10-11学年高二下期期末考试数学(理科)试卷

合集下载

郑州市高二下学期期末考试理科数学试题有答案

郑州市高二下学期期末考试理科数学试题有答案

郑州市2010—2011学年下期期末考试高二数学(理科)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个答案中,只有一项是符合题目要求的) 1.复数31ii--等于( ) A .12i + B .12i - C .2i + D .2i -2. 已知随机变量X 服从正态分布(2,1)N ,且(13)0.6826P x <<=,则(3)P x >=( ) A .0.1588 B .0.1587 C .0.1586 D .0.1585 3. 用数学归纳法证明等式(3)(4)123(3)(*)2n n n n N +++++++=∈时,第一步验证1n =时,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4 4.给出下面四个命题,其中正确的一个是( ) A .回归直线y bx a =+至少经过样本点11(,)x y ,22(,)x y ,,(,)n n x y 中的一个B .在线性回归模型中,相关指数20.64R =,说明预报变量对解释变量个贡献率是64% C .相关指数2R 用来刻画回归效果,2R 越小,则残差平方的和越大,模型的拟合效果越好 D .随机误差e 是引起预报值与真实值之间存在误差的原因之一 5.若20112011012011(1)()x a a x a x x R -=+++∈,则12011a a ++=( )A .2B .0C .1-D .2-6.下表提供了某厂节能降耗技术改造后生产A 产品过程中记录的产量x (吨)和相应的生产能耗y (吨煤)的几组数据:根据以上提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,那么表中t 的值为( ) A .3 B .3.15 C .3.5 D .4.57.一物体在力2()325F x x x =-+(力单位:N ,位移单位:m )的作用下沿与()F x 相同的方向由5x =m 沿直线运动到10x =m 处做的功是( )A .925JB .850JC .825JD .800J8.将两枚质地均匀的骰子各掷一次,设事件A={两个点数互不相同},B={至少出现一个5点},则概率()|P A B 等于( )A .1011 B .511 C .56 D .11369.一个建筑队承包了两项工程,每项工程均有三项任务,由于工序的要求,第一项工程必须按照任务A 、任务B 、任务C 的先后顺序进行,第二项工程必须按照任务D 、任务E 、任务F 的先后顺序进行,建筑队每次只能完成一项任务,但第一项工程和第二项工程可以自由交替进行,若公司将两项工程做完,共有多少种安排方法( )A .12B .30C .20D .4810.已知函数()()f x x R ∈的图象上任一点00(,)x y 处的切线方程为0000(2)(1)()y y x x x x -=---,那么函数()()f x x R ∈的单调递减区间可能是( )A .[)1,+∞B .(],2-∞C .()1,2D .[)2,+∞11.口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列{}n a ,11n n a n -⎧=⎨⎩,第次摸取红球,第次摸取白球,如果n S 为数列{}n a 的前n 项和,那么53S =的概率为( ) A .32351233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ B .23251233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ C .4451233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ D .4151233C ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭12.已知()f x 是定义在R 上的函数,其导函数'()f x 满足'()()()f x f x x R <∈,则( ) A .22011(2)(0),(2011)(0)f e f f e f >> B .22011(2)(0),(2011)(0)f e f f ef <> C .22011(2)(0),(2011)(0)f e f f ef ><D .22011(2)(0),(2011)(0)f e f f ef <<二、填空题:(本大题共4小题,每小题5分,共20分)13. 已知离散型随机变量ξ的分布列如下,则a 的值是____________.14.已知423401234(12)x a a x a x a x a x +=++++,则1234234a a a a -+-=__________.15.已知2()2'(1)f x x xf =+,则'(2)f =_______.16.正整数按右表的规律排列,则上起第n 行, 左起第1n +列的数应为__________(*)n N ∈.三、解答题:(共6大题,共70分)17.(本小题满分10分) ……已知二项式2((*)n x n N ∈展开式中,前三项的二项式系数和是56.(Ⅰ)求n 的值;(Ⅱ)求展开式中的常数项.18.(本小题满分12分)试分别用综合法、分析法、反证法三种方法之一,证明下列结论:已知01a <<,则1491a a+≥-.19.(本小题满分12分)已知函数32()f x ax bx =+的图象经过点(1,4)M ,曲线在点M 处的切线恰好与直线90x y +=垂直. (Ⅰ)求实数a b 、的值; Ⅱ)若函数()f x 在区间[],1m m +上单调递增,求m 的取值范围. 20.(本小题满分12分)北京时间2011年3月11日13:46,日本本州岛附近发生9.0级强烈地震,强震导致福岛第一核电站发生爆炸,爆炸导致的放射性物质泄漏,日本东京电力公司为反应堆注水冷却燃料池,于是产生了大量的废水.4月4日,东京电力公司决定直接向海中排放上万吨高核辐射浓度的污染水,4月7日玉筋鱼被查出放射性铯137超标.