全国2010年1月自学考试线性代数试题和答案

合集下载

《高等教育自学考试》《线性代数》(试题及答案)09.01

《高等教育自学考试》《线性代数》(试题及答案)09.01

全国2009年1月高等教育自学考试线性代数(经管类)试题答案课程代码:04184 一、单项选择题(本大题共10小题,每小题2分,共20分)1.线性方程组⎪⎩⎪⎨⎧=++=--=++4284103520z y x z y x z y x 的解为(A )A .2,0,2-===z y xB .0,2,2==-=z y xC .2,2,0-===z y xD .1,0,1-===z y x⎪⎪⎪⎭⎫ ⎝⎛--4284103520111→⎪⎪⎪⎭⎫⎝⎛-210000102001.2.设矩阵⎪⎪⎭⎫⎝⎛=3421A ,则矩阵A 的伴随矩阵=*A ( D )A .⎪⎪⎭⎫⎝⎛1423 B .⎪⎪⎭⎫⎝⎛--1423C .⎪⎪⎭⎫⎝⎛1243D .⎪⎪⎭⎫⎝⎛--1243 3.设A 为45⨯矩阵,若秩(A )=4,则秩(T A 5)为( C ) A .2B .3C .4D .54.设B A ,分别为n m ⨯和k m ⨯矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由),(B A 的列向量构成的向量组,则必有( C )A .若(I )线性无关,则(Ⅱ)线性无关B .若(I )线性无关,则(Ⅱ)线性相关C .若(Ⅱ)线性无关,则(I )线性无关D .若(Ⅱ)线性无关,则(I )线性相关(I )是(Ⅱ)的部分组,整体无关⇒部分无关.5.设A 为5阶方阵,若秩(A )=3,则齐次线性方程组0=Ax 的基础解系中包含的解向量的个数是( A ) A .2B .3C .4D .5未知量个数5=n ,A 的秩3=r ,基础解系包含2=-r n 个解向量. 6.设n m ⨯矩阵A 的秩为1-n ,且21,ξξ是齐次线性方程组0=Ax 的两个不同的解,则0=Ax 的通解为( ) A .1ξk ,R k ∈ B .2ξk ,R k ∈C .21ξξ+k ,Rk ∈D .)(21ξξ-k ,R k ∈0=Ax 的基础解系包含1个解向量.21,ξξ是不同的解,21ξξ-是非零解,可以作为基础解系,通解为)(21ξξ-k ,R k ∈.7.对非齐次线性方程组b x A n m =⨯,设秩(A )=r ,则( ) A .r =m 时,方程组b Ax =有解B .r =n 时,方程组b Ax =有唯一解C .m =n 时,方程组b Ax =有唯一解D .r <n 时,方程组b Ax =有无穷多解r =m 时,m A r b A r ==)(),(,b Ax =有解 .8.设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=3000130011201111A ,则A 的线性无关的特征向量的个数是( C ) A .1B .2C .3D .4特征值为11=λ,22=λ,343==λλ.对于11=λ,=-A E λ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------2000120011101110→⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000200012001110,基础解系含1个解向量;对于22=λ,=-A E λ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1000110011001111→⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000100011001111,基础解系含1个解向量;对于343==λλ,=-A E λ⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000100011101112,基础解系含1个解向量.9.设向量)2,2,1,4(--=α,则下列向量是单位向量的是( B ) A .α31B .α51C .α91D .α2515||||=α,ααα51||||1=.10.二次型22212135),(x x x x f +=的规范形是( D ) A .2221y y -B .2221y y --C .2221y y +-D .2221y y +二、填空题(本大题共10小题,每小题2分,共20分) 11.3阶行列式=313522001__1__. 13152313522001==.12.设)0,1,3(=A ,⎪⎪⎪⎭⎫ ⎝⎛--=530412B ,则=AB )3,2(.13.设A 为3阶方阵,若2||=T A ,则=-|3|A __-54__.=-|3|A 54227||27||)3(3-=⨯-=-=-T A A .14.已知向量)9,7,5,3(=α,)0,2,5,1(-=β,如果βξα=+,则=ξ)9,5,0,4(---.)9,5,0,4()9,7,5,3()0,2,5,1(---=--=-=αβξ.15.设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A 为3阶非奇异矩阵,则齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 的解为0321===x x x .0||≠A ,0=Ax 只有零解.16.设非齐次线性方程组b Ax =的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-642002********* ,则该方程组的通解为T Tk )1,2,1,2()0,3,2,1(--+.),(b A →⎪⎪⎪⎭⎫ ⎝⎛-321002********* ,⎪⎪⎩⎪⎪⎨⎧=-=+=-=4443424123221x x x x x x x x ,通解为T Tk )1,2,1,2()0,3,2,1(--+.17.