2019年中考数学复习题方法技巧专题三整体思想训练新版浙教版

合集下载

精品2019年中考数学复习题 方法技巧专题(二)分类讨论思想训练 (新版)浙教版

精品2019年中考数学复习题 方法技巧专题(二)分类讨论思想训练 (新版)浙教版

方法技巧专题(二) 分类讨论思想训练【方法解读】当数学问题中的某一条件模糊而不确定时,需要对这一条件进行分类讨论,然后逐一解决.常见的分类讨论有概念的分类、解题方法的分类和图形位置关系的分类等.1.点A,B,C在☉O上,∠AOB=100°,点C不与A,B重合,则∠ACB的度数为 ()A.50°B.80°或50°C.130°D.50°或130°2.[2018·山西权威预测] 已知一等腰三角形的两边长x,y满足方程则此等腰三角形的周长为()A.5B.4C.3D.5或43.[2018·枣庄] 如图F2-1是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连结PA,PB,那么使△ABP为等腰直角三角形的点P有 ()图F2-1A.2个B.3个C.4个D.5个4.[2018·鄂州] 如图F2-2,已知矩形ABCD中,AB=4 cm,BC=8 cm,动点P在边BC上从点B向点C运动,速度为1 cm/s,同时动点Q从点C出发,沿折线C→D→A运动,速度为2 cm/s.当一个点到达终点时,另一个点随之停止运动.设点P 运动时间为t(s),△BPQ的面积为S(cm2),则描述S(cm2)与时间t(s)的函数关系的图象大致是()图F2-2图F2-35.[2018·聊城] 如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.6.[2018·安徽] 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.7.如图F2-4,已知点A(1,2)是反比例函数y=图象上的一点,连结AO并延长交双曲线的另一分支于点B,点P是x轴上一动点,若△PAB是等腰三角形,则点P的坐标是.图F2-48.[2017·齐齐哈尔] 如图F2-5,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.图F2-59.[2017·义乌] 如图F2-6,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使P,M,N构成等腰三角形的点P恰好有3个,则x的值是.图F2-6参考答案1.D2.A[解析] 解方程组得当2作为腰长时,等腰三角形的周长为5;当1作为腰长时,因为1+1=2,不满足三角形的三边关系.故等腰三角形的周长为5.3.B[解析] 如下图,设每个小矩形的长与宽分别为x,y,则有2x=x+2y,从而x=2y.因为线段AB是长与宽为2∶1的矩形对角线,所以根据网格作垂线可知,过点B与AB垂直且相等的线段有BP1和BP2,过点A与AB垂直且相等的线段有AP3,且P1,P2,P3都在顶点上,因此满足题意的点P共有3个.故选B.4.A[解析] 由题意可知,0≤t≤4,当0≤t<2时,如下图,S=BP·CQ=t·2t=t2;当t=2时,如下图,点Q与点D重合,则BP=2,CQ=4,故S=BP·CQ=×2×4=4;当2<t≤6时,如下图,点Q在AD上运动,S=BP·CD=t·4=2t.故选A.5.180°或360°或540°[解析] 如图,一个正方形被截掉一个角后,可能得到如下的多边形:∴这个多边形的内角和是180°或360°或540°.6.3或[解析] 由题意知,点P在线段BD上.(1)如图,若PD=PA,则点P在AD的垂直平分线上,故点P为BD的中点,PE ⊥BC,故PE∥CD,故PE=DC=3.(2)如图,若DA=DP,则DP=8,在Rt△BCD中,BD==10,∴BP=BD-DP=2.∵△PBE∽△DBC,∴==,∴PE=CD=.综上所述,PE的长为3或.7.(-5,0)或(-3,0)或(3,0)或(5,0)8.10或4或2[解析] 在△ABC中,∵AB=AC=10,BC=12,底边BC上的高是AD,∴∠ADB=∠ADC=90°,BD=CD=BC=×12=6,∴AD==8.∴用这两个三角形拼成平行四边形,可以分三种情况:(1)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是10.(2)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是=4.(3)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是=2.综上所述,这个平行四边形较长的对角线的长是10或4或2.9.x=0或x=4-4或4<x<4[解析] 根据OM=x,ON=x+4,可知MN=4.作MN的垂直平分线,该线与射线OB始终有一个公共点,分别以点M,N为圆心,4为半径画圆,观察两圆与射线OB的交点情况:(1)当☉N与射线OB没有公共点,☉M与射线OB有两个公共点时,满足题意,如图①,此时4<x<4.(2)当☉N与射线OB相切,只有一个公共点时,☉M与射线OB也只有一个公共点时,也满足题意,如图②,此时x=4-4;(3)当☉N与射线OB有两个公共点时,此时☉M与射线OB只有一个公共点,因此当☉N与射线OB有两个公共点时,必须出现不能与点M,N构成三角形的一个点,也能满足题意,如图③,此时x=0.。

中考数学复习《整体思想解析》

中考数学复习《整体思想解析》

方法技巧专题三整体思想解析在数学思想中整体思想是最基本、最常用的数学思想。

它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。

运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。

它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。

整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式中的整体思想【例题】(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.二、方程(组)与不等式(组)中的整体思想【例题】先阅读,然后解方程组.解方程组时,可由①得x-y=1, ③然后再将③代入②得4×1-y=5,求得y=-1,从而进一步求得这种方法被称为“整体代入法”, 请用这样的方法解下列方程组解:由①得2x-3y=2, ③把③代入②得,+2y=9,解得y=4,把y=4代入③得,2x-3×4=2,解得x=7,∴原方程组的解为【同步训练】仔细观察下图,认真阅读对话根据对话的内容,试求出饼干和牛奶的标价各是多少元?【考点】一元一次不等式组的应用.【分析】设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,用整体代入的思想求出x的取值,注意为整数且小于10,代入②可求牛奶的价格.【解答】解:设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,由②得y=9.2﹣0.9x③③代入①得x+9.2﹣0.9x>10∴x>8∵x是整数且小于10∴x=9∴把x=9代入③得y=9.2﹣0.9×9=1.1(元)答:饼干的标价是9元/盒,牛奶的标价是1.1元/袋.三、函数与图像中的整体思想【例题】某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.【考点】平面镶嵌(密铺).【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: ++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得: +=.【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.【同步训练】(2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.四、几何与图形中的整体思想:【例题】小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180 B.210 C.360 D.270【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【同步训练】如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13 .【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【达标检测】1.(2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:92.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.3.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.4.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC •S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.【解析】证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=BO•AE,S△COD=DO•CF,S△AOD=DO•AE,S△BOC=BO•CF,∴S△AOB •S△COD=BO•DO•AE•CF,S△AOD •S△BOC=BO•DO•CF•AE,∴S△AOB •S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD •S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD •S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD =DO•AE,S△BOC=BO•CF,S△OAB =OB•AE,S△DOC=OD•CF,∴S△AOD •S△BOC=OB•OD•AE•CF,S△OAB •S△DOC=BO•OD•AE•CF,∴S△AOD •S△BOC=S△OAB•S△DOC.四个.如图所示:。

浙江省2019年中考数学复习第二部分题型研究题型一数学思想方法类型三方程与函数思想针对演练_2122

浙江省2019年中考数学复习第二部分题型研究题型一数学思想方法类型三方程与函数思想针对演练_2122

第二部分题型研究题型一数学思想方法种类三方程与函数思想针对操练1.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运 5000 kg 所用的时间与乙搬运 8000 kg 所用的时间相等,求甲、乙两人每小时分别搬运多少 kg 货物.设甲每小时搬运x kg货物,则可列方程为()5000 A. x-600=8000xB.5000 8000=x x+6005000800050008000C.x+600=xD.x=x-6002.如图,正方形 ABCD的边长为9,将正方形折叠,使极点 D落在BC边上的点 E 处,折痕为 GH.若 BE∶EC=2∶1,则线段 CH的长是()A. 3B. 4C. 5D. 6第 2 题图3.如图,在△ ABC中,AB=AC,∠ BAC=120°,AD⊥BC于点22D,AE⊥AB交 BC于点 E.若 S△ABC=m+9n ,S△ADE=mn,则 m与 n 之间的数目关系是 ()第3 题图A. m=3nB. m=6nC. n=3mD. n= 6m14.已知: M,N 两点对于 y 轴对称,且点 M在双曲线 y=2x上,点N在直线 y=x+3上,设点 M的坐标为( a,b),则二次函数 y=-abx2+( a+b) x()9A.有最大值,最大值为-29B.有最大值,最大值为29C.有最小值,最小值为29D.有最小值,最小值为-25.如图,矩形 ABCD中,AB=3,BC=4,动点 P 从 A 点出发,按A→B→ C的方向在 AB和 BC上挪动,记 PA=x,点 D到直线 PA的距离为 y,则 y 对于 x 的函数图象大概是()6.若 3x2m y m与x4-n y n-1是同类项,则m+n=________.7.教练对小明推铅球的录像进行技术剖析,发现铅球前进高度y(m)与水平距离 x(m)之间的关系为 y=-1( x-4)2+3,由此可知铅12球推出的距离是 ________m.8.设直线y=kx+k-1和直线y=(k+1)x+k(k是正整数)与x成的三角形面S k , S 1 +S 2+S 3+⋯+ S 2018 的 是 ________.9. 某 有 50 个房 供游旅居住,当每个房 每日的订价180 元 ,房 会所有住 ; 当每个房 每日的订价每增添 10 元 ,就会有一个房 空 . 假如游旅居住宅 , 需 每个房 每日支出 20 元的各样 用.(1) 若每个房 订价增添 40 元, 个 一天的利 多少 元?(2) 房价定 多少 , 的利 最大?答案1. B 【分析】甲每小 搬运 x kg 物, 乙每小 搬运 ( x +5000 8000600)kg 物,依据 意得x=x +600,故 B.2. B 【分析】由 意 CH =x , DH =EH =(9 -x ) ,∵BE ∶EC122 22=2∶1,∴ CE =3BC =3,∴在 Rt △E C H 中,EH =EC + CH ,即(9 -x ) = 32+x 2,解得 x =4,即 CH =4.3. A 【分析】∵ AB =AC ,∠ BAC =120°,∴∠ B =∠ C =30°,∵ AD ⊥BC ,AE ⊥AB ,∴∠ BEA =∠ BAD =60°,∠ EAC =∠ C =30°,2 2DE =a , AE =CE =2a ,∴BC =6a ,∴S △ABC =6S △ ADE ,即 m +9n =6mn ,∴ ( m -3n ) 2=0,∴ m =3n .4. B 【分析】∵ M ,N 两点对于 y 称,点 M 的坐 ( a ,1b) ,∴ N 点的坐 ( -a ,b ) .又∵点 M 在反比率函数 y =2x 的 象11上,点 N 在一次函数 y =x +3 的 象上,∴b =2a,即 ab =2 ,b =- a +3 a +b =3∴二次函数21 2 1 2 9y =- abx +( a +b ) x =- 2x + 3x =- 2( x -3) +2.∵二次项系数为- 1 2<0,∴函数有最大值,最大值为92.5. B【分析】依据题意可知,需分两种状况议论:①当P在AB 上时, x 的取值范围是 0<x ≤3,此时点 D 到 PA 的距离等于 AD 的长度 4,∴ y 对于 x 的函数图象是一条平行于 x 轴的直线 ; ②当 P 在BC 上时, x 的取值范围是 3<x ≤5,∵∠ BAP +∠ DAE =∠ BAP +∠ APB ,DE ∴∠ DAE =∠ APB ,又∵∠ B =∠ DEA =90°,∴△ ABP ∽△ DEA ,∴ =ABADy 4 12 ,∴ = ,∴ y =x ,∴ y 对于 x 的函数图象是双曲线的一部分,AP3 x由 k =12 可得函数在第一象限, 且 y 随 x 的增大而减小. 综合①②可知 B 选项正确.第 5 题解图6. 3【分析】依据同类项的观点得,2m +n =4,解得 m =1,m -n =- 1n =2,∴ m +n =3.7. 10【分析】在函数表达式 y =- 1 ( x -4) 2+3 中令 y =0,12得- 1( x -4) 2+3=0,解得 x 1=10,x 2=- 2( 舍去 ) ,∴铅球推出的 12距离是 10 m.2018y =kx +k -1x =-1 8.4038【分析】 ∵方程组 y =( k +1) x +k 的解为 y =-1 ,∴两条直 的交 点 ( -1,- 1) ,两直 与 x 的交点 分1-k,0 ,-k,0 ,∴ k = 1× × 1-k - -k =1 1- 1,kk +1 S 2 1kk +1 2 k k +111 1 1 1 11 1S 1+ S 2+ S 3+⋯+ S 2018= 2× (1 -2+ 2- 3+3-4+⋯+2017- 2018+1 1 1 1 20182018-2019) =2× 1-2019 =4038.9. 解: (1) 若每个房 订价增添 40 元, 个 一天的利40(180 +40-20) ×(50 - 10) =9200( 元);(2) 房价增添 x 元 ,利 w ,xw =(180 -20+x )(50 -10)12=-x +34x +800012=-( x -170) +10890,当 x =170 ,房价 170+180=350( 元) ,w 最大 10890.即当房价定 350 元 , 的利 最大.。

