=30°,OC 平分∠AOB ,P 为OC 上任意一点,PD ∥OA 交OB 于点D ,PE ⊥OA 于点E ,若PE=2cm ,则PD=_________cm .解:过点P 作PF ⊥OB 于F , ∵∠AOB=30°,OC 平分∠AOB , ∴∠AOC=∠BOC=15°, ∵PD ∥OA ,∴∠DPO=∠AOP=15°, ∴∠DPO=∠AOP=15°, ∴∠BOC=∠DPO , ∴PD=OD=4cm ,∵∠AOB=30°,PD ∥OA , ∴∠BDP=30°, ∴在Rt △PDF 中,PF=21PD=2cm , ∵OC 为角平分线,PE ⊥OA ,PF ⊥OB, ∴PE=PF ,∴PE=PF=2cm9.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A.6 B.7 C.8 D.9解:∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE=∠EBC ,∠ECN=∠ECB , ∵MN ∥BC ,∴∠EBC=∠EBC ,∠ECN=∠ECB , ∴BM=ME ,EN=CN , ∴MN=BM+CN , ∵BM+CN=9, ∴MN=9考查知识点:平行+平分,必有等腰三角形10.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为(B ) A.11 B.5.5 C.7 D.3.5解:作DM=DE 交AC 于M ,作DN ⊥AC , ∵在△AED 和△AMD 中∴△AED ≌△AMD ∴ADM ADE S S V V = ∵DE=DG ,DM=DE , ∴DM=DG ,∵AD 是△ABC 的外角平分线,DF ⊥AB , ∴DF=DN ,在Rt △DEF 和Rt △DMN 中,Rt △DEF ≌Rt △DMN (HL ),∵△ADG 和△AED 的面积分别为50和39, ∴ADM ADG MDG S S S V V V -==50-39=11MDG DEF DNM S S S V V V 21===21×11=5.5考查知识点:角平分线上的点到角两边的距离相等及三角形的全等11.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是(A ) A.B.C.D.解:在Rt △ABC 中,AC=9,BC=12,根据勾股定理得:AB=151292222=+=+BC AC 过C 作CD ⊥AB ,交AB 于点D ,则由ABC S V =21AC .BC=21AB .CD ,得CD=AB BC AC .=1512x 91=536考查知识:利用面积相等法12.如图,在△ABC 中AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是(A )A.1 B.2 C.3 D.4解:∵AD ⊥BC , ∴∠EAH+∠B=90°, ∵CE ⊥AB ,∴∠EAH+∠AHE=90°,∵EH=EB ,在△AEH 和△CEB 中,∴△AEH ≌△CEB (ASA ) ∴CE=AE ,∵EH=EB=3,AE=4, ∴CH=CE-EH=4-3=1考查知识:利用三角形全等求线段长度.13.如图,在△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于点F ,AB=5,AC=2,则DF 的长为23.解:延长CF 交AB 于点G , ∵AE 平分∠BAC , ∴∠GAF=∠CAF , ∵AF 垂直CG , ∴∠AFG=∠AFC , 在△AFG 和△AFC 中,∴△AFG ≌△AFC (ASA ) ∴AC=AG ,GF=CF , 又∵点D 是BC 的中点, ∴DF 是△CBG 的中位线, ∴DF=21BG=21(AB-AG )=21(AB-AC )=23点评:本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,一般出现既是角平分线又是高的情况,我们就需要寻找等腰三角形.14.如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD ,交AD 于E ,交BC 的延长线于F. 求证:∠CAF=∠B.解:∠B=∠CAF. ∵FE 垂直平分AD , ∴FA=FD ,∵AD为∠BAC的平分线,∴∠CAD=∠BAD又∵∠CAF=∠FAD=∠CAD,∠B=∠ADF-∠BAD,∴∠B=∠CAF点评:此题考查了线段垂直平分线的性质、角平分线的定义及三角形的外角等知识点.15.如图,OA、OB表示两条相交的公路,点M、N是两个工厂,现在要在∠AOB内建立一个货物中转站P,使中转站到公路OA、OB的距离相等,并且到工厂M、N的距离也相等,用尺规作出货物中转站P的位置.解:①作∠AOB的角平分线;②连接MN,作MN的垂直平分线,交OM于一点,交点就是所求货物中转站的位置.16. 