已知3阶方阵A 的特征值为9,3,1-,则=A 31__-1__.19)3(1271||31313-=⨯-⨯⨯=⎪⎭⎫⎝⎛=A A . 18.已知向量)1,2,1(-=α与向量),1,0(y =β正交,则=y __2__.0),(=βα,02=-y ,2=y .19.二次型=),,,(4321x x x x f 2423222123x x x x -++的正惯性指数为__3__. 20.若=),,(321x x x f 32312123222142244x x x x x x x x x +-+++λ为正定二次型,则λ的取值应满足12<<-λ.⎪⎪⎪⎭⎫ ⎝⎛--=4212411λλA ,011>=D ;0)2)(2(44122>-+-=-==λλλλλD , 3122)2(322)2)(2(32024011421241123+-+=++-+=++--=--=λλλλλλλλλλλλλD0)1)(2(4>-+-=λλ,⎩⎨⎧<-+<-+0)1)(2(0)2)(2(λλλλ,⎩⎨⎧<<-<<-1222λλ,12<<-λ. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式5333353333533335=D .解:88811200002000020333111533113531133511333115333353333533335=⨯=⋅===D . 22.设⎪⎪⎪⎭⎫ ⎝⎛-=2/100110011A ,⎪⎪⎪⎭⎫⎝⎛=011021B ,又B AX =,求矩阵X .解:⎪⎪⎪⎭⎫ ⎝⎛-=1000100012/100110011).(E A →⎪⎪⎪⎭⎫ ⎝⎛-200010001100110011→⎪⎪⎪⎭⎫ ⎝⎛--200210001100010011→⎪⎪⎪⎭⎫ ⎝⎛---200210211100010001→⎪⎪⎪⎭⎫ ⎝⎛--200210211100010001,⎪⎪⎪⎭⎫ ⎝⎛--=-2002102111A , ==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛--200210211=⎪⎪⎪⎭⎫⎝⎛011021⎪⎪⎪⎭⎫⎝⎛--021231. 23.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=100042853A ,⎪⎪⎪⎭⎫⎝⎛=030095201201B ,求矩阵AB 的秩.解:024253100042853||≠===A ,A 可逆,而B 的秩为3,所以AB 的秩为3.24.求向量组)2,3,4,1(1-=α,)1,4,5,2(2-=α,)3,7,9,3(3-=α的秩.解:⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛379314522341321ααα→⎪⎪⎪⎭⎫ ⎝⎛-----323032302341→⎪⎪⎪⎭⎫ ⎝⎛---000032302341,321,,ααα的秩为2.25.求齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0553204420432143214321x x x x x x x x x x x x 的一个基础解系.解:⎪⎪⎪⎭⎫⎝⎛=553244211111A →⎪⎪⎪⎭⎫⎝⎛331033101111→⎪⎪⎪⎭⎫⎝⎛000033101111→⎪⎪⎪⎭⎫⎝⎛--000033102201, ⎪⎪⎩⎪⎪⎨⎧==--=+=44334324313322x x x x x x x x x x ,基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=01321ξ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=10322ξ. 26.设矩阵⎪⎪⎪⎭⎫⎝⎛=210120001A ,求可逆矩阵P ,使AP P 1-为对角矩阵.解:A 的特征多项式为=-||A E λ)34)(1(2112)1(2101200012+--=-----=-----λλλλλλλλλ)3()1(2--=λλ,特征值为121==λλ,33=λ.对于121==λλ,解齐次方程组0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛----110110000→⎪⎪⎪⎭⎫⎝⎛000000110,⎪⎩⎪⎨⎧=-==333211x x x x x x ,取⎪⎪⎪⎭⎫ ⎝⎛=0011p ,⎪⎪⎪⎭⎫⎝⎛-=1102p .对于33=λ,解齐次方程组0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛--110110002→⎪⎪⎪⎭⎫⎝⎛-000110001,⎪⎩⎪⎨⎧===333210xx x x x ,取⎪⎪⎪⎭⎫⎝⎛=1103p .令⎪⎪⎪⎭⎫ ⎝⎛-=110110001P ,则P 是可逆矩阵,使⎪⎪⎪⎭⎫ ⎝⎛=-3000100011AP P .四、证明题(本大题共1小题,6分)27.设向量组321,,ααα线性无关,211ααβ+=,322ααβ+=,133ααβ+=,证明:向量组321,,βββ线性无关. 证:设0332211=++βββk k k ,即0)()()(133322211=+++++ααααααk k k , 0)()()(332221131=+++++αααk k k k k k ,因为321,,ααα线性无关,必有⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 021111110110101110011101||≠=-=-==A ,方程组只有零解:0321===k k k ,所以321,,βββ线性无关.。

