变量之间的关系水平测试及答案
变量之间的关系练习题附答案

变量之间的关系练习(1)附答案一、选择题(每题3分,共24分)1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是()2.秋天到了,葡萄熟了,一阵微风吹过,一颗葡萄从架上落下来,葡萄下落过程中速度与3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是()4.某人骑车外出,所走的路程$(千米)与时间t(小时)的关系如图1所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3小时中的速度比第1小时中的速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进.其中说法正确的是()A.②③B.①③C①④ D.②④5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图2所示,则对于该厂生产这种产品的说法正确的是()A.1月至3月生产总量逐月增加,4, 5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4, 5两月生产总量与3月持平C1月至3月生产总量逐月增加,4, 5两月均停止生产D.1月至3月生产总量不变,4, 5两月均停止生产6.如图3是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系7.如图4,射线/甲,/乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快 C甲、乙同速 D.不一定8. 2004年6月3日中央新闻报道.为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水%立方米,水费为y元,则%与y的关系用图象表示正确的是()二、填空题(每题3分,共24分)1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数%之间的关系式为(不考虑利息税).2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是.3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间》(小时)的关系式为,该汽车最多可行驶小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中_____ 是自变量,是因变量。
2022年必考点解析鲁教版(五四制)六年级数学下册第九章变量之间的关系达标测试试题(含解析)

六年级数学下册第九章变量之间的关系达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、圆周长公式2C r π=,下列说法正确的是( ).A .C r 、、π是变量,2是常量B .C 是变量, r π、 是常量 C .r 是变量, C π、 是常量D .C r 、是变量 , 2π、是常量 2、下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是( )A .③④①②B .②①③④C .①④②③D .③①④②3、某销售商对某品牌豆浆机的销量与定价的关系进行了调查,结果如下表所示,则( )A .定价是常量B .销量是自变量C .定价是自变量D .定价是因变量 4、在圆的面积公式2S R π=中,常量与变量分别是( )A .π是常量,,S R 是变量B .2是常量,,,S R π是变量C .2是常量,R 是变量D .2是常量,,S R 是变量5、一个容器中装有一定质量的糖,向容器中加入水,随着水量的增加,糖水的浓度将降低,这个问题中自变量和因变量分别是( )A .糖,糖水的浓度B .水,糖水C .糖,糖水D .水,糖水的浓度6、在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A .速度v 是变量B .时间t 是变量C .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量7、用m 元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .y =n (100m +0.6) B .y =n (100m )+0.6 C .y =n (100m +0.6) D .y =n (100m )+0.6 8、已知,A 、B 两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B ,乙骑摩托车以40千米/时的速度由起点B 前往终点A .两人同时出发,各自到达终点后停止.设两人之间的距离为s (千米),甲行驶的时间为t (小时),则下图中正确反映s 与t 之间函数关系的是( )A .B .C .D .9、圆的面积计算公式为2S R π=(R 为圆的半径),变量是( ).A .πB .,R SC .,R πD .,,R S π10、佳佳花3000元买台空调,耗电0.7度/小时,电费1.5元/度.持续开x 小时后,产生电费y (元)与时间(小时)之间的函数关系式是( )A . 1.05y x =B .0.7y x =C . 1.5y x =D .3000 1.5y x =+第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、圆的半径为r ,圆的面积S 与半径r 之间有如下关系:2S r π=.在这关系中,常量是______.2、下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n 个“上”字需用_________枚棋子.3、若球体体积为V ,半径为R ,则343V R π=.其中变量是_______、_______,常量是________. 4、一名老师带领x 名学生到青青世界参观,已知成人票每张60元,学生票每张40元设门票的总费用为y 元,则y 与x 的关系式为______.5、矩形的周长为50,宽是x ,长是y ,则y =____.6、函数y =中自变量x 的取值范围是__________.7、随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60/km h 的平均速度行驶20min 到达单位,下班按原路返回,若返回时平均速度为v ,则路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为________.8、如图所示,在三角形ABC 中,已知16BC =,高10AD =,动点Q 由点C 沿CB 向点B 移动(不与点B 重合).设CQ 的长为x ,三角形ACQ 的面积为S ,则S 与x 之间的关系式为___________________.三、解答题(3小题,每小题10分,共计30分)1、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么?(3)当t 每增加1秒,v 的变化情况相同吗?在哪个时间段内,v 增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.2、某公空车每天的支出费用为600元,每天的乘车人数x (人)与每天利润(利润=票款收入-支出费用)y (元)的变化关系,如下表所所示(每位委文的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)观察表中数据可知,当乘客量达到________人以上时,该公交车才不会亏损;(2)当一天乘客人数为500人时,利润是多少?(3)请写出公交车每天利润y (元)与每天乘车人数x (人)的关系式.3、指出下列问题中的变量和常量:(1)某市的自来水价为4元/t .现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元.(2)某地手机通话费为0.2元/min .李明在手机话费卡中存入30元,记此后他的手机通话时间为min t ,话费卡中的余额为w 元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,周长为C ,圆周率(圆周长与直径之比)为π.(4)把10本书随意放入两个抽昼(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本.-参考答案-一、单选题1、D【解析】【分析】根据事物发生变化的过程中发生变化的量是变量,事物变化的过程中不变的量是常量,可得答案【详解】由2C r π=,得C、r是变量,2π是常量,故D正确故选:D【点睛】此题考查常量与变量,难度不大2、A【解析】【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.3、C【解析】【分析】根据自变量、因变量、常量的定义即可得.【详解】由表格可知,定价与销量都是变量,其中,定价是自变量,销量是因变量,故选:C .【点睛】本题考查了常量与变量、自变量与因变量,掌握理解相关概念是解题关键.4、A【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】解:∵在圆的面积公式2S R π=中,S 与R 是改变的,π是不变的;∴π是常量,,S R 是变量.故选A .【点睛】本题考查了常量与变量的知识,属于基础题,正确理解定义是解题关键.5、D【解析】【分析】根据对浓度的认识解答本题,糖的质量不变,加的水越多,糖水的浓度度越小,糖水的浓度随着加入水的变化而变化,据此解答即可.