浙江省2019年中考数学复习题方法技巧专题五转化思想训练新版浙教版

浙江省2019年中考数学复习题方法技巧专题五转化思想训练新版浙教版

方法技巧专题(五) 转化思想训练【方法解读】转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.1.[2018·铜仁] 计算+++++…+的值为()A.B.C.D.2.[2018·嘉兴] 欧几里得的《原本》记载形如x2+ax=b2的方程的图解法:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,则该方程的一个正根是()图F5-1A.AC的长B.AD的长C.BC的长D.CD的长3.[2018·东营] 如图F5-2,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是 ()图F5-2A.3B.3C.D.34.[2018·白银] 如图F5-3是一个运算程序的示意图,若开始输入的x的值为625,则第2018次输出的结果为.图F5-35.[2018·广东] 如图F5-4,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连结BD,则阴影部分的面积为.(结果保留π)图F5-46.[2018·淄博] 如图F5-5,P为等边三角形ABC内的一点,且点P到三个顶点A,B,C的距离分别为3,4,5,则△ABC 的面积为.图F5-57.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE'F'G',如图②.①在旋转过程中,当∠OAG'是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF'长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-6参考答案1.B[解析] ∵==1-,==-,==-,==-,==-,…,==-,∴+++++…+=1-+-+-+-+-+…+-=1-=.故选B.2.B[解析] 利用配方法解方程x2+ax=b2,得到x+2=b2+,解得x=-或x=--(舍去).根据勾股定理得AB=,由题意知BD=.根据图形知道AD=AB-BD,即AD的长是方程的一个正根.故选B.3.C[解析] 将圆柱沿AB侧面展开,得到矩形,如图,则有AB=3,BC=.在Rt△ABC中,由勾股定理,得AC===.故选C.4.1[解析] 当x=625时,代入x得x=×625=125,输出125;当x=125时,代入x得x=×125=25,输出25;当x=25时,代入x得x=×25=5,输出5;当x=5时,代入x得x=×5=1,输出1;当x=1时,代入x+4得x+4=5,输出5;当x=5时,代入x得x=×5=1,输出1;…观察发现从第4次以后奇数次就输出5,偶数次就输出1.因此,第2018次输出的应是1.5.π[解析] 连结OE,易证四边形ABEO为正方形,则扇形OED的圆心角为90°,半径为2,因此可求扇形OED的面积,阴影面积看成正方形ABEO的面积+扇形OED的面积-△ABD的面积,正方形ABEO、扇形OED和△ABD的面积均可求,即可求得阴影部分的面积.6.9+[解析] 如图,将△APB绕点A逆时针旋转60°得到△AHC,连结PH,作AI⊥CH交CH的延长线于点I,易知△APH为等边三角形,HA=HP=PA=3,HC=PB=4.PC=5,∴PC2=PH2+CH2,∴∠PHC=90°,∴∠AHI=30°,∴AI=,HI=,∴CI=+4,∴AC2=2++42=25+12,∴S△ABC=AC2=(25+12)=9+.7.解:(1)证明:如图,延长ED交AG于点H.∵点O为正方形ABCD对角线的交点,∴OA=OD,∠AOG=∠DOE=90°.∵四边形OEFG为正方形,∴OG=OE,∴△AOG≌△DOE,∴∠AGO=∠DEO.∵∠AGO+∠GAO=90°,∴∠DEO+∠GAO=90°.∴∠AHE=90°,即DE⊥AG.(2)①在旋转过程中,∠OAG'成为直角有以下两种情况:(i)α由0°增大到90°的过程中,当∠OAG'为直角时,∵OA=OD=OG=OG', ∴在Rt△OAG'中,sin∠AG'O==,∴∠AG'O=30°.∵OA⊥OD,OA⊥AG',∴OD∥AG'.∴∠DOG'=∠AG'O=30°,即α=30°.(ii)α由90°增大到180°的过程中,当∠OAG'为直角时,同理可求得∠BOG'=30°,所以α=180°-30°=150°.综上,当∠OAG'为直角时,α=30°或150°.②AF'长的最大值是2+,此时α=315°.理由:当AF'的长最大时,点F'在直线AC上,如图所示.∵AB=BC=CD=AD=1,∴AC=BD=,AO=OD=.∴OE'=E'F'=2OD=.∴OF'==2.∴AF'=AO+OF'=+2.∵∠DOG'=45°,∴旋转角α=360°-45°=315°.。

浙江省2019届中考数学复习题方法技巧专题训练(10套,Word版,含答案)

浙江省2019届中考数学复习题方法技巧专题训练(10套,Word版,含答案)

方法技巧专题(一) 数形结合思想训练【方法解读】数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方案(以形助数),或利用数量关系研究几何图形的性质解决几何问题(以数助形)的一种数学思想。