《中华人民共和国环境保护法》规定食品的铯含量不得超过1.00ppm .现从一批玉筋鱼中随机抽出15条作为样本,经检验各条鱼的铯含量的茎叶图(以小数点前一位数字为茎,小数点后一数字为叶)如下:(Ⅰ)若某检查人员从这15条鱼中随机抽出3条,求恰有1条鱼铯含量超标的概率;(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据,若从这批鱼中任选3条,记ξ表示抽到的鱼中铯含量超标的鱼的条数,求ξ分布列和数学期E ξ.1 2 4 3 5 6 7 8 9 16151410 11 12 13 17 18 19 20 23 24 222125 0 11 32 1 5 9 8 73 2 1 2 3 5 4玉筋鱼的含量21.(本小题满分12分)为了考察某种药物预防疾病的效果,工作人员进行了动物试验,得到如下丢失数据的列联表:药物试验列联表工作人员曾用分层抽样的方法从50只服用药的动物中抽查10个进行重点跟踪试验,知道其中患病的有2只.求出列联表中数据x y M N 、、、的值; 能够有97.5%的把握认为药物有效吗? 参考数据参考公式:22()()()()()n ad bc K a b c d a c b d -=++++22.(本小题满分12分)已知函数ln 1(),x af x a R x+-=∈(Ⅰ)求()f x 的极值;(Ⅱ)若ln 0x kx -<在()0,+∞上恒成立,求k 的取值范围;(Ⅲ)已知10x >,20x >,且12x x e +<,求证:1212x x x x +>.2010~2011学年度下期期末考试高中二年级 理科数学 参考答案一、选择题CBDDC ACACC CD 二、填空题13.0.1; 14. -8;15.0; 16.(1)n n +. 三.解答题17.解: (1)012C C C 56n n n ++=,………………………………………2分2(1)15611002n n n n n -⇒++=⇒+-=………………………4分 10,11n n ⇒==-(舍去).…………………………………………5分(2) 210(x 展开式的第1r +项是520210210101()()2rrrrr r C x C x --=,…………………………………7分520082rr -=⇒=, ………………………………………9分 故展开式中的常数项是8810145()2256C =. ………………10分 18.解:综合法:01a <<,所以1414()(1)11a a a a a a+=++--- ………………2分 1451a aa a-=++- ………………4分5≥+ ………………8分 549.=+= ………………10分当且仅当141a aa a -=-时取等,即13a =时等号成立. --------------12分 分析法:221491(1)49(1)9610(31)0.a aa a a a a a a +≥-⇐-+≥-⇐-+≥⇐-≥ 当且仅当141a aa a -=-时取等,即13a =时等号成立.(比照给分) 19.解析:(1)'2()32f x ax bx =+,由题意可得4a b +=, -----------2分329a b +=, -----------4分1,3a b ==, ----------6分(2) 32()3f x x x =+,所以'2()363(2)f x x x x x =+=+, -----------8分 易知()f x 在(,2)-∞-和(0,)+∞上单调递增,所以12m +≤-或0m ≥. ………………10分 即3m ≤-或0m ≥. ---------12分20.解: (1)记“从这15条鱼中随机抽出3条,求恰有1条鱼铯含量超标”为事件A,则1251031545()91C C P A C ==,………………2分所以从这15条鱼中随机抽出3条,求恰有1条鱼铯含量超标的概率4591. --------4分 (2)由题意可知,这批鱼铯含量超标的概率是51153P ==,…………6分 ξ的取值为0,1,2,3,其分布列如下:------------------------------------10分所以ξ1(3,)3B .所以E ξ=1.-------------------12分21.解析:(1) 由题意知服用药的动物中每只被抽到的概率为51,…………2分 则10=x .∴70,30,40,10====N M y x . ……………………6分 (一个值1分,计4分)(2)76.450507030)300800(10022≈⨯⨯⨯-=K ,…………..10分(式子2分,结果2分)由参考数据知不能够以97.5%的把握认为药物有效. …………..12分22.解析:(I )2ln )(xxa x f -=',令0)(='x f ,得a e x =.------------2分 当'(0,),()0,()a x e f x f x ∈>时为增函数; 当'(,),()0,()a x e f x f x ∈+∞<时为减函数, 可知)(x f 有极大值为a a e e f -=)(. -------------------4分 (Ⅱ)欲使0ln <-kx x 在),0(+∞上恒成立,只需k xx<ln 在),0(+∞上恒成立, 设)0(ln )(>=x xxx g , ………………6分 由(Ⅰ)知,)(x g 在e x =处取最大值e 1,所以ek 1>.--------------------8分(Ⅲ)0121>>+>x x x e ,由上可知x xx f ln )(=在),0(e 上单调递增,所以121121ln()ln x x x x x x +>+,即121211ln )ln(x x x x x x >++, ………………10分 同理221212ln )ln(x x x x x x >++,两式相加得)ln(ln ln )ln(212121x x x x x x =+>+,所以2121x x x x >+. --------------------------12分。