【详解】解:随着水的加入,糖水浓度变小,自变量是加入的水量,因变量是糖水的浓度.故选:D .【点睛】此题考查的是常量与变量的概念,掌握其概念是解决此题的关键.6、C【解析】【分析】根据变量和常量的定义即可判断.【详解】解: 在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则速度v 和时间t 都是变量,路程s 是常量故选:C .【点睛】本题考查变量和常量的定义,熟练掌握基本概念是解决问题的关键.7、A【解析】【分析】 由题意可得每本书的价格为100m 元,再根据每本书需另加邮寄费6角即可得出答案; 【详解】解:因为用m 元钱在网上书店恰好可购买100本书, 所以每本书的价格为100m 元, 又因为每本书需另加邮寄费6角,所以购买n 本书共需费用y =n (100m +0.6)元; 故选:A .本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.8、B【解析】【分析】根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而根据相遇前、相遇后两个阶段得出相应的分段函数,从而找出符合题意的图象.【详解】解:根据题意,两人同时相向出发,甲到达B地时间为:12020=6小时,乙到达A地:12040=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:12060(02)60120(23)20(36)s t ts t ts t t=-⎧⎪=-⎨⎪=⎩故选B.点评:此题主要考查了函数图象,根据题意得出关键转折点是解题关键.9、B【解析】【分析】变量就是在一个变化过程中发生变化的量,数值不发生变化的量是常量,根据定义判断即可.解:圆的面积计算公式为2S R π=(R 为圆的半径),变量是:R ,S . 故选:B .【点睛】本题考查了常量与变量的定义,属于基础定义题型,正确理解概念是关键.10、A【解析】【分析】根据耗电0.7度/小时,电费1.5元/度,列出函数关系式即可.【详解】解:由题意得: 1.50.7 1.05y x x =⨯=,故选A .【点睛】本题主要考查了列函数关系式,解题的关键在于能够准确理解题意.二、填空题1、π【解析】【分析】利用常量定义可得答案.【详解】解:公式S =πR 2中常量是π,故答案为:π.【点睛】本题主要考查了常量,关键是掌握在一个变化的过程中,数值始终不变的量称为常量.2、 22 4n+2【解析】【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可.【详解】第一个“上”字需用6枚棋子;第二个“上”字需用10枚棋子;第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关⨯⨯⨯...6=14+2,10=24+2,14=34+2,∴第五个“上”字需用54222⨯+=枚棋子,第n个“上”字需用42n+枚棋子.故答案为:(1)22;(2)42n+【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.π3、R V43【解析】【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为343V R π=, ∴R 是自变量,V 是因变量,43π是常量. 故答案为:R ,V ,43π. 【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.4、6040y x =+【解析】【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【详解】依等量关系式“总费用=老师费用+学生费用”可得:6040y x =+.故答案是:6040y x =+.【点睛】本题考查了函数关系式.解题的关键是明确学生的票价加老师的票价等于总票价.5、y=-x+25【解析】【分析】根据矩形的对边相等,周长表示为2x+2y ,由已知条件建立等量关系,再变形即可.【详解】解:∵矩形的周长为50,∴2x+2y =50,整理得:y=-x+25.【点睛】本题关键是根据长、宽与周长的关系,列出等式.6、x≥2【解析】【详解】根据二次根式的性质,被开方数大于等于0,可得x-2≥0,解得x≥2.7、20t v= 【解析】【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间t 即可得出答案.【详解】 解:∵20602060km ⨯= ∴小华爸爸下班时路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为:20t v=. 故答案为:20t v =. 【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.8、()5016S x x =<<【解析】【分析】 根据三角形的面积公式可知1=2AQC S AD CQ ⋅△,由此求解即可.【详解】∵AD 是△ABC 中BC 边上的高,CQ 的长为x , ∴1==52AQC S AD CQ x ⋅△,∴()5016S x x =<<.故答案为:()5016S x x =<<.【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式.三、解答题1、(1)时间与速度;时间;速度;(2)0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)不相同;第9秒时;(4)1秒.【解析】【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v 的变化趋势;(3)根据表中的数据可得出V 的变化情况以及在哪1秒钟,V 的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大;(4)由题意得:120千米/小时=12010003600⨯(米/秒), 由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>,所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.2、(1)300;(2)400;(3)y =2x -600【解析】【分析】(1)根据表格中的数据,当y 大于0时,相应的x 的取值即可;(2)根据表格中的变量之间的变化关系,可得“每增加50人,利润将增加100元”,可求出答案;(3)“每增加50人,利润将增加100元”也就是“每增加1人,利润将增加2元”,根据乘坐人数可得利润即可.【详解】解:(1)当y =0时,x =300,当x >300时,y >0,故答案为:300;(2)200+100×(50040050-)=400(元), 答:一天乘客人数为500人时,利润是400元;(3)由表格中的数据变化可知,当乘坐人数为300人时,利润为0元,每增加50人,利润就增加100元,每减少50人,利润就减少100元,所以利润y =0+30050x -×100=2x -600, 即:y =2x -600,答:公交车每天利润y (元)与每天乘车人数x (人)的关系式为y =2x -600.【点睛】本题考查函数关系式,理解表格中“每天的利润y 元”与“乘坐的人数x ”之间的变化关系是正确解答的关键.3、(1)变量x ,y ;常量4.(2)变量t ,w ;常量0.2,30.(3)变量r ,C ;常量π.(4)变量x ,y ;常量10.【解析】【分析】根据常量与变量的定义求解即可.【详解】解:(1)由题意可知,变量为x ,y ,常量为4;(2)由题意可知,变量为t ,w ,常量为0.2,30;(3)由题意可知,变量为r ,C ,常量为π;(4)由题意可知,变量为x ,y ,常量为10.【点睛】本题考查常量与变量的定义,常量是指在变化过程中不随时间变化的量;变量是指在变化过程中随着时间变化的量.。
完整)七年级数学下册-变量之间的关系测试题

完整)七年级数学下册-变量之间的关系测试题1.给定一个圆珠笔盒子,其中有12支圆珠笔,售价为18元。
用y表示圆珠笔的售价,x表示圆珠笔的支数,则y与x 之间的关系为y=1.5x。
2.如果物体运动的路程s与时间t的关系式为s=3t+2t+1,则当t=4时,该物体所经过的路程为28米。
3.给定两个变量m和v之间的4组对应数据,求m与v 之间的关系。
根据数据,最接近的关系式为v=2m-2.4.龟兔赛跑的故事中,兔子睡觉后被乌龟追上,最终乌龟先到达终点。
用S1和S2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相符的图象为S1-S2随时间t的变化曲线,前半段曲线较平缓,后半段曲线较陡峭。
5.给定XXX一天内的体温变化情况,图象反映了24小时内小红的体温变化。
下列说法错误的是B,即下午5时体温最高。
6.小王设计了一个程序,输入和输出数据如表所示。
根据数据,当输入数据8时,输出的数据为xxxxxxxx。
7.给定某汽车在行驶过程中的速度与时间的关系曲线,描述了汽车在不同时间的速度变化情况。
根据图象,说法错误的是B,即第12分时汽车的速度是千米/时。
8.给定一个,向其中注水,注满为止。
注水量V与水深h 之间的关系的图象大致如图3所示,则这个是图中的D。
18.XXX晨骑车从家到学校,路程如图7所示,先上坡后下坡。
如果他返回时上下坡的速度不变,那么他从学校骑车回家需要多长时间?(答案需要填写在空白处)19.一根弹簧的原长为13厘米,挂物体质量不得超过16千克,每挂1千克就会伸长0.5厘米。
当挂物体质量为10千克时,弹簧长度为多少厘米?挂物体质量X(千克)与弹簧长度y(厘米)的关系式是什么?(不考虑X的取值范围)20.如图6-31,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶的图像,两地间的距离是100千米。