1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是()A.演绎B.数形结合C.抽象D.公理化2.若实数a,b,c在数轴上对应的点如图F1-1,则下列式子正确的是()图F1-1A.ac>bcB.|a-b|=a-bC.-a<-b<-cD.-a-c>-b-c3.[2017·怀化] 一次函数y=-2x+m的图象经过点P(-2,3),且与x轴、y轴分别交于点A,B,则△AOB的面积是()A.B.C.4D.84.[2018·仙桃] 甲、乙两车从A地出发,匀速驶向B地.甲车以80 km/h的速度行驶1 h后,乙车才沿相同路线行驶.乙车先到达B地并停留1 h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图F1-2所示.下列说法:①乙车的速度是120 km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()图F1-2A.4个B.3个C.2个D.1个5.已知二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或-5B.-1或5C.1或-3D.1或36.[2018·白银] 如图F1-3是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是直线x=1,对于下列说法:①ab<0,②2a+b=0,③3a+c>0,④a+b≥m(am+b)(m为常数),⑤当-1<x<3时,y>0,其中正确的是()图F1-3A.①②④B.①②⑤C.②③④D.③④⑤7.如图F1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a,b的恒等式:.图F1-48.[2018·白银] 如图F1-5,一次函数y=-x-2与y=2x+m的图象交于点P(n,-4),则关于x的不等式组的解集为.图F1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F1-6.图F1-6由图易得:+++…+= .10.当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则x=m+n时,代数式x2-2x+3的值为.11.已知实数a,b满足a2+1=,b2+1=,则2018|a-b|= .12.已知函数y=使y=k成立的x的值恰好只有3个时,k的值为.13.(1)观察下列图形与等式的关系,并填空:图F1-7(2)观察图F1-8,根据(1)中结论,计算图中黑球的个数,并用含有n的代数式填空:图F1-81+3+5+…+(2n-1)+()+(2n-1)+…+5+3+1= .14.[2018·北京] 在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx-3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.参考答案1.B2.D3.B4.B[解析] 甲、乙两车最开始相距80 km,0到2 h是乙在追甲,并在2 h时追上,设乙的速度为x km/h,可得方程2x-2×80=80,解得x=120,故①正确;在2 h时甲、乙距离为0,在6 h时乙到达B地,此时甲、乙距离=(6-2)×(120-80)=160(km),故②正确;H点是乙在B地停留1 h后开始原路返回,6 h时甲、乙距离是160 km,1 h中只有甲在走,所以1 h后甲、乙距离80 km,所以点H的坐标是(7,80),故③正确;最后一段是乙原路返回,直到在n h时与甲相遇,初始距离80 km,所以相遇时间=80÷(120+80)=0.4,所以n=7.4,故④错误.综上所述,①②③正确,④错误,正确的有3个,故选B.5.B[解析] 由二次函数的顶点式y=(x-h)2+1,可知当x=h时,y取得最小值1.(1)如图①,当x=3,y取得最小值时,解得h=5(h=1舍去);(2)如图②,当x=1,y取得最小值时,解得h=-1(h=3舍去).故选B.6.A[解析] ∵抛物线的开口向下,∴a<0.∵抛物线的对称轴为直线x=1,即x=-=1,∴b=-2a>0,∴ab<0,2a+b=0,∴①②正确.∵当x=-1时,y=a-b+c=3a+c,由对称轴为直线x=1和抛物线过x轴上的A点,A点在点(2,0)和(3,0)之间,知抛物线与x轴的另一个交点在点(-1,0)和(0,0)之间,所以当x=-1时,y=3a+c<0,∴③错误.当x=1时,y=a+b+c,此点为抛物线的顶点,即抛物线的最高点,也是二次函数的最大值.当x=m 时,y=am2+bm+c=m(am+b)+c,∴此时有a+b+c≥m(am+b)+c,即a+b≥m(am+b),∴④正确.∵抛物线过x轴上的A点,A点在点(2,0)和(3,0)之间,则抛物线与x轴的另一个交点在点(-1,0)和(0,0)之间,由图知,当2<x<3时,有一部分图象位于x轴下方,说明此时y<0,根据抛物线的对称性可知,当-1<x<0时,也有一部分图象位于x轴下方,说明此时y<0,∴⑤错误.故选A.7.(a-b)2=(a+b)2-4ab8.-2<x<2[解析] ∵y=-x-2的图象过点P(n,-4),∴-n-2=-4,解得n=2.∴P点坐标是(2,-4).观察图象知:2x+m<-x-2的解集为x<2.解不等式-x-2<0可得x>-2.∴不等式组的解集是-2<x<2.9.1-10.311.112.1或2[解析] 画出函数解析式的图象,要使y=k成立的x的值恰好只有3个,即函数图象与y=k这条直线有3个交点.函数y=的图象如图.根据图象知道当y=1或2时,对应成立的x值恰好有3个,∴k=1或2.故答案为1或2. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…,第(n-1)个图形:1+3+5+…+(2n-1)=n2.故答案为:42n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第(n+1)行,(n+2)行到(2n+1)行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=[1+3+5+…+(2n-1)]+(2n+1)+[(2n-1)+…+5+3+1]=n2+2n+1+n2=2n2+2n+1.故答案为:2n+12n2+2n+1.14.解:(1)∵直线y=4x+4与x轴、y轴分别交于点A,B,∴A(-1,0),B(0,4).∵将点B向右平移5个单位长度,得到点C,∴C(0+5,4),即C(5,4).(2)∵抛物线y=ax2+bx-3a经过点A,∴a-b-3a=0.∴b=-2a.∴抛物线的对称轴为直线x=-=-=1,即对称轴为直线x=1.(3)易知抛物线过点(-1,0),(3,0).①若a>0,如图,易知抛物线过点(5,12a),若抛物线与线段BC恰有一个公共点,满足12a≥4即可,可知a的取值范围是a≥.②若a<0,如图,易知抛物线与y轴交于点(0,-3a),要使该抛物线与线段BC只有一个公共点,就必须-3a>4,此时a<-.③若抛物线的顶点在线段BC上,此时顶点坐标为(1,4),从而解析式为y=a(x-1)2+4,将A(-1,0)代入,解得a=-1,如图:综上,a的取值范围是a≥或a<-或a=-1.方法技巧专题(二) 分类讨论思想训练【方法解读】当数学问题中的某一条件模糊而不确定时,需要对这一条件进行分类讨论,然后逐一解决.常见的分类讨论有概念的分类、解题方法的分类和图形位置关系的分类等.1.点A,B,C在☉O上,∠AOB=100°,点C不与A,B重合,则∠ACB的度数为 ()A.50°B.80°或50°C.130°D.50°或130°2.[2018·山西权威预测] 已知一等腰三角形的两边长x,y满足方程则此等腰三角形的周长为()A.5B.4C.3D.5或43.[2018·枣庄] 如图F2-1是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连结PA,PB,那么使△ABP为等腰直角三角形的点P 有()图F2-1A.2个B.3个C.4个D.5个4.[2018·鄂州] 如图F2-2,已知矩形ABCD中,AB=4 cm,BC=8 cm,动点P在边BC上从点B向点C运动,速度为1 cm/s,同时动点Q从点C出发,沿折线C→D→A运动,速度为2 cm/s.当一个点到达终点时,另一个点随之停止运动.设点P运动时间为t(s),△BPQ的面积为S(cm2),则描述S(cm2)与时间t(s)的函数关系的图象大致是()图F2-2图F2-35.[2018·聊城] 如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.6.[2018·安徽] 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.7.如图F2-4,已知点A(1,2)是反比例函数y=图象上的一点,连结AO并延长交双曲线的另一分支于点B,点P是x轴上一动点,若△PAB是等腰三角形,则点P的坐标是.图F2-48.[2017·齐齐哈尔] 如图F2-5,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.图F2-59.[2017·义乌] 如图F2-6,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使P,M,N构成等腰三角形的点P恰好有3个,则x的值是.1.D2.A[解析] 解方程组得当2作为腰长时,等腰三角形的周长为5;当1作为腰长时,因为1+1=2,不满足三角形的三边关系.故等腰三角形的周长为5.3.B[解析] 如下图,设每个小矩形的长与宽分别为x,y,则有2x=x+2y,从而x=2y.因为线段AB是长与宽为2∶1的矩形对角线,所以根据网格作垂线可知,过点B与AB垂直且相等的线段有BP1和BP2,过点A与AB垂直且相等的线段有AP3,且P1,P2,P3都在顶点上,因此满足题意的点P共有3个.故选B.4.A[解析] 由题意可知,0≤t≤4,当0≤t<2时,如下图,S=BP·CQ=t·2t=t2;当t=2时,如下图,点Q与点D重合,则BP=2,CQ=4,故S=BP·CQ=×2×4=4;当2<t≤6时,如下图,点Q在AD上运动,S=BP·CD=t·4=2t.故选A.5.180°或360°或540°[解析] 如图,一个正方形被截掉一个角后,可能得到如下的多边形:∴这个多边形的内角和是180°或360°或540°.6.3或[解析] 由题意知,点P在线段BD上.(1)如图,若PD=PA,则点P在AD的垂直平分线上,故点P为BD的中点,PE⊥BC,故PE∥CD,故PE=DC=3.(2)如图,若DA=DP,则DP=8,在Rt△BCD中,BD==10,∴BP=BD-DP=2.∵△PBE∽△DBC,∴==,∴PE=CD=.综上所述,PE的长为3或.7.(-5,0)或(-3,0)或(3,0)或(5,0)8.10或4或2[解析] 在△ABC中,∵AB=AC=10,BC=12,底边BC上的高是AD,∴∠ADB=∠ADC=90°,BD=CD=BC=×12=6,∴AD==8.∴用这两个三角形拼成平行四边形,可以分三种情况:(1)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是10.(2)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是=4.(3)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是=2.综上所述,这个平行四边形较长的对角线的长是10或4或2.9.x=0或x=4-4或4<x<4[解析] 根据OM=x,ON=x+4,可知MN=4.作MN的垂直平分线,该线与射线OB始终有一个公共点,分别以点M,N为圆心,4为半径画圆,观察两圆与射线OB 的交点情况:(1)当☉N与射线OB没有公共点,☉M与射线OB有两个公共点时,满足题意,如图①,此时4<x<4.(2)当☉N与射线OB相切,只有一个公共点时,☉M与射线OB也只有一个公共点时,也满足题意,如图②,此时x=4-4;(3)当☉N与射线OB有两个公共点时,此时☉M与射线OB只有一个公共点,因此当☉N与射线OB有两个公共点时,必须出现不能与点M,N构成三角形的一个点,也能满足题意,如图③,此时x=0.方法技巧专题(三) 整体思想训练【方法解读】整体思想是研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.1.[2018·乐山] 已知实数a,b满足a+b=2,ab=,则a-b=()A.1B.-C.±1D.±2.[2018·泸州] 如图F3-1,▱ABCD的对角线AC,BD相交于点O,E是AB的中点,且AE+EO=4,则▱ABCD的周长为()图F3-1A.20B.16C.12D.83.[2018·济宁] 如图F3-2,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是()图F3-2A.50°B.55°C.60°D.65°4.