1质点运动学
大学物理第1章质点运动学

大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。
一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。
质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。
二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。
1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。
匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。
2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。
非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。
三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。
主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。
我们可以通过坐标系建立一个参照系,来描述质点的位置。
2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。
位移的大小可以用位移公式Δr=r2-r1来计算。
3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。
速度的大小可以用速度公式v=Δr/Δt来计算。
4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。
加速度的大小可以用加速度公式a=Δv/Δt来计算。
四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。
曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。
1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。
弧长的大小可以用弧长公式s=rθ来计算。
2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。
曲率半径可以根据曲线的形状计算得出。
3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。
大学物理第1章质点运动学

则有
ax 2 R cost;
a y 2 R sint
加速度的大小
2 2 2 2 2 2 a ax a2 ( R cos t ) ( R sin t ) R y
根据矢量的点积运算,分别计算
v r [(R sint )i (R cost ) j ] [(R cost )i ( R sint ) j ] 0 2 2 v a [(R sint )i (R cost ) j ] [( R cost )i ( R sint ) j ] 0
大学物理
第一章 质点运动学
1.1 运动学的一些基本概念 1.1.1、参考系(reference frame)和坐标系(coordinate) 参考系:为了描述物体的运动而选取的参考标准物体。 (运动描述的相对性) 坐标系:直角坐标系、自然坐标系、极坐标系、球坐标系等. 说明 在运动学中,参考系的选择是任意的;在动力学中则不然 1.1.2、时间和空间的计量 1、时间及其计量 时间表征物理事件的顺序性和物质运动的持续性。时间测量的 标准单位是秒。1967年定义秒为铯—133原子基态的两个超精细 能级之间跃迁辐射周期的9192631770倍。量度时间范围从宇宙 年龄1018s(约200亿年)到微观粒子的最短寿命 10-24s.极限的时 间间隔为普朗克时间10-43s,小于此时间,现有的时间概念就不适 用了。
运动学中的两类问题
1、已知质点的运动学方程求质点的速度、加速度等问
题常称为运动学第一类问题.
r r (t )
微分
v, a
2、由加速度和初始条件求速度方程和运动方程的问题称 为运动学的第二类问题.
a , v0 , r0
第1章-质点运动学

位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率
大学物理——第1章-质点运动学

21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C
1 质点运动学

en
2.切向加速度
法向加速度
v dv
d
;t+dt时刻:B点 t时刻:A点 v v dv dt时间内经过弧长ds ds对应圆心角角度d
B
R
A
v
ˆ dr dset
ˆ dv d v ( t )e t a dt dt
例1.路灯距地面高H ,行人高h ,若人以速率 u从路 灯正下方背向路灯运动时,求人头顶影子的运动方程 (以路灯的正下方为原点)。
解:
x ut
H x h x x H H x x ut H h H h
§1.2 位移 速度 加速度
位移(displacement): 位置矢量的变化量 r(t)
ˆ ˆ d( xi yˆ zk ) j ˆ ˆ v vx i v y ˆ vz k j dt
速度的大小:
v v v v
2 2 x y
2 z
速度的方向:为轨迹切线的方向,指向时间 t 值增 大的一方。
注意:
s r , d s d r
r r , d r d r
r | r |
2 2
2 2
2 2
2 1
2 1
2 1
路程(path): 位置矢量末端运动轨迹 s 的长度
位移与路程的区别: (A)位移是矢量,路程是标量。 (B)一般情况,位移大小不等于路程。
r s
(C)两点间的路程是不唯一的,而位移是唯一的。
r ?s
什么情况下
1. 不改变方向的直线运动;
大小: 方向:
r
4 2 ( 4) 2 5.65m
4 arctg 4 4
第一章 质点运动学

物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学
解
y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j
大学物理第1章-质点运动学

x2 x1 x2 = l h
(h l)x2 = hx1
h l
解题思路 1. 写出几何长度关系 写出几何长度关系; 2. 确定变量 确定变量; 两边求导: 两边求导: 3. 写出求导关系式 写出求导关系式; 4. 明确求导物理意义 明确求导物理意义;
dx2 dx1 o x1 x2 x (h l) =h dt dt dx2 dx1 hv0 其中: =v , = v0 v = dt dt h l
瞬时速率: 瞬时速率:
s ds v = lim = t dt t →0
v r
B
一般情况: 一般情况: 当t→0时: → 时
v v r ≠ s 因此 v ≠ v
v v v r → dr = ds 则 v = v
1-2-4 加速度
加速度是反映速度变化的物理量 v t1时刻,质点速为 v1 时刻, v t2时刻,质点速度为 v2 时刻, t 时间内,速度增量为: 时间内,速度增量为:
大学物理学教案
第一章
质点运动学
机械运动
一个物体相对于另一个物体的空间位置 随时间发生变化; 随时间发生变化; 或一个物体的某一部分相 对于其另一部分的位置随时间而发生变化的 运动。 运动。
力学
研究物体机械运动及其规律的学科。 研究物体机械运动及其规律的学科。
运动学: 运动学:
研究物体在空间的位置随时间的变化规 律以及运动的轨道问题, 律以及运动的轨道问题,而并不涉及物体发 生机械运动的变化原因。 生机械运动的变化原因。
v tv ∫v dr = ∫ vdt
r0 t0
v0 v r
t0
匀加速运动
dv = adt ,
∫
v
v0
dv = ∫ adt
1质点运动学