如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.(1)证明:∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°又∵AD=AD,∴△ACD≌△AED(2)解:∵△ACD≌△AED∴DE=CD=1∵∠B=30°,∠DEB=90°,∴BD=2DE=217.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.(1)证明:∵AD⊥BC,∠BAD=45°∴∠ABD=∠45°=∠BAD∴AD=BD∵BE⊥AC∴∠CAD+∠AFE=90°∵AD⊥BC∴∠FBD=∠BFD=90°∴∠CAD=∠FBD又∠ADC=∠BDF=90° ∴△ADC ≌△BDF ∴AC=BF∵AB=BC ,BE ⊥AC ∴AC=2AE ∴BF=2AE(2)解:设AD=x ,则BD=x ∴AB=BC=2+x∵△ABD 是等腰直角三角形 ∴AB=2AD ∴2+x=2x 解得x=2+2即AD=2+218.如图,已知△ABC 是等边三角形,D 、E 分别在BA 、BC 的延长线上,且AD=BE.求证:DC=DE 证明:延长BE 至F ,使EF=BC ∵△ABC 是等边三角形 ∴∠B=60°,AB=BC ∴AB=BC=EF∵AD=BE ,BD=AB+AD, BF=BE+EF ∴BD=BF∴△BDF 是等边三角形 ∴∠F=60°,BD=FD 在△BCD 和△FED 中, BC=EF∠B=∠F=60° BD=FD∴△BCD ≌△FED (SAS ) ∴DC=DE19.如图,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD ,求证:BD 是∠ABC 的角平分线.证明:延长AE 、BC 交于点F ∵AE ⊥BE∴∠BEF=90°,又∠ACF=∠ACB=90° ∴∠DBC+∠AFC=∠FAC+∠AFC=90° ∴∠DBC=∠FAC 在△ACF 和△BCD 中∴△ACF ≌△BCD (ASA ) ∴AF=BD 又AE=21BD ∴AE=EF,即点E 是AF 的中点 ∴AB=BF∴BD 是∠ABC 的角平分线20.如图,在△ABC 中,分别以AC 、AB 为边,向外作正△ACD ,正△ABE ,BD 与AE 相交于F ,连接AF ,求证:AF 平分∠DME证明:过点A 分别作AM ⊥BD,AN ⊥CE,分别交BD ,CE 于M ,N 两点 ∵△ABE 和△ACD 均为等边三角形, ∴∠EAB=∠CAD=60°,AD=AC,AB=AE∵∠EAC=∠BAD=60°+∠BAC , ∴△EAC ≌△BAD ,∴ AM BD S AN CE S BAD EAC .21.21===V V CE=BD ∴AN=AM∴AF 平分∠DME (在角的内部到角两边距离相等的点在该角的平分线上)21.如图,已知:AB=AC ,∠A=90°,AF=BE,BD=DC.求证:FD ⊥ED.证明:连接AD. ∵∠A=90° AB=AC D 是BC 的中点 ∴AD ⊥BC ∠ADB=90° ∠B=45°=∠CAD AD=BD (直角三角形中,中线等于斜边的一半)且BE=AF ∴易证△BED ≌△AFD (SAS ) ∴∠BDE=∠ADF ∵∠ADE+∠EDB=∠ADB=90° ∴∠ADF+∠ADE=90° ∴ED ⊥FD第二章 不等式(组)不等式基本性质例:如果x >y ,那么下列各式中正确的是(C ) A .x-2<y-2 B .2x <2yC .-2x <-2yD .-x >-y 1.系数含有字母的不等式(组)解题思路:先把字母系数当做已知数,解除未知数的取值范围,再根据题意及不等式的性质或解不等式组的方法进行计算【特别注意:“=”一定要考虑,如果满足题意则要取,不满足题意就不取】(2) 已知关于x 的不等式(1-a )x >2的解集为x <a-12,则a 的取值范围是a >1. 提示:利用不等式的基本性质三:a-1<0 (3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a=3,b=-5.提示:解得不等式组的解集为:a<x <-b而不等式组的解集为:3<x <5 ∴a=3,b=-5(4) 如果不等式 ⎩⎨⎧><m x x 8无解,那么m 的取值范围是 (B )A .m >8 B.m ≥8 C.m <8 D.m ≤8提示:不等式组无解的条件是:比大的还大,比小的还小;∴m ≥8【“=”一定要考虑,这个题取“=”就满足题意】(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是(A ). A .m ≤3 B . m ≥3 C .m=3 D .m <3提示:不等式组解集:同大取大;解不等式组得而该不等式组的解集是3>x ,∴m ≤3【“=”一定要考虑,这个题取“=”就满足题意】(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是65-<a ≤32-. 