[2018·襄阳] 如图F3-3,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3 cm,△ABD的周长为13 cm,则△ABC的周长为()图F3-3A.16 cmB.19 cmC.22 cmD.25 cm5.[2018·岳阳] 已知a2+2a=1,则3(a2+2a)+2的值为.6.[2018·扬州] 若m是方程2x2-3x-1=0的一个根,则6m2-9m+2015的值为.7.[2018·成都] x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.8.[2018·江西] 一元二次方程x2-4x+2=0的两根为x1,x2,则-4x1+2x1x2的值为.9.[2018·黄冈] 若a-=,则a2+的值为.10.计算(1----)(++++)-(1-----)(+++)的结果是.11.先化简,再求值:(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m是方程x2+x-2=0的根.12.已知(a+b)2=7,(a-b)2=3,求下列各式的值:(1)a2+b2和ab;(2)a4+b4;(3)+.参考答案1.C[解析] ∵a+b=2,∴(a+b)2=4,即a2+2ab+b2=4,又∵ab=,∴(a-b)2=(a+b)2-4ab=4-4×=1,∴a-b=±1.故选C.注:此题把“a+b”,“ab”分别当作整体.2.B[解析] 因为▱ABCD的对角线AC,BD相交于点O,所以O为AC的中点.又因为E是AB的中点,所以AE=AB,EO是△ABC的中位线,所以EO=BC.因为AE+EO=4,所以AB+BC=2(AE+EO)=8.在▱ABCD中,AD=BC,AB=CD,所以周长为2(AB+BC)=2×8=16.故选B.注:此题把“AB+BC”当作整体.3.C[解析] 根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°-300°=240°.∵∠BCD,∠CDE的平分线在五边形内相交于点P,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°-120°=60°.故选C.注:此题把“∠BCD+∠CDE”当作整体.4.B[解析] 由尺规作图可知,MN是线段AC的垂直平分线,∴AD=CD,AC=2AE=6(cm),∴AB+BC=AB+BD+DC=AB+BD+AD=C△ABD=13 cm,∴C△ABC=AB+BC+AC=13+6=19(cm).故选B.注:此题把“AB+BC”当作整体.5.5[解析] ∵a2+2a=1,∴3(a2+2a)+2=3+2=5.注:此题把“a2+2a”当作整体.6.2018[解析] 由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.注:此题把“2m2-3m”当作整体.7.0.36[解析] ∵x+y=0.2①,x+3y=1②,①+②,得2x+4y=1.2,∴x+2y=0.6,∴x2+4xy+4y2=(x+2y)2=0.36.注:此题把“x+y”“x+3y”“x+2y”分别当作整体.8.2[解析] ∵x2-4x+2=0的两根为x1,x2,∴x1x2=2,-4x1+2=0,即-4x1=-2,∴-4x1+2x1x2=-2+2×2=2.9.8[解析] ∵a-=,∴原式=a2+-2·a·+2·a·=(a-)2+2=()2+2=8.注:此题把“a-”当作整体.10.[解析] 设+++=a,则原式=(1-a)·(a+)-(1-a-)=+a-a2-a+a2=.注:此题中的整体是“+++”.11.解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m2+m-1).∵m是方程x2+x-2=0的根,∴m2+m-2=0,∴m2+m=2,∴原式=2×(2-1)=2.注:此题把“m2+m”当作整体.12.解:(1)依题意得a2+2ab+b2=7①,a2-2ab+b2=3②.①+②,得2(a2+b2)=10,即a2+b2=5.①-②,得4ab=4,即ab=1.(2)a4+b4=(a2+b2)2-2(ab)2=52-2×12=25-2=23.(3)原式=+===.注:此题把“ab”“a2+b2”分别当作整体.方法技巧专题(四) 构造法训练【方法解读】构造法是一种技巧性很强的解题方法,它能训练思维的创造性和敏捷性.常见的构造形式有:(1)构造方程;(2)构造函数;(3)构造图形.1.[2018·自贡] 如图F4-1,若△ABC内接于半径为R的☉O,且∠A=60°,连结OB,OC,则边BC 的长为()图F4-1A.RB.RC.RD.R2.[2018·遵义] 如图F4-2,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数的解析式为()图F4-2A.y=-B.y=-C.y=-D.y=3.设关于x的一元二次方程(x-1)(x-2)=m(m>0)的两根分别为α,β,且α<β,则α,β满足()A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>24.如图F4-3,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.图F4-35.[2018·扬州] 如图F4-4,已知☉O的半径为2,△ABC内接于☉O,∠ACB=135°,则AB= .图F4-46.[2018·滨州] 若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.7.[2018·扬州] 问题呈现如图F4-5①,在边长为1的正方形网格中,连结格点D,N和E,C,DN和EC相交于点P,求tan ∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连结格点M,N,可得MN∥EC,则∠DNM=∠CPN,连结DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图①中tan∠CPN的值为;(2)如图②,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值.思维拓展(3)如图③,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到点N,使BN=2BC,连结AN交CM 的延长线于点P,用上述方法构造网格求∠CPN的度数.图F4-5参考答案1.D[解析] 如图,延长CO交☉O于点D,连结BD,∵∠A=60°,∴∠D=∠A=60°.∵CD是☉O的直径,∴∠CBD=90°.在Rt△BCD中,sin D===sin 60°=,∴BC=R.故选D.注:此题构造了直角三角形.2.C[解析] 如图,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.由三垂直模型,易得△BNO∽△OMA,相似比等于,在Rt△AOB中,∠OAB=30°,所以=tan 30°=,所以=.因为点A在双曲线y=上,所以S△OMA=3,所以S△BNO=1,所以k=-2.即经过点B的反比例函数的解析式为y=-.故选C.注:此题构造了相似三角形.3.D[解析] 一元二次方程(x-1)(x-2)=m(m>0)的两根实质上是抛物线y=(x-1)(x-2)与直线y=m两个交点的横坐标.如图,显然α<1且β>2.故选D.注:此题构造了二次函数.4.15[解析] 分别将线段AB,CD,EF向两端延长,延长线构成一个等边三角形,边长为8,则EF=2,AF=4,故所求周长=1+3+3+2+2+4=15.注:此题构造了等边三角形.5.2[解析] 如图,在优弧AB上取一点D,连结AD,BD,OA,OB,∵☉O的半径为2,△ABC内接于☉O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°.∵OA=OB=2,∴AB=2.故答案为2.注:此题构造了直角三角形.6.[解析] 根据题意,对比两个方程组得出方程组所以注:此题构造了一个二元一次方程组.7.[解析] (1)根据方法归纳,运用勾股定理分别求出MN和DM的值,即可求出tan∠CPN的值;(2)仿(1)的思路作图,即可求解;(3)利用网格,构造等腰直角三角形解决问题即可.解:(1)由勾股定理得:DM=2,MN=,DN=.∵(2)2+()2=()2,∴DM2+MN2=DN2,∴△DMN是直角三角形.∵MN∥EC,∴∠CPN=∠DNM.∵tan∠DNM===2,∴tan∠CPN=2.(2)如图,取格点D,连结CD,DM.∵CD∥AN,∴∠CPN=∠DCM.易得△DCM是等腰直角三角形,∴∠DCM=45°,∴cos∠CPN=cos∠DCM=cos 45°=.(3)构造如图网格,取格点Q,连结AQ,QN.易得PC∥QN,∴∠CPN=∠ANQ.∵AQ=QN,∠AQN=90°,∴∠ANQ=∠QAN=45°,∴∠CPN=45°.方法技巧专题(五) 转化思想训练【方法解读】转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.1.[2018·铜仁] 计算+++++…+的值为()A.B.C.D.2.[2018·嘉兴] 欧几里得的《原本》记载形如x2+ax=b2的方程的图解法:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,则该方程的一个正根是()图F5-1A.AC的长B.AD的长C.BC的长D.CD的长3.[2018·东营] 如图F5-2,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()图F5-2A.3B.3C.D.34.[2018·白银] 如图F5-3是一个运算程序的示意图,若开始输入的x的值为625,则第2018次输出的结果为.5.[2018·广东] 如图F5-4,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连结BD,则阴影部分的面积为.(结果保留π)图F5-46.[2018·淄博] 如图F5-5,P为等边三角形ABC内的一点,且点P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为.图F5-57.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE'F'G',如图②.①在旋转过程中,当∠OAG'是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF'长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-61.B[解析] ∵==1-,==-,==-,==-,==-,…,==-,∴+++++…+=1-+-+-+-+-+…+-=1-=.故选B.2.B[解析] 利用配方法解方程x2+ax=b2,得到x+2=b2+,解得x=-或x=--(舍去).根据勾股定理得AB=,由题意知BD=.根据图形知道AD=AB-BD,即AD的长是方程的一个正根.故选B.3.C[解析] 将圆柱沿AB侧面展开,得到矩形,如图,则有AB=3,BC=.在Rt△ABC中,由勾股定理,得AC===.故选C.4.1[解析] 当x=625时,代入x得x=×625=125,输出125;当x=125时,代入x得x=×125=25,输出25;当x=25时,代入x得x=×25=5,输出5;当x=5时,代入x得x=×5=1,输出1;当x=1时,代入x+4得x+4=5,输出5;当x=5时,代入x得x=×5=1,输出1;…观察发现从第4次以后奇数次就输出5,偶数次就输出1.因此,第2018次输出的应是1.5.π[解析] 连结OE,易证四边形ABEO为正方形,则扇形OED的圆心角为90°,半径为2,因此可求扇形OED的面积,阴影面积看成正方形ABEO的面积+扇形OED的面积-△ABD的面积,正方形ABEO、扇形OED和△ABD的面积均可求,即可求得阴影部分的面积.6.9+[解析] 如图,将△APB绕点A逆时针旋转60°得到△AHC,连结PH,作AI⊥CH交CH的延长线于点I,易知△APH为等边三角形,HA=HP=PA=3,HC=PB=4.PC=5,∴PC2=PH2+CH2,∴∠PHC=90°,∴∠AHI=30°,∴AI=,HI=,∴CI=+4,∴AC2=2++42=25+12,∴S△ABC=AC2=(25+12)=9+.7.解:(1)证明:如图,延长ED交AG于点H.∵点O为正方形ABCD对角线的交点,∴OA=OD,∠AOG=∠DOE=90°.∵四边形OEFG为正方形,∴OG=OE,∴△AOG≌△DOE,∴∠AGO=∠DEO.∵∠AGO+∠GAO=90°,∴∠DEO+∠GAO=90°.∴∠AHE=90°,即DE⊥AG.(2)①在旋转过程中,∠OAG'成为直角有以下两种情况:(i)α由0°增大到90°的过程中,当∠OAG'为直角时,∵OA=OD=OG=OG',∴在Rt△OAG'中,sin∠AG'O==,∴∠AG'O=30°.