1质点运动学第1章质点运动学⼀、基本要求1.理解描述质点运动的位⽮、位移、速度、加速度等物理量意义;2.熟练掌握质点运动学的两类问题:即⽤求导法由已知的运动学⽅程求速度和加速度,并会由已知的质点运动学⽅程求解位⽮、位移、平均速度、平均加速度、轨迹⽅程;⽤积分法由已知的质点的速度或加速度求质点的运动学⽅程;3.理解⾃然坐标系,理解圆周运动中⾓量和线量的关系,会计算质点做曲线运动的⾓速度、⾓加速度、切向加速度、法向加速度和总加速度; 4.了解质点的相对运动问题。
⼆、基本内容(⼀)本章重点和难点:重点:掌握质点运动⽅程的物理意义及利⽤数学运算求解位⽮、位移、速度、加速度、轨迹⽅程等。
难点:将⽮量运算⽅法及微积分法应⽤于运动学解题。
(提⽰:⽮量可以有⿊体或箭头两种表⽰形式,教材中⼀般⽤⿊体形式表⽰,学⽣平时作业及考试请⽤箭头形式表⽰)(⼆)知识⽹络结构图:相对运动总加速度法向加速度切向加速度⾓加速度⾓速度曲线运动轨迹⽅程参数⽅程位⽮⽅程质点运动⽅程运动⽅程形式平均加速度加速度平均速度速度位移位⽮基本物理量,,,,:)(,,(三)容易混淆的概念: 1.瞬时速度和平均速度瞬时速度(简称速度),对应于某时刻的速度,是质点位置⽮量随时间的变化率,⽤求导法;平均速度是质点的位移除以时间,对应的是某个时间段内的速度平均值,不⽤求导法。
2. 瞬时加速度和平均加速度瞬时加速度(简称加速度),对应于某时刻的加速度,是质点速度⽮量随时间的变化率,⽤求导法;平均加速度是质点的速度增量除以时间,对应的是某个时间段内加速度的平均值,不⽤求导法。
3.质点运动⽅程、参数⽅程和轨迹⽅程质点运动⽅程(即位⽮⽅程),是质点位置⽮量对时间的函数;参数⽅程是质点运动⽅程的分量式;⽽轨迹⽅程则是从参数⽅程中消去t 得到的,反映质点运动的轨迹特点。
4.绝对速度、相对速度和牵连速度绝对速度是质点相对于静⽌参照系的速度;相对速度是质点相对于运动参照系的速度;牵连速度是运动参照系相对于静⽌参照系的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 质点运动学一、基本要求1.理解描述质点运动的位矢、位移、速度、加速度等物理量意义;2.熟练掌握质点运动学的两类问题:即用求导法由已知的运动学方程求速度和加速度,并会由已知的质点运动学方程求解位矢、位移、平均速度、平均加速度、轨迹方程;用积分法由已知的质点的速度或加速度求质点的运动学方程;3.理解自然坐标系,理解圆周运动中角量和线量的关系,会计算质点做曲线运动的角速度、角加速度、切向加速度、法向加速度和总加速度; 4.了解质点的相对运动问题。
二、基本内容(一)本章重点和难点:重点:掌握质点运动方程的物理意义及利用数学运算求解位矢、位移、速度、加速度、轨迹方程等。
难点:将矢量运算方法及微积分法应用于运动学解题。
(提示:矢量可以有黑体或箭头两种表示形式,教材中一般用黑体形式表示,学生平时作业及考试请用箭头形式表示) (二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧相对运动总加速度法向加速度切向加速度角加速度角速度曲线运动轨迹方程参数方程位矢方程质点运动方程运动方程形式平均加速度加速度平均速度速度位移位矢基本物理量,,,,:)(,,(三)容易混淆的概念: 1.瞬时速度和平均速度瞬时速度(简称速度),对应于某时刻的速度,是质点位置矢量随时间的变化率,用求导法;平均速度是质点的位移除以时间,对应的是某个时间段内的速度平均值,不用求导法。
2. 瞬时加速度和平均加速度瞬时加速度(简称加速度),对应于某时刻的加速度,是质点速度矢量随时间的变化率,用求导法;平均加速度是质点的速度增量除以时间,对应的是某个时间段内加速度的平均值,不用求导法。
3.质点运动方程、参数方程和轨迹方程质点运动方程(即位矢方程),是质点位置矢量对时间的函数;参数方程是质点运动方程的分量式;而轨迹方程则是从参数方程中消去t 得到的,反映质点运动的轨迹特点。
4.绝对速度、相对速度和牵连速度绝对速度是质点相对于静止参照系的速度;相对速度是质点相对于运动参照系的速度;牵连速度是运动参照系相对于静止参照系的速度。