线性代数试题1及答案

线性代数试题1及答案

线性代数试题1及答案一. 填空题(每空3分,共15分)1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A 20 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围是44 t -3. A 为3阶方阵,且21=A ,则=--*12)3(A A 2716-4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是0,21====n n λλλ5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 n二. 选择题(每题3分,共15分)6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是(A ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则(C )成立(A) B A B A +=+ (B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则(C )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB (D ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中(B ) (A )任意r 个列向量线性无关 (B) 必有某r 个列向量线性无关(C) 任意r 个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n -1个列向量线性表示三. 计算题(每题7分,共21分)11. 设⎪⎪⎪⎭⎫⎝⎛=300041003A 。

2010线性代数答案

2010线性代数答案

010线性代数期末试题及参考答案一. 解答:1.(F )()2.(T )3.(F )。

如反例:,。

4.(T )(相似矩阵行列式值相同)5.(F )二. 解答:1.选B 。

初等矩阵一定是可逆的。

2.选B 。

A 中的三个向量之和为零,显然A 线性相关; B 中的向量组与,,等价, 其秩为3,B 向量组线性无关;C 、D 中第三个向量为前两个向量的线性组合,C 、D 中的向量组线性相关。

3.选C 。

由,)。

4.选D 。

A 错误,因为,不能保证;B 错误,的基础解系含有个解向量;C 错误,因为有可能,无解;D 正确,因为。

5.选A 。

A 正确,因为它们可对角化,存在可逆矩阵,使得,因此都相似于同一个对角矩阵。

三. 解答:1.(按第一列展开) 2. ;(=)AA n λλ=100010000A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭000010001B ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭1α2α3α052=-+E A A ⇒()2232()3A A E E A E A E E +-=⇒+-=()112()3A E A E -⇒+=-n m <()(|)R A R A b =0=Ax ()A R n -()(|)1R A n R A b n =<=+b Ax =()R A n =,P Q 1112(,,,)n PAP diag QBQ λλλ--== ,A B ()!11n n +-3153*A 3233A3. 相关(因为向量个数大于向量维数)。

因为,。

4. 。

因为,原方程组的导出组的基础解系中只含有一个解向量,取为,由原方程组的通解可表为导出组的通解与其一个特解之和即得。

5.( 四. 解答:1.解法一:。

将与组成一个矩阵,用初等行变换求。

=。

故 。

解法二:。

,因此。

2.解:,, 。

124,,ααα3122ααα=+124| |0A ααα=≠()()TTk 42024321--+()3=A R 1322ηηη-+6=a ())02=⇒=A A R AB B A =+⇒()1()A E B A B A E A --=⇒=-A E -A (|)A E A -1(|())E A E A --()|A E A -⎪⎪⎪⎭⎫ ⎝⎛221121243233121120)(31r r --⎪⎪⎪⎭⎫⎝⎛22112124323310000121313,r r r r -- ⎪⎪⎪⎭⎫⎝⎛-12112014323010000123r r - ⎪⎪⎪⎭⎫ ⎝⎛-121120222110100001322r r - 100001011222001325⎛⎫⎪- ⎪ ⎪---⎝⎭3r - 100001011222001325⎛⎫⎪- ⎪ ⎪-⎝⎭23r r -⎪⎪⎪⎭⎫ ⎝⎛--523100301010100001⎪⎪⎪⎭⎫ ⎝⎛--=523301100B AB B A =+⇒()1()A E B A B A E A --=⇒=-1021101()332113121326A E --⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪-==--- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1001()103325B A E A -⎛⎫⎪ ⎪=-=- ⎪⎪-⎝⎭⎪⎪⎪⎪⎪⎭⎫⎝⎛--------==111111*********1T A αβA A 42-=()()11()()()()()()44n n n T T T T T T T T A Aαβαβαβαβαβαβαβαβ--===-=-3.解法一:由方程组有无穷多解,得,因此其系数行列式。

高等教育自学考试《线性代数(经管类)》题库一

高等教育自学考试《线性代数(经管类)》题库一

高等教育自学考试《线性代数(经管类)》题库一1. 【单选题】(江南博哥)A.B.C.D.正确答案:B参考解析:2. 【单选题】A. a=-1,b=3,c=0,d=3B. a=-1,b=3,c=1,d=3C. a=3,b=-1,c=1,d=3D. a=3,b=-1,c=0,d=3正确答案:D参考解析:3. 【单选题】A.B.C.D.正确答案:B参考解析:合同矩阵A和B 有相同的秩和正惯性指数,只有B符合且都有一个正惯性指数4. 【单选题】设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件为A. A的行向量组线性相关B. A的行向量组线性无关C. A的列向量组线性相关D. A的列向量组线性无关正确答案:D参考解析:设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件为A的列向量组线性无关5. 【单选题】设α1,α2,α3,线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不可由α1,α2,α3线性表示,则对任意常数k必有()A. α1,α2,α3,kβ1+β2线性相关B. α1,α2,α3,β1+kβ2线性无关C. α1,α2,α3,β1+kβ2线性相关D. α1,α2,α3,kβ1+β2线性无关正确答案:D参考解析:6. 【填空题】我的回答:正确答案:参考解析:7. 【填空题】设A为三阶方阵,且|A|=-2,则|2A|=_____.我的回答:正确答案:参考解析:由|A|=|A T|,则|2A T|=23|A T|=8×(-2)=-16.8. 【填空题】我的回答:正确答案:参考解析:9. 【填空题】设实二次型f(x1,x2,x3)=.则f的秩为_______. 我的回答:正确答案:参考解析:10. 【填空题】我的回答:正确答案:参考解析:【答案】方程组只有零解,说明系数矩阵满秩.11. 【填空题】我的回答:正确答案:参考解析:【答案】x=k(1,1,1) T12. 【填空题】我的回答:正确答案:参考解析:【答案】313. 【填空题】设A为3阶方阵,其特征值分别为1,2,3,则|A+2E|=_______.我的回答:正确答案:参考解析:【答案】60|A+2E|=(1+2)X(2+2)X(3+2)=3 X 4 X 5=60.14. 【填空题】我的回答:正确答案:参考解析:【答案】15. 【填空题】我的回答:正确答案:参考解析:【答案】16. 【计算题】我的回答:参考解析:17. 【计算题】求向量组=(2,3,1),=(1,-1,3),=(3,2,4)的一个极大无关组,并将其余向量用该极大无关组表示出来.我的回答:参考解析:18. 【计算题】我的回答:参考解析:19. 【计算题】我的回答:参考解析:20. 【计算题】我的回答:参考解析:21. 【计算题】我的回答:参考解析:线性方程组的增广矩阵22. 【计算题】我的回答:参考解析:23. 【证明题】我的回答:参考解析:高等教育自学考试《线性代数(经管类)》模拟卷(二)1. 【单选题】设A为三阶方阵,其特征值分别为1,-2,-1,则|A+E|= ()A. 0B. 2C. -2D. 12正确答案:A参考解析:2. 【单选题】下列矩阵中能相似于对角阵的矩阵是()A.B.C.D.正确答案:C参考解析:3. 【单选题】A、B为n阶矩阵,且A~B,则下述结论中不正确的是()A. λE-A=λE-BB. |A|=|B|C. |λE-A|=|λE-B|D. r(A)=r(B)正确答案:A参考解析:4. 【单选题】A. -EB. EC. DD. A正确答案:B参考解析:5. 【单选题】二次型的秩为A. 1B. 2C. 3D. 4正确答案:D参考解析:6. 【填空题】设向量=(1,1,2,--2),=(1,1,-2,-4),=(1,1,6,0),则向量空间V={β|β=,∈R,i=1,2,3)的维数为_______.我的回答:正确答案:参考解析:6. 【计算题】我的回答:参考解析:7. 【填空题】设二次型)=,则二次型的秩是_______.我的回答:正确答案:参考解析:7. 【计算题】设二次型()=,用正变变换化上述二次型为标准形,并指出二次型的秩及其正定性。