∵OA⊥OD,OA⊥AG',∴OD∥AG'.∴∠DOG'=∠AG'O=30°,即α=30°.(ii)α由90°增大到180°的过程中,当∠OAG'为直角时,同理可求得∠BOG'=30°,所以α=180°-30°=150°.综上,当∠OAG'为直角时,α=30°或150°.②AF'长的最大值是2+,此时α=315°.理由:当AF'的长最大时,点F'在直线AC上,如图所示.∵AB=BC=CD=AD=1,∴AC=BD=,AO=OD=.∴OE'=E'F'=2OD=.∴OF'==2.∴AF'=AO+OF'=+2.∵∠DOG'=45°,∴旋转角α=360°-45°=315°.方法技巧专题(六) 中点联想训练【方法解读】1.与中点有关的定理:(1)直角三角形斜边上的中线等于斜边的一半.(2)等腰三角形“三线合一”的性质.(3)三角形的中位线定理.(4)垂径定理及其推论.2.与中点有关的辅助线:(1)构造三角形的中位线,如连结三角形两边的中点;取一边的中点,然后与另一边的中点相连结;过三角形一边的中点作另一边的平行线等等.(2)延长角平分线的垂线,构造等腰三角形,利用等腰三角形的“三线合一”.(3)把三角形的中线延长一倍,构造平行四边形.1.[2018·南充] 如图F6-1,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD 的中点,若BC=2,则EF的长度为()图F6-1A.B.1 C.D.2.[2017·株洲] 如图F6-2,点E,F,G,H分别为四边形ABCD四条边AB,BC,CD,DA的中点,则下列关于四边形EFGH的说法正确的是()图F6-2A.一定不是平行四边形B.一定不会是中心对称图形C.可能是轴对称图形D.当AC=BD时,它为矩形3.[2018·荆门] 如图F6-3,等腰直角三角形ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()图F6-3A.πB.πC.1D.24.如图F6-4,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()图F6-4A.2.5B.C.D.25.[2018·眉山] 如图F6-5,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF.其中正确的结论有()图F6-5A.1个B.2个C.3个D.4个6.[2018·苏州] 如图F6-6,在△ABC中,延长BC至点D,使得CD=BC.过AC的中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连结DF,若AB=8,则DF的长为.图F6-67.[2018·天津] 如图F6-7,在边长为4的等边三角形ABC中,D,E分别为AB,BC的中点,EF ⊥AC于点F,G为EF的中点,连结DG,则DG的长为.图F6-78.[2018·哈尔滨] 如图F6-8,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连结EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.图F6-89.[2018·德阳] 如图F6-9,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC,BC边的距离分别为d1,d2,则+的最小值是3.其中正确的结论是(填写正确结论的序号).图F6-910.[2017·徐州] 如图F6-10,在平行四边形ABCD中,点O是边BC的中点,连结DO并延长,交AB的延长线于点E.连结BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD= °时,四边形BECD是矩形.图F6-1011.[2017·成都] 如图F6-11,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连结DE交线段OA于点F.(1)求证:DH是☉O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求☉O的半径.图F6-1112.[2018·淄博] (1)操作发现:如图F6-12①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连结GM,GN,小明发现:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考,把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现上述的结论还成立吗?请说明理由.(3)深入探究:如图③,小明在(2)的基础上,又作了进一步的探究,向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.图F6-12参考答案1.B[解析] 在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AB=4,CD=AB,∴CD=×4=2.∵E,F分别为AC,AD的中点,∴EF=CD=×2=1.故选B.2.C3.C[解析] 如图,连结OM,CM,OC.∵OQ⊥OP,且M是PQ的中点,∴OM=PQ.∵△ABC是等腰直角三角形,∴∠ACB=90°,∴CM=PQ,∴OM=CM,∴△OCM是等腰三角形,∴M在OC的垂直平分线上.∵当点P在A点时,点M为AC的中点,当点P在C点时,点M为BC的中点,∴点M所经过的路线长为AB=1.故选C.4.B5.D[解析] 如图①,连结AF并延长与BC的延长线相交于点M,易证△ADF≌△MCF,∴AF=MF,AD=MC.又∵AD=BC,DC=AB=2AD,∴AB=BM,∴∠ABC=2∠ABF,故①正确.如图②,延长EF,BC相交于点G.易得△DEF≌△CGF,∴FE=FG.∵BE⊥AD,AD∥BC,∴∠EBG=90°.根据直角三角形斜边上的中线等于斜边的一半,得EF=BF,故②正确.如图②,由于BF是△BEG的中线,∴S△BEG=2S△BEF,而S△BEG=S四边形DEBC,∴S四边形DEBC=2S△EFB,故③正确.如图②,设∠DEF=x,∵AD∥BC,∴∠DEF=∠G=x,又∵FG=FB,∴∠G=∠FBG=x,∴∠EFB=2x.∵CD=2AD,F为CD的中点,BC=AD,∴CF=CB,∴∠CFB=∠CBF=x,∴∠CFE=∠CFB+∠BFE=x+2x=3x=3∠DEF,故④正确.故选D.6.4[解析] 解此题时可取AB的中点,然后再利用三角形的中位线和平行四边形的判定和性质.取AB的中点M,连结ME,则ME∥BC,ME=BC.∵EF∥CD,∴M,E,F三点共线,∵EF=2CD,CD=BC,∴MF=BD,∴四边形MBDF是平行四边形,∴DF=BM=AB=×8=4.7.[解析] 如图,连结DE.∵D,E分别为AB,BC的中点,∴DE∥AC,DE=AC=2,EC=2.∵EF⊥AC,∴DE⊥EF,∴△DEG为直角三角形.在Rt△EFC中,EC=2,∠C=60°,∴EF=.∵G为EF的中点,∴EG=.在Rt△DEG中,DE=2,EG=,由勾股定理,得DG==.故答案为.8.4[解析] 如图,连结BE,由E,F分别为OA,OD的中点可知EF=AD,EF∥AD,易证△BEC 是等腰直角三角形,EM三线合一,可证得△EFN≌△MBN,可得到BN=FN=,tan∠NBM=,就能求出BM=2,所以BC=4.9.①③④[解析] 由题意得,AE=DE,AD=BD=CD.∵△ACD是正三角形,∴∠CDA=60°,CE⊥AD,∴∠B=∠DCB=30°.在Rt△BCE中,∠B=30°,∴CB=2CE,故①正确;∵∠B=30°,∴tan B=,故②错误;在正△ACD中,CE是△ACD的中线,∴∠ECD=∠ACD=30°,∴∠ECD=∠DCB,故③正确;如题图,PM=d1,PN=d2.在Rt△MPN中,+=MN2.∵∠ACB=∠CMP=∠CNP=90°,∴四边形MPNC为矩形,∴MN=CP.要使+最小,只需MN最小,即PC最小,当CP⊥AB时,即P与E重合时,+最小.在Rt△ACE中,∵AC=2,∠ACE=30°,∴CE=AC·cos30°=,则CE2=3,∴+的最小值为3,故④正确.故正确的有①③④.10.解:(1)证明:∵平行四边形ABCD,∴AE∥DC,∴∠EBO=∠DCO,∠BEO=∠CDO.∵点O是边BC的中点,∴BO=CO,∴△EBO≌△DCO(AAS),∴EO=DO,∴四边形BECD是平行四边形.(2)100°提示:若四边形BECD为矩形,则BC=DE,BD⊥AE,又AD=BC,∴AD=DE.∵∠A=50°,根据等腰三角形的性质,可知∠ADB=∠EDB=40°,∴∠BOD=180°-∠ADE=100°.11.解:(1)证明:连结OD,如图.∵OB=OD,∴∠OBD=∠ODB.又∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DH⊥AC,∴DH⊥OD,∴DH是☉O的切线.(2)∵∠E=∠B,∠B=∠C,∴∠E=∠C,∴△EDC是等腰三角形.又∵DH⊥AC,点A是EH中点,∴设AE=x,则EC=4x,AC=3x.连结AD,∵AB为☉O的直径,∴∠ADB=90°,即AD⊥BD.又∵△ABC是等腰三角形,∴D是BC的中点, ∴OD是△ABC的中位线,∴OD∥AC,OD=AC=x,∴∠E=∠ODF.在△AEF和△ODF中,∴△AEF∽△ODF,∴=,∵==,∴=.(3)设☉O的半径为r,即OD=OB=r.∵EF=EA,∴∠EFA=∠EAF.又∵OD∥EC,∴∠FOD=∠EAF,∴∠FOD=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1.∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD=1+r,∴AF=AB-BF=2OB-BF=2r-(1+r)=r-1.在△BFD与△EFA中,∴△BFD∽△EFA,∴=,∴=,解得r1=,r2=(舍去).∴☉O的半径为.12.[解析] (1)通过观察可得两条线段的关系是垂直且相等;(2)连结BE,CD,可得△ACD≌△AEB,从而得DC⊥BE,DC=BE,利用中位线得GM∥CD且等于CD的一半,GN∥BE且等于BE的一半,从而得到MG和GN的关系;(3)连结BE,CD,仿照(2)依然可得相同的结论.解:(1)操作发现:线段GM与GN的数量关系为GM=GN;位置关系为GM⊥GN.(2)类比思考:上述结论仍然成立.理由如下:如图①,连结CD,BE相交于点O,BE交AC于点F.①∵点M,G分别是BD,BC的中点,∴MG∥CD,MG=CD.同理可得NG∥BE,NG=BE.∵∠DAB=∠EAC,∴∠DAC=∠BAE.又∵AD=AB,AC=AE,∴△ADC≌△ABE,∴∠AEB=∠ACD,DC=BE,∴GM=GN.∵∠AEB+∠AFE=90°,∴∠OFC+∠ACD=90°,∴∠FOC=90°,易得∠MGN=90°,∴GM⊥GN.(3)深入探究:△GMN是等腰直角三角形.证明如下:如图②,连结BE,CD,CE与GM相交于点H.②∵点M,G分别是BD,BC的中点,∴MG∥CD,MG=CD.同理NG∥BE,NG=BE.∵∠DAB=∠EAC,∴∠DAC=∠BAE.又∵AD=AB,AC=AE,∴△ADC≌△ABE,∴∠AEB=∠ACD,DC=BE,∴GM=GN.∵GM∥CD,∴∠MHC+∠HCD=180°,∴∠MHC+(45°+∠ACD)=180°,∴∠MHC+45°+∠AEB=180°,∴∠MHC+45°+(45°+∠CEB)=180°,∴∠MHC+∠CEB=90°,∴∠GNH+∠GHN=90°,∴∠NGM=90°,即GM⊥GN,∴△GNM是等腰直角三角形.方法技巧专题(七) 角平分线训练【方法解读】1.与角平分线有关的判定和性质:(1)角平分线的判定和性质.(2)角平分线的夹角:①三角形两内角的平分线的夹角等于90°与第三角一半的和;②三角形两外角的平分线的夹角等于90°与第三角一半的差;③三角形一内角与另一外角的平分线的夹角等于第三角的一半.(3)三角形的内心及其性质.(4)圆中弧、圆心角、圆周角之间的关系.2.与角平分线有关的图形或辅助线:(1)角平分线“加”平行线构成等腰三角形.(2)角平分线“加”垂线构成等腰三角形.(3)过角平分线上的点作边的垂线.1.[2018·黑龙江] 如图F7-1,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB的度数是()图F7-1A.30°B.35°C.45°D.60°2.[2018·陕西] 如图F7-2,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()图F7-2A.B.2C.D.33.[2018·达州] 如图F7-3,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为()。