请回答以下问题:1)谁出发的时间更早?早了多少时间?谁先到达乙地?提前了多少时间?2)两人在途中行驶的速度分别是多少?3)在什么时间段内,两辆车都在途中行驶?在这段时间内,自行车在摩托车前面,两辆车相遇,自行车在摩托车后面分别是什么时候?21.下表是三家电器厂2007年上半年每个月的产量:x/月 | y/台。
第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)一、选择题1.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2.B.变量是C、π、r。
C.变量是C、r。
D.常量是2、r2.函数y=中自变量x的取值范围是()A.x≤2B.x≥2C。
x<2.D。
x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()XXX4.以下图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时动身,设慢车行驶的工夫为x (h),两车之间的间隔为y(km),图中的折线透露表现y与x之间的函数关系.以下说法中正确的是()A。
B点透露表现此时快车抵达乙地B。
B﹣C﹣D段透露表现慢车先加快后减速最后抵达甲地 C.快车的速度为km/h。
D.慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.XXX.6.一个长方体木箱的长为4㎝,宽为体的体积V与高为宽的2倍,则这个长方体的表面积S与的关系及长方的关系分别是()A.C.B.D.7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着迟钝匍匐的乌龟,自满起来,睡了一觉,当它醒来时。
发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1s2分别透露表现乌龟和兔子所行的旅程,t为工夫,则以下图象中与故工作节相符合的是()XXX.C.D.8.自行车以10千米/小时的速度行驶,t时)它所行走的路程S(千米)与所用的时间(之间的关系为()A。
S=10+t。
B.C。
S=D。
S=10t9.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:以下说法不正确的是()x/kgy/cm 20 20.5 21 21.5 22 22.5A.弹簧不挂重物时的长度为0cmB。
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。
2022-2023学年北师大版七年级数学上《变量之间的关系》测试卷及答案解析

2022-2023学年北师大版七年级数学上《变量之间的关系》一.选择题(共9小题)1.(2022春•雁峰区期中)在圆的周长计算公式C=2πR中,对于变量和常量的说法正确的是()A.2是常量,C,π,R是变量B.2,π是常量,C,R是变量C.2,C,π是常量,R是变量D.2,π,R是常量,C是变量2.(2022春•历城区期中)太阳能作为一种新型能源被广泛应用到实际生活中,在利用太阳能热水器加热的过程中,热水器里水的温度随着太阳光照射时间的变化而变化,这一变化过程中因变量是()A.热水器水的温度B.热水器的容积C.太阳光照射的时间D.太阳光的强弱3.(2022春•滦南县期中)刘师傅到加油站加油,如图是所用的加油机上的某一时刻数据显)示牌,则其中的常量是(A.金额B.单价C.数量D.金额和数量4.(2022春•古田县期中)如表是研究弹簧长度与所挂物体质量关系的实验表格,则弹簧不挂物体时的长度为()12345所挂物体重量x(kg)1012141618弹簧长度y(cm)A.4cm B.6cm C.8cm D.10cm 5.(2022春•碑林区校级期末)小明一家自驾车到离家500km的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x(km)与油箱余油量y(L)之间的部分数据:行驶路程x(km)050100150200…油箱余油量y(L)4541373329…下列说法不正确的是()A.该车的油箱容量为45LB.该车每行驶100km耗油8LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣8xD.当小明一家到达景点时,油箱中剩余5L油6.(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y与x之间的函数表达式为()A.y=x+50B.y=50x C.y=D.y=7.(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量8.(2022春•滕州市期中)滕州某布店新进了一批花布,卖出的数量x(米)与售价y(元)的关系如表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…那么y与x的关系式是()A.y=8x+0.3B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x 9.(2022春•榆次区期中)一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米.下面能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t(时)的关系的图象是()A.B.C.D.二.多选题(共1小题)(多选)10.(2022•乳山市一模)甲、乙二人相约去科技创新大厦做核酸检测.如图表示的是他们在行走的过程中,离单位的距离y(单位:米)和行走的时间x(单位:分)间的)关系.下列说法正确的是(A.甲、乙二人第一次相遇,停留了10分钟B.甲先到达目的地C.甲停留10分钟之后提高了行走速度D.甲行走的平均速度比乙行走的平均速度快三.填空题(共6小题)11.(2020春•鱼台县期末)圆的面积S与半径R之间的关系是S=πR2.请指出公式S=πR2中常量是.12.(2019秋•潍坊期末)骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一变量关系中,因变量是.13.(2019春•雁塔区校级期中)我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t表示某高空中的温度,h表示距地面的高度,则是自变量.14.(2022春•莲湖区期中)弹簧原长(不挂物体)15cm,弹簧总长L(cm)与物体质量x (kg)的关系如表所示:弹簧总长L(cm)1617181920重物质量x(kg)0.5 1.0 1.5 2.0 2.5当物体质量为5kg(在弹性限度内)时,弹簧的总长是cm.15.(2022春•霞浦县期中)某超市进了一批草莓,出售时销售量x与销售总价y的关系如下表:12345…销售量x(kg)销售总价y (元)12+0.524+136+1.548+2.060+2.5…请根据上表中的数据写出销售总价y (元)与销售量x (kg )之间的关系式:.16.(2022•兴化市一模)冬奥会每隔4年举办一次,如今年的年份为2022,举办的是第24届冬奥会.设第x 届冬奥会的年份为y ,则y 与x 之间的函数表达式为y =(x 、y均为正整数).四.解答题(共4小题)17.(2021春•和平区校级期中)如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化.①在这个变化中,自变量、因变量分别是、;②如果高为h (cm )时,体积为V (cm 3),则V 与h 的关系为;③当高为5cm 时,棱柱的体积是;④棱柱的高由1cm 变化到10cm 时,它的体积由变化到.18.(2013秋•霍邱县校级月考)齿轮每分钟120转,如果n 表示转数,t 表示转动时间.(1)用n 的代数式表示t ;(2)说出其中的变量与常量.19.被誉为“沙漠之舟”的骆驼,其体温随着气温的变化而变化,在这个变化中,有几个变量?自变量是什么20.(2022春•金牛区校级期中)在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体的重量x 的一组对应值:所挂物重量x (kg )01234…弹簧长度y (cm )2022242628…(1)上述表格中的自变量是,因变量是;(2)当所挂物体的重量为4kg时,弹簧长为cm;不挂重物时,弹簧长为cm;(3)在一定范围内,写出弹簧长ycm与所挂重物xkg的关系?2022-2023学年北师大版七年级数学上《变量之间的关系》参考答案与试题解析一.选择题(共9小题)1.(2022春•雁峰区期中)在圆的周长计算公式C=2πR中,对于变量和常量的说法正确的是()A.2是常量,C,π,R是变量B.2,π是常量,C,R是变量C.2,C,π是常量,R是变量D.2,π,R是常量,C是变量【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【解答】解:在圆的周长计算公式C=2πR中,C和R是变量,2、π是常量,故选:B.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.2.(2022春•历城区期中)太阳能作为一种新型能源被广泛应用到实际生活中,在利用太阳能热水器加热的过程中,热水器里水的温度随着太阳光照射时间的变化而变化,这一变化过程中因变量是()A.热水器水的温度B.热水器的容积C.太阳光照射的时间D.太阳光的强弱【考点】常量与变量.【专题】函数及其图象;数据分析观念;应用意识.