历年自考线性代数试题真题及答案分析解答

历年自考线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++221121c a c a b b ( B )A .n m -B .m n -C .n m +D .)(n m +-2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACBB .CABC .CBAD .BCA3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8-B .2-C .2D .84.⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a A ,⎪⎪⎪⎭⎫⎝⎛=333231232221131211333a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=100030001P ,⎪⎪⎪⎭⎫⎝⎛=100013001Q ,则=B ( B )A .PAB .APC .QAD .AQ5.已知A 是一个43⨯矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关C .由1个非零向量组成的向量组线性相关D .2个成比例的向量组成的向量组线性相关 7.已知向量组321,,ααα线性无关,βααα,,,321线性相关,则( D ) A .1α必能由βαα,,32线性表出 B .2α必能由βαα,,31线性表出 C .3α必能由βαα,,21线性表出D .β必能由321,,ααα线性表出8.设A 为n m ⨯矩阵,n m ≠,则方程组Ax =0只有零解的充分必要条件是A 的秩( D ) A .小于mB .等于mC .小于nD .等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( A ) A .T AB .2AC .1-AD .*A10.二次型212322213212),,(x x x x x x x x f +++=的正惯性指数为( C ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分)11.行列式2010200920082007的值为_____________. 12.设矩阵⎪⎪⎭⎫ ⎝⎛-=102311A ,⎪⎪⎭⎫ ⎝⎛=1002B ,则=B A T_____________.13.设T )2,0,1,3(-=α,T )4,1,1,3(-=β,若向量γ满足βγα32=+,则=γ__________.14.设A 为n 阶可逆矩阵,且nA 1||-=,则|=-||1A _____________.15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则=||A _____________.16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为_____________.17.设n 阶可逆矩阵A 的一个特征值是3-,则矩阵1231-⎪⎭⎫⎝⎛A必有一个特征值为_________.18.设矩阵⎪⎪⎪⎭⎫⎝⎛----=00202221x A 的特征值为2,1,4-,则数=x _____________.19.已知⎪⎪⎪⎪⎫⎛=10002/102/1b a A 是正交矩阵,则=+b a _____________. 20.二次型323121321624),,(x x x x x x x x x f ++-=的矩阵是_____________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式333222c c b b a a c b a cb a D +++=的值. 解:222333222333222111c b a c b a abc c b a c b a c b a c c b b a a c b a c b aD ==+++= 2222222200111a c a b ac ab abc a c a b a c ab abc ----=----=))()((11))((b c a c a b abc ac a b a c a b abc ---=++--=.22.已知矩阵)3,1,2(=B ,)3,2,1(=C ,求(1)C B A T =;(2)2A .解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==963321642)3,2,1(312C B A T;(2)注意到13312)3,2,1(=⎪⎪⎪⎭⎫⎝⎛=T CB ,所以131313)())((2=====A C B C CB B C B C B A T T T T T ⎪⎪⎪⎭⎫ ⎝⎛963321642.23.设向量组T 4T 3T 2T 1(1,1,1,1),)0,3,1,1(,(1,2,0,1),(2,1,3,1)=--===αααα,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--==1011130311211112),,,(4321ααααA →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1112130311211011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1110233001101011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000200001101011→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000100001101101,向量组的秩为3,421,,ααα是一个极大无关组,213ααα+-=.24.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=100210321A ,⎪⎪⎪⎭⎫⎝⎛--=315241B .(1)求1-A ;(2)解矩阵方程B AX =. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛=100010001100210321),(E A →⎪⎪⎪⎭⎫ ⎝⎛--100210301100010021→⎪⎪⎪⎭⎫ ⎝⎛--100210121100010001,1-A ⎪⎪⎪⎭⎫⎝⎛--=100210121;(2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛--100210121⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--3111094315241.25.问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).解:⎪⎪⎪⎭⎫ ⎝⎛=63222204321),(a b A →⎪⎪⎪⎭⎫ ⎝⎛---23202204321a →⎪⎪⎪⎭⎫ ⎝⎛-03002204321a a .3≠a 时,3)(),(==A r b A r ,有惟一解,此时→),(b A ⎪⎪⎪⎭⎫ ⎝⎛010********a →⎪⎪⎪⎭⎫⎝⎛010********* →⎪⎪⎪⎭⎫ ⎝⎛010*********→⎪⎪⎪⎭⎫ ⎝⎛010*********,⎪⎩⎪⎨⎧===012321x x x ; 3=a 时,n A r b A r <==2)(),(,有无穷多解,此时→),(b A ⎪⎪⎪⎭⎫⎝⎛000023204321→⎪⎪⎪⎭⎫ ⎝⎛000023202001→⎪⎪⎪⎭⎫ ⎝⎛000012/3102001,⎪⎪⎩⎪⎪⎨⎧=-==333212312x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛12/30012k ,其中k 为任意常数.26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=3030002a a A 的三个特征值分别为5,2,1,求正的常数a 的值及可逆矩阵P ,使⎪⎪⎪⎭⎫ ⎝⎛=-5000200011AP P .解:由521)9(23323030002||2⨯⨯=-===a a aa a A ,得42=a ,2=a .=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----320230002λλλ.对于11=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----220220001→⎪⎪⎪⎭⎫ ⎝⎛000110001,⎪⎩⎪⎨⎧=-==333210x x x x x ,取=1p ⎪⎪⎪⎭⎫ ⎝⎛-110;对于22=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛----120210000→⎪⎪⎪⎭⎫ ⎝⎛000100010,⎪⎩⎪⎨⎧===003211x x x x ,取=2p ⎪⎪⎪⎭⎫⎝⎛001;对于53=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛--220220003→⎪⎪⎪⎭⎫ ⎝⎛-000110001,⎪⎩⎪⎨⎧===333210x x x x x ,取=3p ⎪⎪⎪⎭⎫ ⎝⎛110.