浙江省2019年中考数学复习题方法技巧专题五转化思想训练新版浙教版

浙江省2019年中考数学复习题方法技巧专题五转化思想训练新版浙教版

方法技巧专题(五) 转化思想训练【方法解读】转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.1.[2018·铜仁] 计算+++++…+的值为()A.B.C.D.2.[2018·嘉兴] 欧几里得的《原本》记载形如x2+ax=b2的方程的图解法:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,则该方程的一个正根是()图F5-1A.AC的长B.AD的长C.BC的长D.CD的长3.[2018·东营] 如图F5-2,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()图F5-2A.3B.3C.D.34.[2018·白银] 如图F5-3是一个运算程序的示意图,若开始输入的x的值为625,则第2018次输出的结果为.图F5-35.[2018·广东] 如图F5-4,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连结BD,则阴影部分的面积为.(结果保留π)图F5-46.[2018·淄博] 如图F5-5,P为等边三角形ABC内的一点,且点P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为.图F5-57.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE 为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE'F'G',如图②.①在旋转过程中,当∠OAG'是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF'长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-6参考答案1.B[解析] ∵==1-,==-,==-,==-,==-,…,==-,∴+++++…+=1-+-+-+-+-+…+-=1-=.故选B.2.B[解析] 利用配方法解方程x2+ax=b2,得到x+2=b2+,解得x=-或x=--(舍去).根据勾股定理得AB=,由题意知BD=.根据图形知道AD=AB-BD,即AD的长是方程的一个正根.故选B.3.C[解析] 将圆柱沿AB侧面展开,得到矩形,如图,则有AB=3,BC=.在Rt△ABC中,由勾股定理,得AC===.故选C.4.1[解析] 当x=625时,代入x得x=×625=125,输出125;当x=125时,代入x得x=×125=25,输出25;当x=25时,代入x得x=×25=5,输出5;当x=5时,代入x得x=×5=1,输出1;当x=1时,代入x+4得x+4=5,输出5;当x=5时,代入x得x=×5=1,输出1;…观察发现从第4次以后奇数次就输出5,偶数次就输出1.因此,第2018次输出的应是1.5.π[解析] 连结OE,易证四边形ABEO为正方形,则扇形OED的圆心角为90°,半径为2,因此可求扇形OED的面积,阴影面积看成正方形ABEO的面积+扇形OED的面积-△ABD的面积,正方形ABEO、扇形OED和△ABD的面积均可求,即可求得阴影部分的面积.6.9+[解析] 如图,将△APB绕点A逆时针旋转60°得到△AHC,连结PH,作AI⊥CH交CH的延长线于点I,易知△APH 为等边三角形,HA=HP=PA=3,HC=PB=4.PC=5,∴PC2=PH2+CH2,∴∠PHC=90°,∴∠AHI=30°,∴AI=,HI=,∴CI=+4,∴AC2=2++42=25+12,∴S△ABC=AC2=(25+12)=9+.7.解:(1)证明:如图,延长ED交AG于点H.∵点O为正方形ABCD对角线的交点,∴OA=OD,∠AOG=∠DOE=90°.∵四边形OEFG为正方形,∴OG=OE,∴△AOG≌△DOE,∴∠AGO=∠DEO.∵∠AGO+∠GAO=90°,∴∠DEO+∠GAO=90°.∴∠AHE=90°,即DE⊥AG.(2)①在旋转过程中,∠OAG'成为直角有以下两种情况:(i)α由0°增大到90°的过程中,当∠OAG'为直角时,∵OA=OD=OG=OG', ∴在Rt△OAG'中,sin∠AG'O==,∴∠AG'O=30°.∵OA⊥OD,OA⊥AG',∴OD∥AG'.∴∠DOG'=∠AG'O=30°,即α=30°.(ii)α由90°增大到180°的过程中,当∠OAG'为直角时,同理可求得∠BOG'=30°,所以α=180°-30°=150°.综上,当∠OAG'为直角时,α=30°或150°.②AF'长的最大值是2+,此时α=315°.理由:当AF'的长最大时,点F'在直线AC上,如图所示.∵AB=BC=CD=AD=1,∴AC=BD=,AO=OD=.∴OE'=E'F'=2OD=.∴OF'==2.∴AF'=AO+OF'=+2.∵∠DOG'=45°,∴旋转角α=360°-45°=315°.。

浙江省2019年中考数学专题复习专题三 5大数学思想方法(3)转化与化归思想训练(含答案)

浙江省2019年中考数学专题复习专题三 5大数学思想方法(3)转化与化归思想训练(含答案)

专题三 5大数学思想方法第三节 转化与化归思想类型十一 “一般”与“特殊”之间的转化(2018·浙江湖州中考)已知在Rt △ABC 中,∠BAC =90°,AB ≥AC ,D ,E 分别为AC ,BC 边上的点(不包括端点),且DC BE =ACBC =m ,连结AE ,过点D 作DM ⊥AE ,垂足为点M ,延长DM 交AB 于点F .(1)如图1,过点E 作EH ⊥AB 于点H ,连结DH . ①求证:四边形DHEC 是平行四边形; ②若m =22,求证:AE =DF ; (2)如图2,若m =35,求DFAE的值.【分析】(1)①先判断出△BHE ∽△BAC ,进而判断出HE =DC ,即可得出结论; ②先判断出AC =AB ,BH =HE ,再判断出∠HEA =∠AFD ,即可得出结论;(2)过E 作EG ⊥AB 于G ,先判断出△EGB ∽△CAB ,进而求出EG ∶BE =3∶5,得出EG =CD ,再判断出∠AFM =∠AEG ,进而判断出△FAD ∽△EGA ,即可得出结论. 【自主解答】从特殊到一般,从具体到抽象是研究数学的一种基本方法.在一般情况下难以发现的规律,在特殊条件下容易暴露,特殊情况下得出的结论、方法也往往可以推广到一般情形.所以,特殊与一般之间的转化,可以用来验证命题的正确性,探索解题途径.12.(2018·广西桂林中考)如图,在平面直角坐标系中,M ,N ,C 三点的坐标分别为(12,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连结AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动.设点B 的坐标为(0,b ),则b 的取值范围是( )A. -14≤b ≤1B .-54≤b ≤1C .-94≤b ≤12D .-94≤b ≤113.(2018·甘肃陇南中考)如图,⊙A 过点O (0,0),C (3,0),D (0,1),点B 是x 轴下方⊙A 上的一点,连结BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°类型十二 “复杂”与“简单”之间的转化(2018·浙江台州中考)解不等式组:⎩⎪⎨⎪⎧x -1<3,3(x -2)-x >0.【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案. 【自主解答】数学解题的过程是分析问题和解决问题的过程,对于较复杂的问题.可以通过分析,将问题转化为几个简单的问题来解决,如把“多元问题”转化为“一元问题”、把“高次问题”转化为“一次问题”、 把“分式问题”转化为“整式问题”等,实现复杂问题简单化.14.(2018·四川遂宁中考)如图,已知抛物线y =ax 2-4x +c (a ≠0)与反比例函数y =9x 的图象相交于B ,且B点的横坐标为3,抛物线与y 轴交于点C (0,6),A 是抛物线y =ax 2-4x +c (a ≠0)的顶点,P 点是x 轴上一动点,当PA +PB 最小时,P 点的坐标为____________.类型十三 “生活”与“数学”之间的转化(2018·浙江绍兴中考)如图1,窗框和窗扇用“滑块铰链”连结,图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知AC =DE =20 cm ,AE =CD =10 cm ,BD =40 cm .(1)窗扇完全打开,张角∠CAB =85°,求此时窗扇与窗框的夹角∠DFB 的度数;(2)窗扇部分打开,张角∠CAB =60°,求此时点A ,B 之间的距离(精确到 0.1 cm ).(参考数据:3≈1.732,6≈2.449)【分析】(1)根据平行四边形的性质和判定可以解答本题; (2)根据锐角三角函数可以求得AB 的长,从而可以解答本题. 【自主解答】数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象.所以,要重视数学知识的应用.在解决实际问题时,要重在分析,把实际问题转化为数学模型,以提高应用数学知识解决实际问题的能力.15.(2018·浙江绍兴中考)实验室里有一个水平放置的长方体容器,从内部量得它的高是15 cm ,底面的长是30 cm ,宽是20 cm ,容器内的水深为x cm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10 cm ,10 cm ,y cm (y ≤15),当铁块的顶部高出水面2 cm 时,x ,y 满足的关系式是___________________________________.类型十四 “数”与“形”之间的转化(2018·四川德阳中考)已知函数y =⎩⎪⎨⎪⎧(x -2)2-2,x≤4,(x -6)2-2,x >4使y =a 成立的x 的值恰好只有3个时,a 的值为________.【分析】首先在坐标系中画出已知函数y =⎩⎪⎨⎪⎧(x -2)2-2,x≤4(x -6)2-2,x >4的图象,利用数形结合的方法即可找到使y =a 成立的x 值恰好有3个的a 值. 【自主解答】“数”与“形”反映了事物两方面的属性,数与形之间的相互转化、相互联系,体现了数学是一个有机整体.数形结合能把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,是一条合理的解题途径.16.(2018·江苏泰州中考)平面直角坐标系xOy中,二次函数y=x2-2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=-2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m-1)作直线l⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.参考答案类型十一【例11】 (1)①∵EH ⊥AB ,∠BAC =90°, ∴EH ∥CA ,∴△BHE ∽△BAC , ∴BE BC =HEAC. ∵DC BE =AC BC ,∴BE BC =DC AC , ∴HE AC =DCAC,∴HE =D C. ∵EH ∥DC ,∴四边形DHEC 是平行四边形. ②∵AC BC =22,∠BAC =90°,∴AC =A B.∵DC BE =22,HE =DC ,∴HE BE =22. ∵∠BHE =90°,∴BH =HE .∵HE =DC ,∴BH =CD ,∴AH =A D. ∵DM ⊥AE ,EH ⊥AB , ∴∠EHA =∠AMF =90°,∴∠HAE +∠HEA =∠HAE +∠AFM =90°, ∴∠HEA =∠AF D. ∵∠EHA =∠FAD =90°, ∴△HEA ≌△AFD ,∴AE =DF . (2)如图,过点E 作EG ⊥AB 于G . ∵CA ⊥AB ,∴EG ∥CA , ∴△EGB ∽△CAB ,∴EG CA =BE BC ,∴EG BE =CA BC =35. ∵CD BE =35,∴EG =C D. 设EG =CD =3x ,AC =3y ,∴BE =5x ,BC =5y ,∴BG =4x ,AB =4y . ∵∠EGA =∠AMF =90°,∴∠GEA +∠EAG =∠EAG +∠AFM , ∴∠AFM =∠AEG . ∵∠FAD =∠EGA =90°, ∴△FAD ∽△EGA ,∴DF AE =AD AG =3y -3x 4y -4x =34.变式训练 12.B 13.B 类型十二【例12】 ⎩⎪⎨⎪⎧x -1<3,①3(x -2)-x >0,②解不等式①得x <4, 解不等式②得x >3,不等式①,不等式②的解集在数轴上表示如图.原不等式组的解集为3<x <4. 变式训练 14.(125,0)类型十三【例13】 (1)∵AC =DE =20 cm , AE =CD =10 cm ,∴四边形ACDE 是平行四边形, ∴AC ∥DE ,∴∠DFB =∠CA B. ∵∠CAB =85°,∴∠DFB =85°. (2)如图,作CG ⊥AB 于点G .∵AC =20,∠CGA =90°,∠CAB =60°, ∴CG =103,AG =10.∵BD =40,CD =10,∴CB =30, ∴BG =302-(103)2=106,∴AB =AG +BG =10+106≈10+10×2.449=34.49≈34.5 cm ,即A ,B 之间的距离为34.5 cm . 变式训练15.y =6x +105(0<x ≤656)或y =120-15x 2(6≤x <8)类型十四【例14】 函数y =⎩⎪⎨⎪⎧(x -2)2-2,x≤4(x -6)2-2,x >4的图象如图, 根据图象知,当y =2时,对应成立的x 值恰好有三个, ∴a =2.故答案2.变式训练16.解:(1)当m =-2时,抛物线表达式为y =x 2+4x +2. 令y =0,则x 2+4x +2=0, 解得x 1=-2+2,x 2=-2-2,抛物线与x 轴交点坐标为(-2+2,0),(-2-2,0). (2)∵y =x 2-2mx +m 2+2m +2=(x -m )2+2m +2, ∴抛物线顶点坐标为A (m ,2m +2).∵二次函数图象的顶点A 在直线l 与x 轴之间(不包含点A 在直线l 上), ∴当直线l 在x 轴上方时, ⎩⎪⎨⎪⎧2m +2<m -1,m -1>0,2m +2>0,不等式无解. 当直线l 在x 轴下方时, ⎩⎪⎨⎪⎧2m +2>m -1,2m +2<0,m -1<0, 解得-3<m <-1.(3)由(1)点A 在点B 上方,则AB =(2m +2)-(m -1)=m +3, △ABO 的面积S =12(m +3)(-m )=-12m 2-32m .∵-12<0,∴当m =-b 2a =-32时,S 最大=98.。