解:解该不等式组得∵有三个整数解 ∴2<x <6a+10∴三个整数解应该是3,4,5 ∴5<6a+10≤6 解得65-<a ≤32- 【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【不等式组的结果不能写成大括号的形式】 (1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来; (2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上.3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意. (1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等 式kx+b>0的解集为(C ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为x<-14.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打9折.商品销售中需注意的地方:①“进价”也叫“成本”;“售价”也叫“标价”;②获利是在进价的基础上获利;打折是在售价基础上打折;③打几折就是给售价×10x 解:设可以打x 折. 那么(600×10x-500)÷500≥8% 解得x ≥9.故答案为:9.◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2yx +元的价格卖完后,结果发现自己赔了钱,其原因是(B ) <B .>C .≤D .≥惠方式:第一种:买一支毛笔附赠一本书法练习本; 第二种:按购买金额打九折付款。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】 不等式ax >b 的解集为a
b x <,那么a 的取值范围是( ) A. a ≤0 B. a <0 C. a ≥0 D. a >0
【例2】 已知不等式5x +a <3的解集为x <2,试求a 的值。
相关题型:ax >-2与2x -3<5的解集相同,则a =________。
【例3】 求不等式x x 219175+<--的最小整数解。
相关题型: 不等式()452
42+--
x x ≥0的正整数解。
【例4】 已知关于x 的方程2415435m m x =+-的解是非正数,求m 为何正整数? 5、若不等式组⎪⎩⎪⎨⎧>>-a
x x 1312的解集为x >2,则a 的取值范围是( )
A. a <2
B. a ≤2
C. a >2
D. a ≥2
典型例题
1. 不等式6x -2>a +2x 的解集是x >2,求a 的值。
2. 一次函数y =2x +5中,如果y 的取值范围是-3≤y ≤11,则x 的取值范围是( )
A. -3≤x ≤11
B. -4≤x ≤11
C. -4≤x ≤3
D. -3≤x ≤3
3. 已知不等式组⎩⎨⎧>-<-3
212b x a x 的解集为-1<x <1,求a 与b 的值。
4. 已知关于x 的不等式组⎩
⎨⎧>+->+0102m x x 的解集如图01—1所示,求m 的取值范围。
5. 某市组织20辆汽车装运完A 、B 、C 三种脐橙共100
吨到外地销售。
按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满,根据下表提供的信息,解答一下问题:
6. (1) 设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 的函数关系式;
(2) 如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案。
(3) 若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。
已知关于x 的不等式组⎩⎨⎧>+->+0
102m x x 的解集如图01—1所示,求m 的取值范围。
01—1
7. 若()0542
=--+-m y x x ,求当y ≥0时,m 的取值范围。
8. 某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲和乙的含量
如下表所示。
现用甲原料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶,设生产A 种饮料x 瓶,解答下列问题:
(1) 有几种符合题意的生产方案?写出解答过程;