高二下学期数学期末考试题理科(解析版)

高二下学期数学期末考试题理科(解析版)



, ,
所求线性回归方程为 ;
(2)由(1)知, ,故 年至 年该地区居民家庭人均纯收入逐年增加,平均每年增加 万元,
A. B.
C. D.
【答案】A
【解析】
【分析】
先求导数,再利用二次求导研究导函数零点以及对应区间导函数符号,即可判断选择.
【详解】
因此当 时, ;当 时, ;当 时, ;
故选:A
【点睛】本题考查利用导数研究函数单调性以及零点,考查基本分析判断能力,属中档题.
8.设函数 在区间 上单调递减,则实数 的取值范围是()
是偶函数,所以当 时, ,当 时, ,
所以使得 成立的 的取值范围是 .
故答案为:
【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.
三、解答题(本题共6小题,共70分)
17.在平面直角坐标系xOy中,以原点O为极点, 轴的非负半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,曲线 的参数方程为 ( 为参数),若曲线 与 相交于A、B两点.
【答案】8和9
【解析】
【分析】
根据 求得 ,利用二项式系数的性质可得展开式中二项式系数的最大.
【详解】解:由题意可得, ,即 ,解得 ,
∵ ,
故展开式中二项式系数的最大的项为第8项或第9项,
故答案为:8和9.
【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.
P(X=50)= = ,
∴X的分布列为:
X
30
35
40
45
50
P