浙江省2019年中考数学专题复习 专题三 5大数学思想方法 第一节 分类讨论思想训练

浙江省2019年中考数学专题复习 专题三 5大数学思想方法 第一节 分类讨论思想训练

专题三 5大数学思想方法第一节 分类讨论思想类型一 由概念内涵分类(2018·山东潍坊中考)如图1,抛物线y 1=ax 2-12x +c 与x 轴交于点A 和点B(1,0),与y 轴交于点C(0,34),抛物线y 1的顶点为G ,GM⊥x 轴于点M.将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的抛物线y 2.(1)求抛物线y 2的表达式;(2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由;(3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R.若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的表达式.【分析】(1)应用待定系数法求表达式;(2)设出点T 坐标,表示出△TAC 三边,进行分类讨论;(3)设出点P 坐标,表示出Q ,R 坐标及PQ ,QR ,根据以P ,Q ,R 为顶点的三角形与△AMG 全等,分类讨论对应边相等的可能性即可. 【自主解答】此类题型与概念的条件有关,如等腰三角形有两条边相等(没有明确哪两条边相等)、直角三角形有一个角是直角(没有明确哪个角是直角)等,解决这类问题的关键是对概念内涵的理解,而且在分类讨论后还要判断是否符合概念本身的要求(如能否组成三角形).1.(2018·安徽中考改编)若一个数的绝对值是8,则这个数是( ) A .-8B .8C .±8D .-18类型二 由公式条件分类(2018·浙江嘉兴中考)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”. (1)概念理解:如图1,在△ABC 中,AC =6,BC =3,∠ACB=30°,试判断△ABC 是否是“等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于BC 所在直线的对称图形得到△A′BC,连结AA′交直线BC 于点D.若点B 是△AA′C 的重心,求ACBC 的值.(3)应用拓展:如图3,已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的2倍.将△ABC 绕点C 按顺时针方向旋转45°得到△A′B′C,A′C 所在直线交l 2于点D.求CD 的值.【分析】(1)过A 作AD⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,依据∠ACB=30°,AC =6,可得AD =12AC =3,进而得到AD =BC =3,即△ABC 是“等高底”三角形;(2)依据△ABC 是“等高底”三角形,BC 是“等底”,可得AD =BC ,依据△ABC 关于BC 所在直线的对称图形是△A′BC,点B 是△AA′C 的重心,即可得到BC =2BD ,设BD =x ,则AD =BC =2x ,CD =3x ,由勾股定理得AC =13x ,即可得到AC BC =13x 2x =132;(3)①当AB =2BC 时,故DF =CF =x ,根据AC =3x =25,求出x =253,画出图形分两种情况分别求得CD =2x =2310或CD =2AC =22;当AC =2BC 时,画出图形分两种情况讨论,求得CD =AB =BC =2.【自主解答】题目条件不明确或本身隐含条件是此类题型的特点,解题时,首先要仔细审题,打破思维定势,全面考虑问题,对题目中隐含的条件进行挖掘,这也是此类题型分类讨论的依据.2.(2018·山东菏泽中考改编)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的正整数是______________.类型三由位置不确定分类(2018·山东潍坊中考)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P,Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是( )【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的表达式,进一步即可求解.【自主解答】此类题型多为点、线、图形位置的不确定,解题时,依据位置的不同情况进行分类讨论,分类时容易遗漏,考虑问题时务必要全面.类型四由形状不确定分类(2018·湖北黄石中考)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6 cm,矩形ABCD中AB=2 cm,BC=10 cm,点C和点M重合,点B,C(M),N在同一直线上,令Rt△PMN 不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是( )【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒 1 cm的速度开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.【自主解答】此类题型主要是抓住图形特征进行讨论,如运动过程中对产生的形状不同进行讨论.选择不同的分类依据会给问题解决带来不一样的难易程度,所以选择分类依据很重要.3.(2018·云南中考)在△ABC 中,AB =34,AC =5,若BC 边上的高等于3,则BC 边的长为__________. 类型五 由对应关系不确定分类(2018·湖南常德中考)如图,已知二次函数的图象过点O(0,0),A(8,4),与x 轴交于另一点B ,且对称轴是直线x =3. (1)求该二次函数的表达式;(2)若M 是OB 上的一点,作MN∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ⊥x 轴,与抛物线交于Q.过A 作AC⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线表达式;(2)设M(t ,0),先求出直线OA ,直线AB ,直线MN 的表达式,再通过解方程组⎩⎪⎨⎪⎧y =12x ,y =2x -2t 得N(43t ,23t),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到S △AMN ,然后根据二次函数的性质解决问题; (3)设Q(m ,14m 2-32m),根据相似三角形的判定方法,分两种情况讨论,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【自主解答】4.(2018·新疆乌鲁木齐中考)在平面直角坐标系xOy 中,抛物线y =-14x 2+bx +c 经过点A(-2,0),B(8,0).(1)求抛物线的表达式;(2)点C 是抛物线与y 轴的交点,连结BC ,设点P 是抛物线上在第一象限内的点,PD⊥BC,垂足为点D. ①是否存在点P ,使线段PD 的长度最大?若存在,请求出点P 的坐标;若不存在,请说明理由; ②当△PDC 与△COA 相似时,求点P 的坐标.参考答案类型一【例1】 (1)由题意知 ⎩⎪⎨⎪⎧c =34,a -12+c =0,解得⎩⎪⎨⎪⎧a =-14,c =34,∴抛物线y 1的表达式为y 1=-14x 2-12x +34.∵抛物线y 1平移后得到抛物线y 2,且顶点为B(1,0), ∴抛物线y 2的表达式为y 2=-14(x -1)2,即y 2=-14x 2+12x -14.(2)抛物线y 2的对称轴l 为x =1,设T(1,t). 已知A(-3,0),C(0,34).如图,过点T 作TE ⊥y 轴于点E ,则 TC 2=TE 2+CE 2=12+(34-t)2=t 2-32t +2516,TA 2=AB 2+TB 2=(1+3)2+t 2=t 2+16,AC 2=15316.当TC =AC 时,即t 2-32t +2516=15316,解得t 1=3+1374或t 2=3-1374;当TA =AC 时,得t 2+16=15316,无解;当TA =TC 时,得t 2-32t +2516=t 2+16,解得t 3=-778.综上可知,在抛物线y 2的对称轴l 上存在点T ,使△TAC 是等腰三角形,此时T 点的坐标为T 1(1,3+1374),T 2(1,3-1374),T 3(1,-778). (3)设P(m ,-14m 2-12m +34),则Q(m ,-14m 2+12m -14).∵Q,R 关于x =1对称,∴R(2-m ,-14m 2+12m -14).情况一:当点P 在直线l 的左侧时, PQ =-14m 2-12m +34-(-14m 2+12m -14)=1-m ,QR =2-2m.又∵以P ,Q ,R 构成的三角形与△AMG 全等, 当PQ =GM 且QR =AM 时,m =0, 可求得P(0,34),即点P 与点C 重合,∴R(2,-14).设PR 的表达式为y =kx +b , 则有⎩⎪⎨⎪⎧b =34,2k +b =-14,解得⎩⎪⎨⎪⎧k =-12,b =34,即PR 的表达式为y =-12x +34.当PQ =AM 且QR =GM 时,无解. 情况二:当点P 在直线l 右侧时,P′Q′=-14m 2+12m -14-(-14m 2-12m +34)=m -1,Q′R′=2m -2,同理可得P′(2,-54),R′(0,-14),P′R′的表达式为y =-12x -14.综上所述,PR 的表达式为y =-12x +34或y =-12x -14.变式训练 1.C 类型二【例2】 (1)△ABC 是“等高底”三角形.理由如下:如图1,过A 作AD⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°.∵∠ACB=30°,AC =6,∴AD=12AC =3,∴AD =BC =3,即△ABC 是“等高底”三角形.(2)如图2,∵△ABC 是“等高底”三角形,BC 是“等底”,∴AD=BC.∵△ABC 关于BC 所在直线的对称图形是△A′BC, ∴∠ADC=90°.∵点B 是△AA′C 的重心,∴BC=2BD. 设BD =x ,则AD =BC =2x ,CD =3x , 由勾股定理得AC =13x , ∴AC BC =13x 2x =132. (3)①当AB =2BC 时,Ⅰ.如图3,作AE⊥BC 于E ,DF⊥AC 于F.∵“等高底”△ABC 的“等底”为BC ,l 1∥l 2,l 1与l 2之间的距离为2,AB =2BC , ∴BC=AE =2,AB =22, ∴BE=2,即EC =4,∴AC=2 5.∵△ABC 绕点C 按顺时针方向旋转45°得到△A′B′C, ∴∠DCF=45°. 设DF =CF =x.∵l 1∥l 2,∴∠ACE=∠DAF, ∴DF AF =AE CE =12,即AF =2x , ∴AC=3x =25,∴x=235,CD =2x =2310.Ⅱ.如图4,此时△ABC 等腰直角三角形.∵△ABC 绕点C 按顺时针方向旋转45°得到△A′B′C, ∴△ACD 是等腰直角三角形, ∴CD=2AC =2 2. ②当AC =2BC 时,Ⅰ.如图5,此时△ABC 是等腰直角三角形.∵△ABC 绕点C 按顺时针方向旋转45°得到△A′B′C, ∴A′C⊥l 1,∴CD=AB =BC =2. Ⅱ.如图6,作AE⊥BC 于E ,则AE =BC.∴AC=2BC =2AE ,∴∠ACE=45°,∴△ABC 绕点C 按顺时针方向旋转45°,得到△A′B′C 时,点A′在直线l 1上, ∴A′C∥l 2,即直线A′C 与l 2无交点. 综上所述,CD 的值为2310,22,2.变式训练 2.15或43 类型三【例3】 当0≤t<2时,S =12×2t×32×(4-t)=-32t 2+23t ;当2≤t<4时,S =12×4×32×(4-t)=-3t +4 3.