【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.据此解答即可.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水的温度是因变量,所晒时间为自变量.故选:A.【点评】本题主要考查的是对函数的定义,解题的关键是根据函数的定义对自变量和因变量的认识和理解.3.(2022春•滦南县期中)刘师傅到加油站加油,如图是所用的加油机上的某一时刻数据显示牌,则其中的常量是()A.金额B.单价C.数量D.金额和数量【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】根据常量与变量的定义即可得出答案.【解答】解:金额随数量的增加而增加,常量是单价,故选:B.【点评】本题考查了常量与变量,掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量是解题的关键.4.(2022春•古田县期中)如表是研究弹簧长度与所挂物体质量关系的实验表格,则弹簧不挂物体时的长度为()12345所挂物体重量x(kg)1012141618弹簧长度y(cm)A.4cm B.6cm C.8cm D.10cm【考点】函数的表示方法.【专题】函数及其图象;应用意识.【分析】据题意求得该函数解析式为y=2x+8,即可求得此题结果.【解答】解:由题意可得,所挂重物每增加1kg,弹簧伸长2cm,∴该函数解析式为y=2x+8,∴当x=0时,y=2×0+8=8,∴弹簧不挂物体时的长度为8cm,故选:C.【点评】此题考查了运用函数解决实际问题的能力,关键是能根据题意求得对应函数解析式.5.(2022春•碑林区校级期末)小明一家自驾车到离家500km的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x(km)与油箱余油量y(L)之间的部分数据:行驶路程x(km)050100150200…油箱余油量y(L)4541373329…下列说法不正确的是()A.该车的油箱容量为45LB.该车每行驶100km耗油8LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣8xD.当小明一家到达景点时,油箱中剩余5L油【考点】函数关系式.【专题】函数及其图象;应用意识.【分析】通过表格给出的信息理解题意,可得此题答案.【解答】解:∵当x=0时y=45,∴该车的油箱容量为45L,∴选项A不符合题意;∵由表格可得该车每行驶100km耗油8L,∴选项B不符合题意;∵由题意可得油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣0.08x,∴选项C符合题意;∵由45﹣0.08×500=5(L),即当小明一家到达景点时,油箱中剩余5L油,∴选项D不符合题意;故选:C.【点评】此题考查了确定实际问题中的函数解析式的能力,关键是能准确理解题目中的数量关系,并能列式表达.6.(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y与x之间的函数表达式为()A.y=x+50B.y=50x C.y=D.y=【考点】函数关系式.【专题】函数及其图象;运算能力.【分析】根据题意列出函数关系式即可得出答案.【解答】解:由城市市区人口x万人,市区绿地面积50万平方米,则平均每人拥有绿地y=.故选:C.【点评】本题主要考查了函数关系式,根据题意列出函数关系式进行求解是解决本题的关键.7.(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.8.(2022春•滕州市期中)滕州某布店新进了一批花布,卖出的数量x(米)与售价y(元)的关系如表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…那么y与x的关系式是()A.y=8x+0.3B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x【考点】函数关系式.【专题】一次函数及其应用;应用意识.【分析】根据表格可知布的数量(米)与售价(元)的关系为售价=8.3×数量.【解答】解:∵16+0.6=2(8+0.3);24+0.9=3(8+0.3);32+1.2=4(8+0.3),...∴y=(8+0.3)x;故选:B.【点评】本题考查了函数关系式,正确得出数字变化规律是解题的关键.9.(2022春•榆次区期中)一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米.下面能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t(时)的关系的图象是()A.B.C.D.【考点】函数的图象.【专题】函数及其图象;应用意识.【分析】可以列出蜡烛点燃后,剩下的长度h与点燃时间t的函数关系式,利用函数的性质判断图象.【解答】解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是为h=20﹣5t,即t越大,h越小,符合此条件的只有A.故选:A.【点评】本题主要考查了函数的图象,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.二.多选题(共1小题)(多选)10.(2022•乳山市一模)甲、乙二人相约去科技创新大厦做核酸检测.如图表示的是他们在行走的过程中,离单位的距离y(单位:米)和行走的时间x(单位:分)间的关系.下列说法正确的是()A.甲、乙二人第一次相遇,停留了10分钟B.甲先到达目的地C.甲停留10分钟之后提高了行走速度D.甲行走的平均速度比乙行走的平均速度快【考点】函数的图象.【专题】函数及其图象;应用意识.【分析】根据函数图象中的数据得出路程、时间与速度,进而解答即可.【解答】解:由图象可知,甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故选项A说法正确;甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故选项B说法正确;甲在停留前的速度为:750÷10=75(米/分),停留后的速度为:(1500﹣750)÷(35﹣20)=50(米/分),所以甲在停留10分钟之后减慢了行走速度,故选项C说法错误;由图象可知,甲所走的路程比乙多,用时比乙少,所以甲行走的平均速度要比乙行走的平均速度快,故选项D说法正确;故选:ABD.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.三.填空题(共6小题)11.(2020春•鱼台县期末)圆的面积S与半径R之间的关系是S=πR2.请指出公式S=πR2中常量是π.【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】利用常量定义可得答案.【解答】解:公式S=πR2中常量是π,故答案为:π.【点评】此题主要考查了常量,关键是掌握在一个变化的过程中,数值始终不变的量称为常量.12.(2019秋•潍坊期末)骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一变量关系中,因变量是体温.【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x 和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间,因变量是体温.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故答案为:体温【点评】考查了函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D 中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.13.(2019春•雁塔区校级期中)我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t表示某高空中的温度,h表示距地面的高度,则h是自变量.【考点】常量与变量.【专题】函数及其图象;数感.【分析】常量就是在一个变化过程中,数值不发生变化的量,发生变化的量是变量,根据定义即可判断.【解答】解:∵高空中的温度t是随着距地面高度h的变化而变化的,∴自变量是h,因变量是t,故答案为:h.【点评】本题考查了常量与变量的定义,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.14.(2022春•莲湖区期中)弹簧原长(不挂物体)15cm,弹簧总长L(cm)与物体质量x (kg)的关系如表所示:弹簧总长L(cm)1617181920重物质量x(kg)0.5 1.0 1.5 2.0 2.5当物体质量为5kg(在弹性限度内)时,弹簧的总长是25cm.【考点】函数的表示方法.【专题】函数及其图象;数感.【分析】观察表格发现,重物质量增加0.5kg,弹簧就伸长1cm,根据弹簧的总长=弹簧原长+伸长的长度即可得出答案.【解答】解:观察表格发现,重物质量增加0.5kg,弹簧就伸长1cm,∴当物体质量为5kg(在弹性限度内)时,弹簧的总长=15+=25(cm),故答案为:25.【点评】本题考查了函数的表示方法,观察表格发现,重物质量增加0.5kg,弹簧就伸长1cm是解题的关键.15.(2022春•霞浦县期中)某超市进了一批草莓,出售时销售量x与销售总价y的关系如下表:12345…销售量x(kg)12+0.524+136+1.548+2.060+2.5…销售总价y(元)请根据上表中的数据写出销售总价y(元)与销售量x(kg)之间的关系式:y=12.5x.