令⎪⎪⎪⎭⎫ ⎝⎛-==101101010),,(321p p p P ,则P 是可逆矩阵,使⎪⎪⎪⎭⎫⎝⎛=-5000200011AP P .四、证明题(本题6分)27.设A ,B ,B A +均为n 阶正交矩阵,证明111)(---+=+B A B A .证:A ,B ,B A +均为n 阶正交阵,则1-=A A T ,1-=B B T ,1)()(-+=+B A B A T ,所以111)()(---+=+=+=+B A B A B A B A T T T .全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵),,(321ααα=A ,其中i α(3,2,1=i )为A 的列向量,若=||B 6|),,2(|3221=+αααα,则=||A ( C )A .12-B .6-C .6D .122.计算行列式=----32320200051020203( A )A .180-B .120-C .120D .1803.若A 为3阶方阵且2||1=-A ,则=|2|A ( C ) A .21B .2C .4D .84.设4321,,,αααα都是3维向量,则必有( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .1α不可由432,,ααα线性表示5.若A 为6阶方阵,齐次方程组Ax =0基础解系中解向量的个数为2,则=)(A r ( C ) A .2B .3C .4D .56.设A 、B 为同阶方阵,且)()(B r A r =,则( C ) A .A 与B 相似B .||||B A =C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为0,1,2,则=+|2|E A ( D ) A .0B .2C .3D .24..A .A 与B 等价B .A 与B 合同C .||||B A =D .A 与B 有相同特征值9.若向量)1,2,1(-=α与),3,2(t =β正交,则=t ( D )A .2-B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为0,1,2,则( B ) A .A 正定B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)11.设⎪⎪⎪⎭⎫ ⎝⎛-=421023A ,⎪⎪⎭⎫⎝⎛--=010112B ,则=AB ______________.12.设A 为3阶方阵,且3||=A ,则=-|3|1A ______________.13.三元方程1321=++x x x 的通解是______________.14.设)2,2,1(-=α,则与α反方向的单位向量是______________.15.设A 为5阶方阵,且3)(=A r ,则线性空间}0|{==Ax x W 的维数是______________.16.17.若A 、B 为5阶方阵,且0=Ax 只有零解,且3)(=B r ,则=)(AB r ______________.18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--110101012所对应的二次型=),,(321x x x f ______________.19.设3元非齐次线性方程组b Ax =有解⎪⎪⎪⎭⎫ ⎝⎛=3211α,⎪⎪⎪⎭⎫⎝⎛-=3 2 12α,且2)(=A r ,则b Ax =的通解是______________.20.设⎪⎪⎪⎭⎫ ⎝⎛=321α,则T A αα=的非零特征值是______________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式2000102000002000002010002=D .解:连续3次按第2行展开,243821128201020102420010200002010022=⨯=⨯=⨯=⨯=D . 22.设矩阵X 满足方程⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-021102341010100001200010002X ,求X .解:记⎪⎪⎪⎭⎫ ⎝⎛-=200010002A ,⎪⎪⎪⎭⎫ ⎝⎛=010100001B ,⎪⎪⎪⎭⎫⎝⎛---=021102341C ,则C AXB =,⎪⎪⎪⎭⎫ ⎝⎛-=-2/100010002/11A ,⎪⎪⎪⎭⎫ ⎝⎛=-010*******B ,11--=CB A X ⎪⎪⎪⎭⎫ ⎝⎛-=10002000121⎪⎪⎪⎭⎫ ⎝⎛---021102341⎪⎪⎪⎭⎫⎝⎛010100001⎪⎪⎪⎭⎫ ⎝⎛---=021********⎪⎪⎪⎭⎫ ⎝⎛010100001⎪⎪⎪⎭⎫⎝⎛---=20102443121. 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛------089514431311311→⎪⎪⎪⎭⎫⎝⎛------176401764011311→⎪⎪⎪⎭⎫⎝⎛---000001764011311 →⎪⎪⎪⎭⎫ ⎝⎛---0000017640441244→⎪⎪⎪⎭⎫ ⎝⎛--000001764053604→⎪⎪⎪⎭⎫ ⎝⎛----000004/14/72/3104/54/32/301,⎪⎪⎪⎩⎪⎪⎪⎨⎧==++-=-+=4433432431472341432345x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-104/74/3012/32/3004/14/521k k ,21,k k 都是任意常数. 24.求向量组)4,1,2,1(1-=α,)4,10,100,9(2=α,)8,2,4,2(3---=α的秩和一个极大无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=844210141002291),,(321TT T ααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21121012501291→⎪⎪⎪⎪⎪⎭⎫⎝⎛--08001900410291 →⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010291→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010201,向量组的秩为2,21,αα是一个极大无关组.25.已知⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量T )1,1,1(-=ξ,求b a ,及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.解:设λ是ξ所对应的特征值,则λξξ=A ,即⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---1111112135212λb a ,从而⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛++-λλλ121b a ,可得3-=a ,0=b ,1-=λ; 对于1-=λ,解齐次方程组0)(=-x A E λ:=-A E λ=⎪⎪⎪⎭⎫ ⎝⎛+-+---201335212λλλ⎪⎪⎪⎭⎫ ⎝⎛----101325213→⎪⎪⎪⎭⎫⎝⎛----213325101→⎪⎪⎪⎭⎫ ⎝⎛110220101→⎪⎪⎪⎭⎫ ⎝⎛000110101,⎪⎩⎪⎨⎧=-=-=333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛--111,属于1-=λ的全部特征向量为k ⎪⎪⎪⎭⎫⎝⎛--111,k 为任意非零实数.26.设⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A ,试确定a 使2)(=A r .解:⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A →⎪⎪⎪⎭⎫ ⎝⎛----a 12121122211→⎪⎪⎪⎭⎫ ⎝⎛----233023302211a →⎪⎪⎪⎭⎫⎝⎛--a 00023302211,0=a 时2)(=A r . 四、证明题(本大题共1小题,6分)27.若321,,ααα是b Ax =(0≠b )的线性无关解,证明,12αα-13αα-是对应齐次线性方程组0=Ax 的线性无关解.证:因为321,,ααα是b Ax =的解,所以12αα-,13αα-是0=Ax 的解;设0)()(132121=-+-ααααk k ,即0)(3221121=++--αααk k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧===--0002121k k k k ,只有零解021==k k ,所以,12αα-13αα-线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