(四)主要内容:1.质点的位矢、位移、运动方程(1)质点运动方程()(t r ):k t z j t y i t x t r)()()()(++=(描述质点运动的空间位置与时间的关系式)(2)位矢(r):k z j y i x r ++=(3)位移(r∆):k z j y i x r ∆+∆+∆=∆(注意位移r ∆和路程s ∆的区别,一般情况下:S r ∆≠∆ ,r r r∆∆≠∆或; 位移大小:()()22y x r ∆+∆=∆;径向增量:()()()()2222A A B B A B y x y x r r r r +-+=-=∆=∆)(4)参数方程:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x(5)轨迹方程:从参数方程中消去t ,得:0),,(=z y x F 2.速度和加速度 直角坐标系中(1)速度(v):k dt dz j dt dy i dt dx dt r d v++==(2)平均速度(v ):trv ∆∆=(3)加速度(a):k dt z d j dty d i dt x d dt r d a22222222++== (4)平均加速度(a ):tva ∆∆=(注意速度和速率的区别:dt r d v=,但一般情况下dtdr dt r d ≠ )3.曲线运动描述质点的曲线运动,常采用自然坐标系(由切向和法向组成),在自然坐标系中,质点的(线)速度和加速度为:(1)速度:t t e dtds e v v== (2)加速度:n n t t n t e a e a a a a+=+=其中:切向加速度(t a )t t e dtdv a=,量度速度量值的变化; 法向加速度(n a)n n e v a ρ2=,量度速度方向的变化,ρ为曲率半径。
4.圆周运动(1)角速度(ω):t d d θω=(2)线速度(v ):dtdsv =(3)角加速度(βα或):22d d d d t t θωα== (4)总加速度()a:n t n t e R e R a a a2ωα+=+=(大小取模:222)()(ωαR R a a a n t +=+=)且有角量与线量关系式: θr s =22n t d d ωαR R v a R t va ====5.相对运动一个运动质点在两个作相对平动的参考系中的速度关系为:u v v+'=(矢量和)式中:v 为绝对速度,是质点相对于S 系的速度,v '为相对速度,是质点相对于S '系的速度,u为牵连速度,是S '系相对于S 系的速度。
(五)思考问答:问题1 位置矢量r 和位移r ∆有何区别?r ∆和r∆意义相同吗?答:位置矢量r(简称位矢)是从坐标原点指向质点所在的位置的一个有向线段,描述了某时刻质点的位置;而位移r∆是初位置引向末位置的有向线段,反映了质点位置的变化,二者意义不同。
末位置的位矢和初位置的位矢之差即为该段时间内的质点的位移,若取初位置为坐标原点,则末位置的位矢和位移一致。
质点的瞬间速度为该时刻位矢对时间的一阶导数,而不是位移对时间的导数。
r ∆是矢量增量的模,即位移的大小;r∆为矢量模的增量,即位矢的径向增量,二者意义不同。
问题2 如果一质点的加速度与时间的关系是线性的,那么它的速度与时间、位矢与时间的关系是否也是线性的呢?答:它的速度与时间、位矢与时间的关系不是线性的。
问题3 物体在某一时刻开始运动,在t ∆时间后,经任一路径回到出发点,此时速度的大小和开始时相同,但方向一般不同,试问在t ∆时间内平均速度是否为零?平均加速度是否为零?答:平均速度v ∆是物体的位移r∆与时间t ∆的比值,而这段时间内位移为零,所以平均速度v∆为零。
平均加速度a ∆是物体速度的增量v∆与时间t ∆的比值,由于初、末速度的方向不同,所以v ∆不为零,平均加速度a∆也不为零。
问题 4 圆周运动中质点的加速度是否一定和速度方向垂直?任意曲线运动的加速度是否一定不与速度方向垂直?答:不管是圆周运动还是任意曲线运动,质点的总加速度均为切向加速度和法向加速度的矢量和。
在匀速率圆周运动中,速度的大小不变,切向加速度为0,质点的加速度为法向加速度,且其方向与线速度方向垂直,指向圆心。
而在变速率圆周运动中,速度的大小也随时间的变化而变化,质点的加速度不但有法向分量还有切向分量,因此,加速度的方向一般不垂直于沿切向的速度方向,也不一定指向圆心(法向)。
在匀速率曲线运动中,只要速度方向有变化,加速度只能有法向分量,而且一定与沿曲线切向的速度方向垂直,并指向质点所在处曲线的曲率中心。
在变速曲线运动中,切向加速度不为零,故加速度一定不与速度方向垂直,但一定指向轨迹的凹侧。