【考点】函数关系式.【专题】函数及其图象;数感;应用意识.【分析】销售总价y是一个整数加一个小数的形式,通过观察发现分别是:12×1+0.5×1,12×2+0.5×2,12×3+0.5×3,……,从而得到销售总价y与销售量x之间的关系.【解答】解:观察表格即可得到:y=12.5x.故答案为:y=12.5x.【点评】本题考查观察表格规律求函数解析式问题,找出表格中的规律是解答此题的关键.16.(2022•兴化市一模)冬奥会每隔4年举办一次,如今年的年份为2022,举办的是第24届冬奥会.设第x届冬奥会的年份为y,则y与x之间的函数表达式为y=4x+1926(x、y均为正整数).【考点】函数关系式.【专题】一次函数及其应用;运算能力.【分析】根据题意设第x届冬奥会的年份为y,用待定系数法求函数关系式即可.【解答】解:设y与x的函数关系式为y=kx+b,根据题意,今年年份为2022,举办的是第24届冬奥会,可得:,解得,,则y与x之间的函数关系式为y=4x+1926.故答案为:y=4x+1926.【点评】本题考查了函数关系式,根据题意找出等量关系是解题的关键.四.解答题(共4小题)17.(2021春•和平区校级期中)如图所示,一个四棱柱的底面是一个边长为10cm的正方形,它的高变化时,棱柱的体积也随着变化.①在这个变化中,自变量、因变量分别是高、体积;②如果高为h(cm)时,体积为V(cm3),则V与h的关系为V=100h;③当高为5cm时,棱柱的体积是500cm3;④棱柱的高由1cm变化到10cm时,它的体积由100cm3变化到1000cm3.【考点】常量与变量;认识立体图形.【专题】函数及其图象;应用意识.【分析】①根据自变量、因变量的定义判断即可;②利用四棱柱体积公式即可写出;③利用V与h之间的关系计算即可;④利用V与h之间的关系计算即可.【解答】解:①∵四棱柱的高变化时,棱柱的体积也随着变化.∴变化中自变量为高,因变量为体积;②∵四棱柱体积=底面积×高,∴V=100h;③令h=5,则V=100×5=500(cm3);④当h=1时,V=100(cm3);当h=10时,V=1000(cm3).∴棱柱的高由1cm变化到10cm时,它的体积由100cm3变化到1000(cm3).故答案为:高、体积;V=100h;500cm3,100cm3,1000cm3.【点评】本题考查自变量、因变量、函数值、立体图形等,题目比较简单,代数时认真些,然后计算即可.18.(2013秋•霍邱县校级月考)齿轮每分钟120转,如果n表示转数,t表示转动时间.(1)用n的代数式表示t;(2)说出其中的变量与常量.【考点】常量与变量.【分析】(1)根据题意可得:转数=每分钟120转×时间;(2)根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得t、n是变量.【解答】解:(1)由题意得:120t=n,t=;(2)变量:t,n常量:120.【点评】此题主要考查了常量和变量的定义,关键是正确理解定义的意思.19.被誉为“沙漠之舟”的骆驼,其体温随着气温的变化而变化,在这个变化中,有几个变量?自变量是什么【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】根据变量、自变量的定义即可得出答案.【解答】解:两个变量:骆驼的体温和气温,其中气温是自变量.【点评】本题考查了常量和变量,掌握自变量是主动发生变化的量是解题的关键.20.(2022春•金牛区校级期中)在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的重量x的一组对应值:01234…所挂物重量x(kg)2022242628…弹簧长度y(cm)(1)上述表格中的自变量是所挂物重量,因变量是弹簧长度;(2)当所挂物体的重量为4kg时,弹簧长为28cm;不挂重物时,弹簧长为20 cm;(3)在一定范围内,写出弹簧长ycm与所挂重物xkg的关系?【考点】函数的表示方法;常量与变量.【专题】函数及其图象;应用意识.【分析】(1)根据自变量和因变量的定义进行求解即可得出答案;(2)根据表格对应数值即可得出答案;(3)根据表格可知,所挂重物每增加1kg,弹簧长度增加2cm,列式即可得出答案.【解答】解:(1)根据题意可得,上述表格中的自变量是所挂物重量,因变量是弹簧长度;故答案为:所挂物重量,弹簧长度;(2)当所挂物体的重量为4kg时,弹簧长为28cm;不挂重物时,弹簧长为20cm;故答案为:28,20;(3)根据表格可知,所挂重物每增加1kg,弹簧长度增加2cm,则y=2x+20.【点评】本题主要考查了函数的表示方法,常量与变量,熟练掌握函数的表示方法,常量与变量的定义进行求解是解决本题的关键.。
(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(含答案解析)(1)

一、选择题1.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是()A.B.C.D.2.如图,y与x之间的关系式为()A.y=x+60 B.y=x+120 C.x=60+y D.y=30+x3.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地之间的路程为20km,他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.甲比乙晚到B地2h C.乙的速度是10km/h D.乙比甲晚出发2h4.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:排数(x)1234…座位数(y)50535659…有下列结论:①排数x是自变量,座位数y是因变量;②排数x是因变量,座位数y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )A.1个B.2个C.3个D.4个5.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据:支撑物高度h1020304050607080(cm)小车下滑时间t4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50(s)下列说法错误的是()A.当h=50cm时,t=1.89sB.随着h逐渐升高,t逐渐变小C.h每增加10cm,t减小1.23sD.随着h逐渐升高,小车的速度逐渐加快6.在关于圆的面积的表达式S=πr2中,变量有( )A.4个B.3个C.2个D.1个7.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.8.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H是AC 边上一点,且°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F,设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是A.B.C.D.11.一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A.①② B.①③ C.②③ D.①②③12.在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积12S ah,当高h为定值时,下列说法正确的是( )A.S,a是变量;12,h是常量B.S,a,h是变量;12是常量C.a,h是变量;S是常量D.S是变量;12,a,h是常量二、填空题13.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为406Q t=-.当4t=时,Q=_________,从关系式可知道这台拖拉机最多可工作_________小时.14.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势年份200620072008…入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.15.园林队在某公司进行绿化,中间休息了一段时间,已知绿化面积S(平方米)与工作时间t(小时)的关系的图象如图所示,则休息后园林队每小时绿化面积为__平方米.16.已知方程x﹣3y=12,用含x的代数式表示y是______.17.某龙舟队参加“国际龙舟节”1000 米比赛项目时,路程 y(米)与时间 x(分钟)之间的图象如图所示.根据图中提供的信息,该龙舟队的比赛成绩_____ 分钟.18.下列是关于变量x与y的八个关系式:① y = x;② y2 = x;③ 2x2− y = 0;④ 2x − y2= 0;⑤ y = x 3 ;⑥ y =∣x ∣;⑦ x = ∣y ∣;⑧ x =2y.其中y 不是x 的函数的有_____.(填序号)19.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x (千克)表示,售价用y (元)表示,则y 与x 的关系式为_________;20.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度xkm 的几组对应值如表: 向上攀登的高度x/km 0.5 1.0 1.5 2.0 气温y/℃2.0﹣1.0﹣4.0﹣7.0若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为_____℃.三、解答题21.在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:所挂物体的质量()x kg 01 2 3 45弹簧长度()y cm18 20 222426 28(1)在这个变化的过程中,自变量是 ;因变量是 ;(2)写出y 与x 之间的关系式,并求出当所挂重物为6kg 时,弹簧的长度为多少? 