只有选项D 的图形符合.故选D. 类型四【例4】 ∵∠P=90°,PM =PN ,∴∠PMN=∠PNM=45°. 由题意得CM =x. 分三种情况:①当0≤x≤2时,如图1,边CD 与PM 交于点E.∵∠PMN=45°,∴△MEC 是等腰直角三角形, 此时矩形ABCD 与△PMN 重叠部分是△EMC, ∴y=S △EMC =12CM·CE=12x 2.故选项B 和D 不正确;②如图2,当D 在边PN 上时,过P 作PF⊥MN 于F ,交AD 于G.∵∠N=45°,CD =2,∴CN=CD =2, ∴CM=6-2=4,即此时x =4.当2<x≤4时,如图3,矩形ABCD 与△PMN 重叠部分是四边形EMCD ,过E 作EF⊥MN 于F ,∴EF=MF =2,∴ED=CF =x -2,∴y=S 梯形EMCD =12CD·(DE+CM)=12×2×(x-2+x)=2x -2;③当4<x≤6时,如图4,矩形ABCD 与△PMN 重叠部分是五边形EMCGF ,过E 作EH⊥MN 于H ,∴EH=MH =2,DE =CH =x -2, ∵MN=6,CM =x ,∴CG=CN =6-x , ∴DF=DG =2-(6-x)=x -4,∴y=S 梯形EMCD -S △FDG =12CD(DE +CM)-12DG 2=12×2×(x-2+x)-12(x -4)2=-12x 2+6x -10.故选项A 正确,故选A. 变式训练 3.1或9 类型五【例5】 (1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0).设抛物线表达式为y =ax(x -6),把A(8,4)代入得a·8×2=4,解得a =14,∴抛物线表达式为y =14x(x -6),即y =14x 2-32x.(2)设M(t ,0),易得直线OA 的表达式为y =12x.设直线AB 的表达式为y =kx +b ,把B(6,0),A(8,4)代入得⎩⎪⎨⎪⎧6k +b =0,8k +b =4,解得⎩⎪⎨⎪⎧k =2,b =-12,∴直线AB 的表达式为y =2x -12. ∵MN∥AB,∴设直线MN 的表达式为y =2x +n , 把M(t ,0)代入得2t +n =0,解得n =-2t , ∴直线MN 的表达式为y =2x -2t. 解方程组⎩⎪⎨⎪⎧y =12x ,y =2x -2t得⎩⎪⎨⎪⎧x =43t ,y =23t ,则N(43t ,23t),∴S △AMN =S △AOM -S △NOM =12·4·t-12·t·23t =-13t 2+2t=-13(t -3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0). (3)设Q(m ,14m 2-32m).∵∠OPQ=∠ACO,∴当PQ OC =POAC 时,△PQO∽△COA,即PQ 8=PO 4, ∴PQ =2PO ,即|14m 2-32m|=2|m|,解方程14m 2-32m =2m 得m 1=0(舍去),m 2=14,此时P 点坐标为(14,28);解方程14m 2-32m =-2m 得m 1=0(舍去),m 2=-2,此时P 点坐标为(-2,4). 当PQ AC =POOC 时,△PQO∽△CAO, 即PQ 4=PO 8, ∴PQ=12PO ,即|14m 2-32m|=12|m|,解方程14m 2-32m =12m 得m 1=0(舍去),m 2=8(舍去),解方程14m 2-32m =-12m 得m 1=0(舍去),m 2=4,此时P 点坐标为(4,-2).综上所述,P 点坐标为(14,28)或(-2,4)或(4,-2). 变式训练4.解:(1)把A(-2,0),B(8,0)代入抛物线y =-14x 2+bx +c 得⎩⎪⎨⎪⎧-1-2b +c =0,-16+8b +c =0,解得⎩⎪⎨⎪⎧b =32,c =4,∴抛物线的表达式为y =-14x 2+32x +4.(2)由(1)知C(0,4),∵B(8,0), 易得直线BC 的表达式为y =-12x +4.①如图1,过P 作PG⊥x 轴于G ,PG 交BC 于E.在Rt△BOC 中,OC =4,OB =8, ∴BC=42+82=4 5.在Rt△PDE 中,PD =PE·sin∠PED=PE·sin∠OCB=255PE ,∴当线段PE 最长时,PD 的长度最大. 设P(t ,-14t 2+32t +4),则E(t ,-12t +4),∴PG=-14t 2+32t +4,EG =-12t +4,∴PE=PG -EG =(-14t 2+32t +4)-(-12t +4)=-14t 2+2t =-14(t -4)2+4(0<t <8).当t =4时,PE 有最大值是4,此时P(4,6), ∴PD=255×4=855,即当P(4,6)时,PD 的长度最大,最大值是855.②∵A(-2,0),B(8,0),C(0,4), ∴OA=2,OB =8,OC =4,∴AC 2=22+42=20,AB 2=(2+8)2=100,BC 2=42+82=80, ∴AC 2+BC 2=AB 2,∴∠ACB=90°,∴△COA∽△BOC,当△PDC 与△COA 相似时,就有△PDC 与△BOC 相似. ∵相似三角形的对应角相等, ∴∠PCD=∠CBO 或∠PCD=∠BCO.(Ⅰ)若∠PCD=∠CBO 时,即Rt△PDC∽Rt△COB, 此时CP∥OB. ∵C(0,4),∴y P =4, ∴-14t 2+32t +4=4,解得x 1=6,x 2=0(舍去),即Rt△PDC∽Rt△COB 时,P(6,4).(Ⅱ)若∠PCD=∠BCO 时,即Rt△PDC∽Rt△BOC,如图2,过P 作x 轴的垂线PG ,交直线BC 于F ,过P 作PN⊥y 轴于N.∴PF∥OC,∴∠PFC=∠BCO, ∴∠PCD=∠PFC,∴PC=PF.设P(n ,-14n 2+32n +4),则PF =-14n 2+2n.Rt△PNC 中,PC 2=PN 2+CN 2=PF 2,∴n 2+(-14n 2+32n +4-4)2=(-14n 2+2n)2,解得n =3,即Rt△PDC∽Rt△BOC 时,P(3,254).综上所述,当△PDC 与△COA 相似时,点P 的坐标为(6,4)或(3,254).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法技巧专题(三) 整体思想训练【方法解读】整体思想是研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.
1.[2018·乐山] 已知实数a,b满足a+b=2,ab=,则a-b=()
A.1
B.-
C.±1
D.±
2.[2018·泸州] 如图F3-1,▱ABCD的对角线AC,BD相交于点O,E是AB的中点,且AE+EO=4,则▱ABCD的周长为()
图F3-1
A.20
B.16
C.12
D.8
3.[2018·济宁] 如图F3-2,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是()
图F3-2
A.50°
B.55°
C.60°
D.65°
4.[2018·襄阳] 如图F3-3,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3 cm,△ABD的周长为13 cm,则△ABC的周长为()
图F3-3
A.16 cm
B.19 cm
C.22 cm
D.25 cm
5.[2018·岳阳] 已知a2+2a=1,则3(a2+2a)+2的值为.
6.[2018·扬州] 若m是方程2x2-3x-1=0的一个根,则6m2-9m+2015的值为.
7.[2018·成都] x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.
8.[2018·江西] 一元二次方程x2-4x+2=0的两根为x1,x2,则-4x1+2x1x2的值为.
9.[2018·黄冈] 若a-=,则a2+的值为.
10.计算(1----)(++++)-(1-----)(+++)的结果是.
11.先化简,再求值:(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m是方程x2+x-2=0的根.
12.已知(a+b)2=7,(a-b)2=3,求下列各式的值:
(1)a2+b2和ab;
(2)a4+b4;
(3)+.
参考答案
1.C [解析] ∵a+b=2,∴(a+b )2=4,即a 2+2ab+b 2=4,又∵ab=,∴(a-b )2=(a+b )2
-4ab=4-4×=1,∴a-b=±1.故选C .
注:此题把“a+b ”,“ab ”分别当作整体.
2.B [解析] 因为▱ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点.
又因为E 是AB 的中点,所以AE=AB ,EO 是△ABC 的中位线,
所以EO=BC.
因为AE+EO=4,
所以AB+BC=2(AE+EO )=8.
在▱ABCD 中,AD=BC ,AB=CD ,
所以周长为2(AB+BC )=2×8=16.故选B .
注:此题把“AB+BC ”当作整体.
3.C [解析] 根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.
∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
∴∠BCD+∠CDE=540°-300°=240°.
∵∠BCD ,∠CDE 的平分线在五边形内相交于点P ,
∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°,
∴∠P=180°-120°=60°.故选C.
注:此题把“∠BCD+∠CDE”当作整体.
4.B[解析] 由尺规作图可知,MN是线段AC的垂直平分线,∴AD=CD,AC=2AE=6(cm),
∴AB+BC=AB+BD+DC=AB+BD+AD=C△ABD=13 cm,
∴C△ABC=AB+BC+AC=13+6=19(cm).故选B.
注:此题把“AB+BC”当作整体.
5.5[解析] ∵a2+2a=1,∴3(a2+2a)+2=3+2=5.
注:此题把“a2+2a”当作整体.
6.2018[解析] 由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.注:此题把“2m2-3m”当作整体.
7.0.36[解析] ∵x+y=0.2①,x+3y=1②,
①+②,得2x+4y=1.2,∴x+2y=0.6,
∴x2+4xy+4y2=(x+2y)2=0.36.
注:此题把“x+y”“x+3y”“x+2y”分别当作整体.
8.2[解析] ∵x2-4x+2=0的两根为x1,x2,∴x1x2=2,-4x1+2=0,即-4x1=-2,
∴-4x1+2x1x2=-2+2×2=2.
9.8[解析] ∵a-=,∴原式=a2+-2·a·+2·a·=(a-)2+2=()2+2=8.
注:此题把“a-”当作整体.
10.[解析] 设+++=a,则原式=(1-a)·(a+)-(1-a-)=+a-a2-a+a2=.
注:此题中的整体是“+++”.
11.解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m2+m-1).∵m是方程x2+x-2=0的根,
∴m2+m-2=0,∴m2+m=2,
∴原式=2×(2-1)=2.
注:此题把“m2+m”当作整体.
12.解:(1)依题意得a2+2ab+b2=7①,a2-2ab+b2=3②.
①+②,得2(a2+b2)=10,即a2+b2=5.
①-②,得4ab=4,即ab=1.
(2)a4+b4=(a2+b2)2-2(ab)2=52-2×12=25-2=23.
(3)原式=+
===.
注:此题把“ab”“a2+b2”分别当作整体.。

相关文档
最新文档