全国2010年1月-2014年10月高等教育自学考试高等数学(工专)试题和答案

全国2010年1月-2014年10月高等教育自学考试高等数学(工专)试题和答案

全国2010年1⽉-2014年10⽉⾼等教育⾃学考试⾼等数学(⼯专)试题和答案全国2010年10⽉⾼等教育⾃学考试⾼等数学(⼯专)试题课程代码:00022⼀、单项选择题(本⼤题共5⼩题,每⼩题2分,共10分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错选、多选或未选均⽆分。

1.函数y=ln在(0,1)内()A.是⽆界的B.是有界的C.是常数D.是⼩于零的2.极限()A.B.0C.e-1D.-∞3.设f(x)=1+,则以下说法正确的是()A.x=0是f(x)的连续点B.x=0是f(x)的可去间断点C.x=0是f(x)的跳跃间断点D.x=0是f(x)的第⼆类间断点4.=()A.cosx+sinx+CB.cosx-sinxC.cosx+sinxD.cosx-sinx+C5.矩阵的逆矩阵是()A.B.C.D.⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分)请在每⼩题的空格中填上正确答案。

错填、不填均⽆分。

6.如果级数的⼀般项恒⼤于0.06,则该级数的敛散性为__________.7.若=2,则=____________.8.设f(x)=ex+ln4,则=____________.9.函数f(x)=(x+2)(x-1)2的极⼩值点是________________。