(2) 如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间
的关系式,并说明x 取何值会使成本总额最低? 例2 多项式ac -bc +a 2-b 2分解因式的结果是( )
A. (a -b )(a +b +c )
B. (a -b )(a +b -c )
C. (a +b )(a +b -c )
D. (a +b )(a -b +c )
例3 72006-5×72005+3×72004能被17整除吗?说说理由。
例4 若多项式x 2+m x -15可分解为(x +3)(x +n ),试求m 、n 的值。
例5 说明817-279-913能被45整除。
例6 假设1+a +a 2
=0,求2000198219811980a a a a ++++ 的值。
例7 已知a ,b ,c 为三角形三边,且满足a 2+b 2+c 2-ab -ac -bc =0,试判断三角形的
形状。
例1 (1) 当x 取何值时,分式3
55--x x 无意义? (2) 当x 取何值时,分式16
22-x x 有意义? (3) 当x 取何值时,分式3
92+-x x 值为零? 例2 已知511=+y x ,求y
xy x y xy x +++-2232的值。
例3 已知0134622=++-+y x y x ,求y
x xy +的值。
1、已知12+-y x 与442
++y y 互为相反数,求 222
24421y xy x y x y x y x +--÷---的值。
变形 1 已知a 2+2a -1=0,求3
4121311222+++-⋅-+-+a a a a a a a 的值。
2、若把分式y
x x 32+中的x 和y 都扩大3倍,那么分式的值( ) A. 扩大3倍 B. 不变 C. 缩小3倍 D. 缩小6倍
例1 m 为何值时,关于x 的方程2
34222+=-+-x x mx x 会产生增根? 变形1 若分式方程()
1516-+=-x x x x 有增根,则增根是( ) A. x =1 B. x =1和x =0 C. x =0 D. 无法确定
变形2 若关于x 的方程1
151222--=+-+-x k x x k x x 有增根,求k 的值。
2、一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需8小时,一天小船从早晨6:00由A 港出发顺流到B 港时,发现救生圈在途中掉落水中,立刻返回,一小时后找到了救生圈,问:
(1) 若小船按水流速度由A 港漂流到B 港需要多少小时?
(2) 救生圈是在何时掉入水中的?
例2 若
413=-n n m ,则n m =________。
变形1:已知543c b a ==,求c c b a ++及c b a c
b a +-++的值。
例3 已知x :y :z =1:3:5,求z
y x z y x +--+33的值。
变形1:若4x =7y +5z ,2x +y =z ,那么x :y :z =( )
A. 2:1:(-3)
B. 2:1:3
C. 2:(-1):3
D. 3:2:1
变形2:若4
23123-=-=+z y x ,且x +y +z =18,求x ,y ,z 。
1. 如图 ZJ —26,兴趣小组的同学要测量树的高度,在阳光下,一名同学测得一根长为
1m 的竹竿的影长为0.4m ,同时另一名同学测
量树的高度时,发现树的影子不全落在地面
上,有一部分落在教学楼的第一级台阶上,
测得此影子长为0.2m ,一级台阶高为0.3m ,
如图所示,若此时落在地面上的影长为4.4m ,
则树高为( )
A. 11.5m
B. 11.75m
C. 11.8m
D.
12.25m
2. 如图XS —12,在△ABC 中,AB =AC ,点D ,E 是直线BC 上的点,且满足AB 2=BD ·CE.
问△ABD 与△ACE 是否相似?并说明
理由。
3. 如图XS —13所示,在△ABC 中,AB
=AC ,∠A =36°,BD 是∠ABC 的平
分线。
(1) △ABC 和△BCD 相似吗?
(2) 试说明AD 2=DC ·AC ;
(3) 若AC =15 ,求BC 的长。
4. 在两个相似的五边形中,一个五边形个边长分别是2,1,4,3,5,另一个五边形最长
的一边长为15,则后一个五边形中最短的边长为( ) A. 31 B. 3 C. 9
1 D. 9 5. 已知如图XS —23所示,∠C =90°,点D 是AB 的中点,ED ⊥AB 于点D ,AB =30,
AC =18,求图中四边形ADEC 的面积。
6. 如图XS —24,在梯形ABCD 中,AB ∥CD ,∠B =90°,E 为BC 上的一点,且AE ⊥
ED ,若BC =12,DC =7,BE :EC
=1:2,求AB 的长。
ZJ —
26
XS —
13
XS —
12 XS —
23 XS —24。