22.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下: 日期1 2 3 4 5 6 7 8 电表读数/千瓦时117120124129135138142145请估计李明家六月份的总用电量是多少. 23.观察图形,回答问题:(1)设图形的周长为L ,梯形的个数为n ,试写出L 与n 的关系式;(2)当n=11时,图形的周长是多少?24.某机动车出发前油箱内有油42L.行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答问题.(1)机动车行驶几小时后加油?(2)中途加油________L;(3)如果加油站距目的地还有240km,车速为40km/h,要到达目的地,油箱中的油是否够用?并说明原因.25.将长为40 cm、宽为15 cm的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.…(1)根据上图,将表格补充完整:白纸张数12345…纸条长度40110145…(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为多少张白纸黏合起来总长度可能为2 018 cm吗?为什么?26.如图,在Rt△ABC中,已知∠C=90°,边AC=4cm,BC=5cm,点P为CB边上一点,当动点P沿CB从点C向点B运动时,△APC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)如果设CP长为x cm,△APC的面积为y cm,则y与x的关系可表示为_____;(3)当点P从点D(D为BC的中点)运动到点B时,则△APC的面积从____cm2变到_____cm2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.2.A解析:A【解析】【分析】由三角形外角性质可得结论.【详解】∵三角形一个外角等于与它不相邻的两个内角和,∴y=x+60.故选:A.【点睛】考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.3.B解析:B【解析】分析:根据图象可知,甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度.详解:甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象可知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选:B.点睛:本题考查了函数图像,一定要清楚的知道横纵坐标表示的实际意义.4.B解析:B【解析】根据图表可知随着排数的增大,座位数也增大.所以排数x是自变量,座位数y是因变量;根据图标中的数据可得y=47+3x.故①④正确.则选:B.5.C解析:C【解析】A.当h=50cm时,t=1.89s,故A正确;B.随着h逐渐升高,t逐渐变小,故B正确;C.h每增加10cm,t减小的值不一定,故C错;D.随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:C.6.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C.7.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.8.D解析:D【解析】若CG的长为y,则y=2-x,故A选项不符合;若AG的长为y,随着x的增大,y是先减小后增大的,故B选项不符合;随着BG的逐渐增大,AH是先减小再增大,故C选项不符合;线段CH随着BG的逐渐增大是先增大后逐渐减小的,故D符合;故选D9.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.10.A解析:A【分析】利用三角形相似求出y关于x的函数关系式,根据函数关系式进行分析求解.【详解】解:∵BC=4,BE=x,∴CE=4﹣x.∵AE⊥EF,∴∠AEB+∠CEF=90°,∵∠CEF+∠CFE=90°,∴∠AEB=∠CFE.又∵∠B=∠C=90°,∴Rt△AEB∽Rt△EFC,∴,即,整理得:y=(4x﹣x2)=﹣(x﹣2)2+∴y与x的函数关系式为:y=﹣(x﹣2)2+(0≤x≤4)由关系式可知,函数图象为一段抛物线,开口向下,顶点坐标为(2,),对称轴为直线x=2.故选A.【点睛】点评:本题考查了动点问题的函数图象问题,根据题意求出函数关系式是解题关键.11.C解析:C【解析】试题分析:看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x<2时,函数对应的点函数对应的点越向右越向下,即y随x的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.12.A解析:A 【详解】因为高h 为定值,所以h 是不变的量,即h 是常量,所以S ,a 是变量,12,h 是常量. 故选A.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题目意思将t=4代入计算Q 即可得到答案令Q≥0即可求出最多工作的时间【详解】解:当t=4时Q=40-24=16;根据台拖拉机工作时必须有油得到:Q≥0代入得到:解得:故答案为(1)16( 解析:203【分析】根据题目意思,将t=4代入计算Q 即可得到答案,令Q≥0即可求出最多工作的时间. 【详解】解:当t=4时,Q=40-24=16; 根据台拖拉机工作时必须有油得到: Q≥0,代入得到: 4060Q t =-≥, 解得:203t ≤, 故答案为(1). 16 (2). 203【点睛】本题主要考查了一次函数、一次函数在生活中的应用,做题是要注意自变量的取值范围,例如油量不可以为负数.14.年份入学儿童人数2014【分析】(1)根据题意每一年的递减人数相等判断出y 与x 是一次函数关系设y=kx+b 再取两组数据代入得到二元一次方程组求出kb 即可得到答案;(2)根据不超过1000人列出不等式解析:年份 入学儿童人数 2014 【分析】(1)根据题意,每一年的递减人数相等判断出y 与x 是一次函数关系,设y=kx+b ,再取两组数据代入得到二元一次方程组,求出k 、b 即可得到答案; (2)根据不超过1000人列出不等式,然后求解即可得到答案.【详解】解:(1)从上表可以得到信息,入学儿童的人数随着年份的变化而变化,所以年份是自变量,入学儿童人数是因变量,故答案为:年份 ;入学儿童人数;(2):①设y=kx+b ,将x=2006,y=2520和x=2007,y=2330代入得到二元一次方程组,2006252020072330k b k b +⎧⎨+⎩==, 190383660k b -⎧⎨⎩==, 所以,y=-190x+383660;∴根据题意得,-190x+383660≤1000,解得x≥2014,所以,该地区从2014年起入学儿童人数不超过1000人.故答案为: 2014.【点睛】本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,观察出y 与x 是一次函数关系、灵活运用所学知识是解题的关键.15.50【解析】试题分析:根据图像得:休息后园林队2小时绿化面积为160-60=100平方米休息后园林队每小时绿化面积为100÷2=50(平方米)故答案为50考点:函数图象解析:50【解析】试题分析:根据图像得:休息后园林队2小时绿化面积为160-60=100平方米,休息后园林队每小时绿化面积为100÷2=50(平方米).故答案为50考点:函数图象16.y=x ﹣4【解析】要用含x 的代数式表示y 就要将二元一次方程变形用一个未知数表示另一个未知数先移项再将系数化为1即可解:移项得:﹣3y=12﹣x 系数化为1得:y=x ﹣4故答案为y=x ﹣4解析:y =13x ﹣4【解析】 要用含x 的代数式表示y ,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解:移项得:﹣3y=12﹣x ,系数化为1得:y=x ﹣4.故答案为y=x ﹣4.17.8【解析】由图中的信息可知该龙舟队前4分钟航行了800米从第4分钟开始速度为:(925-800)÷05=250(米/分)∴该龙舟队的比赛成绩为:4+(1000-800)÷250=4+08=48(分钟解析:8【解析】由图中的信息可知,该龙舟队前4分钟航行了800米,从第4分钟开始,速度为:(925-800)÷0.5=250(米/分),∴该龙舟队的比赛成绩为:4+(1000-800)÷250=4+0.8=4.8(分钟).故答案为:4.8.18.②④⑦【解析】根据函数的定义:在一个变化过程中若有两个变量xy 在一定的范围内当变量x 每取定一个值时变量y 都有唯一确定的值和它对应我们就说变量y 是变量x 的函数分析可知在上述反映变量y 与x 的关系式中y 不 解析:②④⑦【解析】根据函数的定义:“在一个变化过程中,若有两个变量x 、y ,在一定的范围内当变量x 每取定一个值时,变量y 都有唯一确定的值和它对应,我们就说变量y 是变量x 的函数”分析可知,在上述反映变量y 与x 的关系式中,y 不是x 的函数的有②④⑦,共3个. 