问题5 下列说法是否正确:(1)质点做圆周运动时加速度指向圆心; (2)匀速圆周运动的加速度为恒量;(3)只有法向加速度的运动一定是圆周运动; (4)只有法向加速度的运动一定是直线运动。
答:(1)不准确。
质点做非匀速率圆周运动时,加速度不一定指向圆心。
(2)不对。
质点做匀速圆周运动时,只有法向加速度,加速度的大小不变但方向不断变化且始终指向圆心。
(3)不对。
只有法向加速度的运动,切向加速度为0,则速率不变。
由:R v a n 2=圆周运动中半径R 一定,由此Rv a n 2=的大小也一定。
应该说只有法向加速度且其大小不变的的运动一定是圆周运动。
(4)正确。
只有切向加速度的运动,其法向加速度为0,∞→==R Rv a n ,02一定是直线 运动。
三、解题方法运动学主要分为两类问题:第一类问题:已知运动方程求速度和加速度,用求导法;第二类问题:已知质点加速度以及在起始状态时的初位矢和初速度,求速度、位矢或质点运动方程,用积分法。
其中,第一类问题的解题方法是求导,而求解第二类问题则需要积分。
求导不需附加条件,而积分则需要相应的初始条件,积一次分,需一个初始条件;有些情况下,不能直接积分,需做变量代换。
另外,在不同坐标系下(例如直角坐标系与自然坐标系),物理量的表达式不同,故学习中要准确掌握。
四、解题指导1.已知质点运动参数方程为:⎩⎨⎧-=-=)cos 1( sin t R y t R x ωω 式中ω,R 为常量,试求:(1) 质点轨迹方程是什么?作何运动?(2) 1秒末的位矢。
(3) 速度和加速度大小。
[分析]:这是已知运动方程求速度、加速度的典型问题,通称为运动学第一类问题,具体的说是通过求导法进行计算。
解:(1)由参数方程消去t ,可得轨迹方程为:222)(R R y x =-+这是以R 为半径,圆心位于(0,)R 点的圆的方程,即质点作圆周运动。
(2)运动方程矢量形式为:j t R i t R r)cos 1(sin ωω-+-=将s t 1=代入上式得:j R i R r)cos 1(sin 1ωω-+-=(3)由速度定义:j t R i t R dt rd v ωωωωsin cos +-== 其中:t R t x v x cos d d ωω-==,tR t y v y sin d d ωω==大小:ωR v v v y x =+=22可见v 的值为一常量,表明质点作匀速率圆周运动,角速度为ω。
再由加速度定义:j t R i t R dtv d a ωωωωcos sin 22+==其中:t R t va x x sin d d 2ωω==,tR t v a y y cos d d 2ωω==大小:222ωR a a a y x =+=2.一质点在xOy 平面上运动,运动方程为:4321,532-+=+=t t y t x (式中t 以s 计,x ,y 以m 计)。
求:(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出s t 1= 时刻和s t 2= 时刻的位置矢量,计算这1秒内质点的位移; (3)计算s t 0=时刻到s t 4=时刻内的平均速度;(4)求出质点速度矢量表示式,计算s t 4=时质点的速度; (5)计算s t 0=到s t 4= 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算s t 4=时质点的加速度。
(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。
[分析]:本题是最基本的直角坐标系下运动学第一类问题,意在强化直角坐标系下的运动学各基本概念。
题目中给出的是参数方程形式,可用矢量式直接写成质点运动方程形式,再用求导法求出速度和加速度。
解:(1)位矢方程(质点运动方程)为: j t t i t r )4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有:j i r 5.081-= m ,j j r4112+=mj j r r r5.4312+=-=∆m (3)∵ j i r j j r1617,4540+=-=∴ 104s m 534201204-⋅+=+=--=∆∆=j i ji r r t r v (4) 1s m )3(3d d -⋅++==j t i trv 则: j i v 734+= 1s m -⋅,这说明该点只有y 方向的加速度,且为恒量。