10.⾏列式=_________________________.11.设,则___________________.12.如果在[a,b]上f(x)2,则=_______________________.13.若F(x)为f(x)在区间I上的⼀个原函数,则在区间I上,=_______.14.⽆穷限反常积分=_____________________.15.设A是⼀个3阶⽅阵,且|A|=3,则|-2A|_________________.三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.求极限.17.求微分⽅程的通解.18.设y=y(x)是由⽅程ey+xy=e确定的隐函数,求.19.求不定积分.20.求曲线y=ln(1+x2)的凹凸区间和拐点.21.设f(x)=xarctanx-,求.22.计算定积分.23.求解线性⽅程组四、综合题(本⼤题共2⼩题,每⼩题6分,共12分)24.求函数f(x)=x4-8x2+5在闭区间[0,3]上的最⼤值和最⼩值.25.计算由曲线y=x2,y=0及x=1所围成的图形绕x轴旋转⽽成的旋转体的体积.全国2011年1⽉⾼数(⼯专)试题课程代码:00022⼀、单项选择题 1.函数y =ln(x -1)的反函数是() A.y =10x +1 B.y=e x +1 C.y =10x -1 D.y=e -x +12.当x →0时,3x 2是() A.x 的同阶⽆穷⼩量 B.x 的等价⽆穷⼩量 C.⽐x ⾼阶的⽆穷⼩量D.⽐x 低阶的⽆穷⼩量 3.设f (x )==-≠+0,20,)1ln(x x xax 在x =0处连续,则a =( ) A.2 B.-1 C.-2 D.1 4.设f (x )==π'?xf dt t 0)2(, sin 则( ) A.不存在 B.-1 C.0D.15.矩阵A=的逆矩阵是??1 22 5() A.5 2-2- 1 B.1 2-2- 5 C.5 2 2- 1 D ??5 2-2 1 ⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分) 6.级数∑∞==-+1.____________)1(n n s n n n 项和的前7..____________)11(lim 22=+∞→x x x8.-=+11._____________)sin (dx x x 9.=--+._____________)1111(22dx xx10.函数.____________32的单调减少区间是x y =11.当._______________,453,13=+-=±=p px x y x 则有极值函数时12.24 1 2 1 11 1 )(x x x f =⽅程=0的全部根是_______________.13.曲线.______________2的⽔平渐近线是x e y -=14.设矩阵A =.____________,2 1 1- 3- 2 1 , 1- 1 2 1 =??=?AB B 则 15.⽆穷限反常积分._____________122=?三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.求极限.2cos lim2xdt t xx ?∞→17..0)1(2的通解求微分⽅程=++xydx dy x18..,arctan )1ln(222dx yd tt y t x 求设??-=+= 19..14334的凹凸区间与拐点求曲线+-=x x y20..21,1422x y y x ==+直线在该点处其切线平⾏于上的点求椭圆21.求不定积分?.ln 2xdx x 22..11231dx x +?计算定积分 23.⽤消元法求解线性⽅程组=+--=+--=++.0 ,12,323 32321321x x x x x x x x 四、综合题(本⼤题共2⼩题,每⼩题6分,共12分)24.试证当.,1ex e x x>>时 25.线.1,202⾯积轴所围成的平⾯图形的和由曲线之间和x x y x x -===全国2011年4⽉⾼数(⼯专)试题课程代码:00022⼀、单项选择题1.设f (x )=ln x ,g (x )=x +3,则f [g(x )]的定义域是( A ) A.(-3,+∞) B.[-3,+∞) C.(-∞ ,3] D.(-∞,3) 2.当x →+∞时,下列变量中为⽆穷⼤量的是( B )A.x 1B.ln(1+x )C.sin xD.e -x 3.=∞→)πsin(1lim 2n nn ( ) A.不存在 B.π2 C.1 D.04.=+++?22)111(dx x x x ( ) A.0 B.4π C.2π D.π5.设A 为3阶⽅阵,且A 的⾏列式|A |=a ≠0,⽽A *是A 的伴随矩阵,则|A *|等于( ) A.a B. a1C. a 2D.a 3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分)6.=++++--∞→)3131313(lim 12n n _________. 7.设函数=≠=0,,0,1sin )(2x a x xx x f 在x =0连续,则a=_________. 8.=∞→xx x 1sinlim _________. 9.y '=2x 的通解为y =_________. 10.设y =sin2x ,则y 〃=_________.11.函数y =e x -x -1单调增加的区间是_________. 12.设?=xdt t x f 0)sin(ln )(,则f '(x )=_________.13.若⽆穷限反常积分4112πA ,则A =_________. 14.⾏列式=aa a 111111_________.15.设矩阵300220111=A ,则=A A '_________.三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.设f (x )=(x -a )g (x ),其中g (x )在点x =a 处连续且g (a )=5,求)('a f . 17.求极限3 arctan limx xx x -→.18.求微分⽅程0=+xdy y dx 满⾜条件y |x =3=4的特解. 19.已知参数⽅程-=-=,3,232t t y t t x 求22dx y d .20.求函数f (x )=x 3-3x 2-9x +5的极值.21.求不定积分?+dx ex 13. 22.计算定积分1dx xe x .23.问⼊取何值时,齐次⽅程组=-+=-+-=+--,0)2(,0)3(4,0)1(312121x x x x x x λλλ有⾮零解?四、综合题(本⼤题共2⼩题,每⼩题6分,共12分)24.已知f (x )的⼀个原函数为x sin ,证明C x xx dx x xf +-=?sin 2cos )('. 25.欲围⼀个⾼度⼀定,⾯积为150平⽅⽶的矩形场地,所⽤材料的造价其正⾯是每平⽅⽶6元,其余三⾯是每平⽅⽶3元.问场地的长、宽各为多少⽶时,才能使所⽤材料费最少?2011年4⽉⾼数⾃考试题答案全国2012年1⽉⾼等教育⾃学考试⾼等数学(⼯专)试题课程代码:00022⼀、单项选择题(本⼤题共5⼩题,每⼩题2分,共10分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

全国自考 线性代数 历年考试真题与答案

全国自考 线性代数  历年考试真题与答案

全国高等教育 线性代数(经管类) 自学考试 历年(2009年07月——2013年04月)考试真题与答案全国2009年7月自考线性代数(经管类)试卷课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A的秩;|A |表示A 的行列式;E 表示单位矩阵。