故答案为②④⑦.19.y=3x 【解析】观察表中数据可知y 与x 之间是一次函数关系设y=kx+b(k≠0)将x=05y=15和x=1y=3代入y=kx+b(k≠0)中得解得故y 与x 的关系式为y=3x;点睛:根据实际问题确定一解析:y=3x【解析】观察表中数据可知y 与x 之间是一次函数关系,设y=kx+b(k≠0)将x=0.5,y=1.5和x=1,y=3代入y=kx+b(k≠0)中,得1.50.5{3k b k b=+=+, 解得=3{=0k b 故y 与x 的关系式为y=3x;点睛:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象再判断时一次函数还是其他函数,再利用待定系数法求解相关的问题.20.8【解析】【详解】解:由表格中的数据可知每上升05km 温度大约下降3℃∴向上攀登的海拔高度为23km 时登山队所在位置的气温约为﹣88℃故答案为﹣88解析:-8【解析】【详解】解:由表格中的数据可知,每上升0.5km ,温度大约下降3℃,∴向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为﹣8.8℃,故答案为﹣8.8.三、解答题21.(1)所挂物体的质量;弹簧的长度(2)y =2x +18,30cm .【分析】(1)利用自变量与因变量的定义分析得出答案;(2)利用表格中数据的变化进而得出答案.【详解】解:(1)所挂物体质量是自变量,弹簧长度是因变量;(2)由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,物体每增加1kg ,弹簧伸长2cm∴y =2x +18;当所挂重物为6kg 时,弹簧的长度为:y=12+18=30(cm ).【点睛】考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.22.120千瓦时【解析】试题分析:根据样本估计总体的统计思想,可先求出7天中用电量的平均数,作为6月份用电量的平均数,则一个月的用电总量即可求得.试题145117 301207-⨯=(千瓦时), 所以李明家6月份的总用电量是120千瓦时.点睛:本题主要考查了用样本估计总体的知识,解决本题的关键是要求得样本的平均数. 23.(1)L=3n+2;(2)35.【解析】试题分析:(1)由图可知,每增加一个梯形,就增加一个上下底的和,据此可得规律; (2)将数值代入解析式即可.试题(1)根据图,分析可得梯形的个数增加1,周长L 增加3.故L 与n 的关系式L =5+(n -1)×3=3n +2;(2)当n =11时,L =3×11+2=35.点睛:主要考查了函数的解析式的求法,首先审清题意,发现变量间的关系,再列出关系式或通过计算得到关系式,需注意结合实际意义,关注自变量的取值范围.24.(1)5小时(2)24(3)油箱中的油刚好够用.【解析】试题分析:(1)根据图象可得,5小时时,机动车内的油从12升变为了36升,故5小时后加油;(2)用36-12即可;(3)首先计算出耗油量,再根据路程和速度计算出行驶240km的时间,然后用时间乘以耗油量可得所消耗的油,和油箱里的油量进行比较即可.试题(1)根据图象可直接得到:机动车行驶5小时后加油;(2)36−12=24(L);(3)够用,耗油量:(42−12)÷5=6(km/L),240÷40=6(小时), 6×6=36(L),故够用.25.(1) 75,180;(2)y=35x+5;(3)不能.理由见解析.【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填表即可;(2)x张白纸黏合,需黏合(x-1)次,重叠5(x-1)cm,所以总长可以表示出来;(3)当y=2018时,列出方程并解之,注意x是整数,若x为自变量取值范围内的值则能,反之不能.【详解】(1)由题意可得,2张白纸粘合后的长度为:402⨯-5=75cm,5张白纸黏合后的长度为:405⨯-54⨯=180cm,故答案为75,180;(2)根据题意和所给图形可得出:y=40x-5(x-1)=35x+5.(3)不能.理由如下:令y=2018得:2018=35x+5,解得x≈57.5.∵x为整数,∴不能使黏合的纸片总长为2018cm【点睛】本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.26.(1) 自变量是CP的长,因变量是△APC的面积;(2) y=2x;(3)5,10【解析】【分析】(1)根据函数自变量和因变量的概念解答即可;(2)根据三角形的面积公式列出关系式;(3)计算出CD的长度,求出相应的面积,求差得到答案.【详解】(1)自变量是CP的长,因变量是△APC的面积;(2)y=12×4×x=2x所以y与x的关系可表示为y=2x;(3)当x=52时,y=5;当x=5时,y=10,所以△APC的面积从5cm2变到10cm2.【点睛】考查的是函数关系式、自变量和因变量、求函数值的知识,属于基础题,学生认真阅读题意即可作答.。
七年级下册数学《第三章-变量之间的关系》测试题(有答案)

第三章《变量之间的关系》水平测试一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.下面说法中正确的是【】.A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是【】.A.y=12x B.y=18x C.y=23x D.y=32x3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s(千米)和行驶时间t(小时)的关系的是【】.A B C D4.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为1232++=tts,则当4t=时,该物体所经过的路程为【】.A.28米 B. 48米 C.57米 D. 88米5.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:m 1 2 3 4v0.01 2.9 8.03 15.1则m与v之间的关系最接近于下列各关系式中的【】.A.22v m=-B.21v m=-C.33v m=-D.1v m=+6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是【】.7.正常人的体温一般在C37左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是【】.A.清晨5时体温最低36.5T/()C037.5B.下午5时体温最高C.这一天小红体温T C0的范围是36.5≤T≤37.5D.从5时至24时,小红体温一直是升高的8.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …输出 (1)225310417526…那么,当输入数据8时,输出的数据是【】.A.861B.863C.865D.8679.如图2,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是【】.A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 向高为10厘米的容器中注水,注满为止,若注水量V(厘米3)与水深h(厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的【】.二、填一填,要相信自己的能力!(每小题3分,共30分)1.对于圆的周长公式c=2 r,其中自变量是____,因变量是____.2.在关系式y=5x+8中,当y=120时,x的值是 .3.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t≤5).4.等腰三角形的周长为12厘米,底边长为y厘米,腰长为x厘米. 则y与x的之间的关系式是 .5.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米∕小时.日期︳日 1 2 3 4 5 6 7 8图2图3图4电表读数︳度21 24 28 33 39 42 46 49(1)表格中反映的变量是______,自变量是______,因变量是______.(2)估计小亮家4月份的用电量是______,若每度电是0.49元,估计他家4月份应交的电费是______.7.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .8.根据图6中的程序,当输入x =3时,输出的结果y = .9. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分.10. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围)三、做一做,要注意认真审题呀!(本大题共38分)1.(8分)下表是三发电器厂2007年上半年每个月的产量:x/月 1 2 3 4 5 6y/台10 000 10 000 12 000 13 000 14 000 18 000(1)根据表格中的数据,你能否根据x的变化,得到y的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2007年前半年的平均月产量是多少?2.(10分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.3.(10分)将若干张长为20厘米、宽为10厘米的长方形白纸,按图9所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x图9时间/分18 363696路程/百米图7图8之间的关系式,并求当x =20时,y 的值. 4.(10分)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间? (2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)四、拓广探索(本大题共22分)1.(10分)如图11所示,是小杰在上学路上,行车的速度随时间的变化情况,请你运用生动、形象的语言描述一下他在不同的时间里,都做了什么事情.2.(12分)某公司有2位股东,20名工人. 从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图12所示.(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?年 份2006年2007年2008年工人的平均工资/元 5 000股东的平均利润/元 25 000图 12时间速度 0图11甲乙 1 234565 10 15 20 25 30 x ︱分0 图10 y ︱公里参考答案一、1~10 CC C CD BA C CB二、1.r,c. 2.22.4. 3.h=20-4t. 4.y=12-2x. 5.6.6.(1)日期和电表读数;日期;电表读数;(2)120度,58.8元.7.38.2. 8.2. 9. 37.2. 10. 18,y=13+0.5x.三、1. (1)随着月份x的增大,月产量y正在逐渐增加;(2)1月、2月两个月的月产量不变,3月、4月、5月三个月的产量在匀速增多,6月份产量最高;(3)约为13 000(台).2.图象略.3.(1)4张白纸粘合后的总长度是20×4-3×2=74(厘米).(2)y=20x-2(x-1).当x=20时,y=20×20-2×(20-1)=362.4.(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为每分钟0.2公里,乙的速度为每分钟0.4公里.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.四、1. 略.2. (1) 工人的平均工资:2007年6 250元,2008年7 500元.股东的平均利润:2007年37 500元,2008年50 000元.(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,所以(5 000+1 250x)×8=25 000+12 500x. 解得x=6 .所以到2006年每位股东年平均利润是每位工人年平均工资的8倍.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章《变量之间的关系》水平测试
班级 学号 姓名 分数
一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)
1.下面说法中正确的是 【 】. A.两个变量间的关系只能用关系式表示 B.图象不能直观的表示两个变量间的数量关系 C.借助表格可以表示出因变量随自变量的变化情况 D.以上说法都不对
2.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 【 】. A .y=12x B.y=18x C.y=
23x D.y=3
2
x 3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s (千米)和行驶时间t (小时)的关系的是 【 】.
o
o
o
t
t
t
s
s
s
o
t
s
A B C D
4.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为1232
++=t t s ,则当4t =时,该物体所经过的路程为 【 】. A.28米 B . 48米 C .57米 D . 88米
5.在某次试验中,测得两个变量m 和v 之间的4组对应数据如下表:
m
1 2 3 4 v
0.01
2.9
8.03
15.1
则m 与v 之间的关系最接近于下列各关系式中的 【 】. A .22v m =- B .21v m =-
C . 33v m =-
D .1v m =+
6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S 1,S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻
合的是
【 】.
7.正常人的体温一般在C 037左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是 【 】. A.清晨5时体温最低 B.下午5时体温最高
C.这一天小红体温T C 0的范围是36.5≤T ≤37.5
D.从5时至24时,小红体温一直是升高的
8.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)
2
3
4
5
… 输出
…
1
2 25 310 417 526
…
那么,当输入数据8时,输出的数据是 【 】. A.
861 B.863 C.865
D.867
9. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是 【 】.
A.第3分时汽车的速度是40千米/时
B.第12分时汽车的速度是0千米/时
C.从第3分到第6分,汽车行驶了120千米
D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时
10. 向高为10厘米的容器中注水,注满为止,若注水量V (厘米3
)与水深h (厘米)之间
的关系的图象大致如图3所示,则这个容器是下列四个图中的
36.5
17
12 5 0 T/()C 0
t/h
24 37.5
图1
图2
【 】.
二、填一填,要相
信自己的能力!(每小题3分,共30分)
1.对于圆的周长公式c=2 r ,其中自变量是____,因变量是____. 2.在关系式y=5x+8中,当y=120时,x 的值是 .
3.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t ≤5). 4.等腰三角形的周长为12厘米,底边长为y 厘米,腰长为x 厘米. 则y 与
x 的之间的关系式是 .
5.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封
信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.
6.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数. 日期︳日 1
2
3
4
5
6
7
8
电表读数
︳度
21
24
28
33
39
42
46
49
(1)表格中反映的变量是______,自变量是______,因变量是______.
(2)估计小亮家4月份的用电量是______,若每度电是0.49元,估计他家4月份应交的电费是______.
7.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .
图5
图3
图4
图6
8.根据图6中的程序,当输入x =3时,输出的结果y = .
9. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分 .
10. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X (千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x 的取值范围) 三、做一做,要注意认真审题呀!(本大题共38分)
1.(8分)下表是三发电器厂2007年上半年每个月的产量: x/月 1 2 3 4 5 6 y/台
10 000
10 000
12 000
13 000
14 000
18 000
(1)根据表格中的数据,你能否根据x 的变化,得到y 的变化趋势?
(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?
(3)试求2007年前半年的平均月产量是多少?
2.(10分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S (千米)与行驶时间t (时)之间的图象.
时间/分
18
36 36
96
路程/百米
图7
图8
3.(10分)将若干张长为20厘米、宽为10厘米的长方形白纸,按图9所示的方法粘合起来,粘合部分的宽为2厘米.
(1)求4张白纸粘合后的总长度;
(2)设x 张白纸粘合后的总长度为y 厘米,写出y 与x 之间的关系式,并求当x =20时,
y 的值.
4.(10分)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:
(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间? (2)分别求出甲、乙两人的行驶速度;
(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)
四、拓广探索(本大题共22分)
1.(10分)如图11所示,是小杰在上学路上,行车的速度随时间的变化情况,请你运用生动、形象的语言描述一下他
在不同的时 间里,都做了什么事情.
2.(12分)某公司有2位股东,20名工人. 从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图12所示.
图 12
图9
时间
速度
图11 甲
乙 1 2 3 4 5 6 5 10 15 20 25 30
x ︱分 0 图10
y ︱公里
(1)填写下表:
年份2006年2007年2008年工人的平均工资/元 5 000
股东的平均利润/元25 000
(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?。