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。

错选、多选或未选均无分。

1.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A.(A +B )T =A T +B T B.|AB |=|A ||B | C.A (B +C )=BA +CA D.(AB )T =B T A T2.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a ---=( ) A.-24 B.-12 C.-6D.123.若矩阵A 可逆,则下列等式成立的是( ) A.A =*1A AB.0=AC.2112)()(--=A AD.113)3(--=A A4.若A =⎥⎦⎤⎢⎣⎡-251213,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-131224,C =⎥⎦⎤⎢⎣⎡--211230,则下列矩阵运算的结果为3×2矩阵的是( ) A.ABC B.AC T B T C.CBAD.C T B T A T5.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( ) A.α1,α3线性无关B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关6.若四阶方阵的秩为3,则( ) A.A 为可逆阵B.齐次方程组Ax =0有非零解C.齐次方程组Ax =0只有零解D.非齐次方程组Ax =b 必有解7.设A 为m×n 矩阵,则n 元齐次线性方程Ax=0存在非零解的充要条件是( ) A.A 的行向量组线性相关 B.A 的列向量组线性相关 C.A 的行向量组线性无关 D.A 的列向量组线性无关8.下列矩阵是正交矩阵的是( ) A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001B.21⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110011101C.⎥⎦⎤⎢⎣⎡--θθθθcos sin sin cos D.⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--3361022336603361229.二次型正定的充要条件是为实对称阵)(A Ax x T =f ( ) A.A 可逆B.|A |>0C.A 的特征值之和大于0D.A 的特征值全部大于010.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--4202000k k 正定,则( )A.k>0B.k ≥0C.k>1D.k ≥1二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

(完整版)历年全国自考线性代数试题及答案

(完整版)历年全国自考线性代数试题及答案

浙02198# 线性代数试卷 第1页(共25页)全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。

1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

做试题,没答案?上自考365,网校名师为你详细解答!
全国2010年1月自学考试线性代数试题
课程代码:02198
说明:本卷中,A T
表示矩阵A 的转置,αT
表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,R (A )表示矩阵A 的秩. 一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式==1
1
1
1034222,11
1
1
304
z y x z
y x
则行列式( A )
A.
3
2 B.1 C.2
D.3
8
2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1
=( B ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1
A -1
B -1
D. A -1
C -1
B -1
3.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4),如果|A |=2,则|-2A |=( D ) A.-32 B.-4 C.4
D.32
4.设方阵A 满足A 5=E ,则必有( ) A.A=E B.A=-E C.|A|=1
D.|A|=-1 5.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关
D. α1,α2,α3一定线性无关
6.设A 是4×6矩阵,R (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( ) A.1 B.2 C.3
D.4
7.设A =⎥⎥⎥


⎢⎢⎢
⎣⎡---49
6
375
254
,则以下向量中是A 的特征向量的是( ) A.(1,1,1)T
B.(1,1,3)T
C.(1,1,0)T
D.(1,0,-3)T
8.设矩阵A =⎥⎥⎥


⎢⎢⎢⎣⎡--11
1
131
111
的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ 3 = ( )
A.4
B.5
C.6
D.7
9.三元二次型f (x 1,x 2,x 3)=2
33222312121912464x x x x x x x x x +++++的矩阵为( )
A.⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡96
3642321 B.⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡96
3640341
C.⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡96
642621 D.⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡912
3
042321 10.设矩阵A =⎥⎦

⎢⎣⎡a 321是正定矩阵,则a 满足( ) A.a <2 B.a =2 C.a =6
D.a >6
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

11.行列式13
7
6
954
3
21
=_________. 12.设方阵A 满足A 3
-2A +E =0,则(A 2
-2E )-1
=_________.
13.设
A =⎥⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡11
120000120025
,则A -1=_________.
14.设α=(1,1,-1),β=(-2,1,0),γ=(-1,-2,1),则3α-β+5γ=_________. 15.实数向量空间V ={(x 1,x 2,x 3)|x 1+x 2+x 3=0}的维数是_________.
16.设线性方程组⎥⎥⎥


⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢
⎣⎡2111
1
11
11321x x x a a a
有无穷多个解,则a =_________. 17.设A 是m ×n 实矩阵,若R (A T A )=5,则R (A )=_________. 18.设n 阶矩阵A 有一个特征值3,则|-3E +A |=_________.
19.设向量α=(1,2,-2),β=(2,a ,3),且α与β正交,则a =_________.
20.二次型323121232232184434),,(x x x x x x x x x x x f +-+-=的秩为_________.
三、计算题(本大题共6小题,每小题9分,共54分)
21.计算行列式D =
3
3
1
5
112043512131
------.
22.设A =⎥⎥⎥


⎢⎢⎢⎣⎡---37
5
254
132,判断A 是否可逆,若可逆,求其逆矩阵A -1. 23.设向量组α1=(1,2,3,6),α2=(1,-1,2,4),α3=(-1,1,-2,-8),α4=(1,2,3,2). (1)求该向量组的一个最大线性无关组;
(2)将其余向量表示为该最大线性无关组的线性组合.
24.求齐次线性方程组⎪⎩⎪
⎨⎧=--=---=-+0
3040
23214321421x x x x x x x x x x 的基础解系及其结构解.
25.设矩阵A =⎥⎥⎥


⎢⎢⎢⎣⎡---32
4
010
223
,求可逆方阵P ,使P -1AP 为对角矩阵. 26.已知二次型3231212
3222132166255),,(x x x x x x cx x x x x x f -+-++=的秩为2,求参数c .
四、证明题(本大题6分)
27.设方阵A 与方阵B 相似,证明:对任意正整数m ,A m
与B m
相似.。

相关文档
最新文档