高二下期末数学试卷(理科)含答案解析

高二下期末数学试卷(理科)含答案解析

高二(下)期末数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在毎小题给出的四个选项中,只有一项是符合題目要求的.1.复数z=(i为虚数单位)的共轭复数为()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i2.以下三个命题:(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;(2)随机变量X~N(μ,σ2),当μ一定时,σ越小,其密度函数图象越“矮胖”;(3)在回归分析中,比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的,模型的拟合效果越好.其中其命題的个数为()A.0 B.1 C.2 D.33.某射击选手每次射击击中目标的概率是0.8,如果他连续射击4次,则这名射手恰有3次击中目标的概率是()A.C0.83×0.2 B.C0.83C.0.83×0.2 D.C0.8×0.24.如果随机变量ξ~N(﹣1,σ2),且P(﹣2≤ξ≤﹣1)=0.3,则P(ξ≥0)=()A.0.4 B.0.3 C.0.2 D.0.15.用反证法证明命题:“若整数系数一元二次方程ax2+bx+c=0(a≠o)有有理根,那么a,b,c中至少有一个是偶数”时,应假设()A.a,b,c中至多一个是偶数B.a,b,c中至少一个是奇数C.a,b,c中全是奇数D.a,b,c中恰有一个偶数6.某校开设8门选修课程供学生选修,其中A,B,C三门选修课由于上课时间相同,至多选一门.学校规定,每位同学选修三门,则每位同学不同的选修方案种数是()A.30 B.40 C.90 D.2407.已知随机变量ξ,η满足2ξ+η=9且ξ~B(5,0.4),则E(η),D(η)分别是()A.2,1.2 B.2,2.4 C.5,2.4 D.5,4.88.2016年6月9日是“端午节”,小明的妈妈为小明煮了6个粽子,其中腊肉馅2个,豆沙馅4个,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=()A.B.C.D.9.由曲线y=x,y=x3围成的封闭图形的面积为()A.B.C.D.10.设f(x)是定义在R上的减函数,其导函数为f′(x),且满足+x<2016.下面不等式正确的是()A.f(x)>0 B.f(x)<0 C.2f D.2f二、填空题:本大题共5小题,毎小题5分,共25分.11.如图所示,在复平面内,复数z1和z2对应的点分别是A和B,则复数z1•z2对应的点在第_______象限.12.函数f(x)=x3﹣3x的单调减区间为_______.若y与x的线性回归方程为的值为=﹣2x+,则的值为_______.14.用1,2,3,4,5,6这六个数字组成没有重复数字的六位数,其中1,3,5三个数字互不相邻的六位数有_______个.15.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(﹣1,2),解关于x的不等式ax2﹣bx+c>0”,给出如下一种解法:解:由ax2+bx+c>0的解集为(﹣1,2),得a(﹣x)2+b(﹣x)+c>0的解集为(﹣2,1),即关于x的不等式ax2﹣bx+c>0的解集为(﹣2,1).参考上述解法,若关于x的不等式+<0的解集为(﹣1,﹣)∪(,1),则关于x的不等式+<0的解集为_______.三、解答题:本大题共6小題,共75分.解答应写出文字说明、证明过程或演算步骤16.巳知a=sinxdx,若二项式(ax﹣)n的展开式中各项系数之和为256.(1)求展开式中二项式系数最大的项;(2)求展开式中的常数项.17.到“北上广”创业是很多大学生的梦想,从某大学随机抽查了100人进行了问卷调查,得22己知在这100人中随机抽取1人,抽到想到“北上广”创业的概率是.(1)请将上面的2×2列联表补充完整;(2)能否在犯错误的概率不超过0.001的前提下,认为大学生想到“北上广”创业与性别有关?并说明你的理由;(3)经进一步调查发现,在想到“北上广”创业的20名女大学生中,有5人想到“广州”创业.若从想到“北上广”创业的20名女大学生中任选3人,求在选出的3人中少有2人想到“广州”创业的概率.(參考公式K2=,其中n=a+b+c+d)18.已知函数f(x)=e2x﹣(x﹣1)2,(e≈2.71828)(1 )求曲线y=f(x)在点(l,f(1))处的切线方程;(2)设方程f(x)=m﹣1+4x﹣x2在[﹣1,2]上恰有两个不同的实根,求变数m的取值范围.19.高二学生即将升入高三,高三学生参加高校自主招生考试是升入理想大学的一条途径.甲、乙、丙三位同学一起参某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该校的预录取生(可在高考中加分录取),两次考试过程相互独立,根据甲中、乙、丙三位同学的平时成绩分析,甲,乙,两三位同学能通过笔试的概率分别是,,;能通过面试的概率分别是,,.(1)求甲、乙、丙三位同学恰有两位通过笔试的概率;(2)设甲、乙、丙三位同学各自经过两次考试后,能被该高校录取的人数为X,求随机变量X的分布列和数学期望E(X).20.某同学在研究三角形的性质时,发现了有些三角形的三边长有以下规律:①3(3×4+4×5+5×3)≤(3+4+5)2<4(3×4+4×5+5×3);②3(6×8+8×9+9×6)≤(6+8+9)2<4(6×8+8×9+9×6);③3(3×4+4×6+6×3)≤(3+4+6)2<4(3×4+4×6+6×3).分析以上各式的共同特征,试猜想出关于任一三角形三边长a,b,c的一般性的不等式结论,并加以证明.21.已知函数f(x)=ln(x+a)(a∈R),g(x)=.(1)当a=1时,证明:f(x)>g(x)对于任意的x∈(0,+∞)都成立;(2)求F(x)=f(x)﹣g(x)的极值点;(3)设c1=1,c n+1=ln(c n+1),用数学归纳法证明:c n>.2015-2016学年山东省济宁市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在毎小题给出的四个选项中,只有一项是符合題目要求的.1.复数z=(i为虚数单位)的共轭复数为()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,则复数z的共轭复数可求.【解答】解:由复数z==,则复数z的共轭复数为:1+i.故选:D.2.以下三个命题:(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;(2)随机变量X~N(μ,σ2),当μ一定时,σ越小,其密度函数图象越“矮胖”;(3)在回归分析中,比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的,模型的拟合效果越好.其中其命題的个数为()A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】对用来衡量模拟效果好坏的几个量,即相关指数、残差平方和、相关系数及残差图中带状区域的宽窄进行分析,残差平方和越小越好,带状区域的宽度越窄,说明模型的拟合精度越高,R2越大,模型的拟合效果越好,模型的拟合效果越好,即可判断(1),(3);利用正态曲线的性质,可判断(2)的正确性.【解答】解:用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,故(1)正确;正态分布N(μ,σ2)曲线中,μ一定时,σ越大,曲线越“矮胖”;σ越小,曲线越“瘦高”,表示取值越集中,故(2)不正确;可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故(3)正确.故选:C.3.某射击选手每次射击击中目标的概率是0.8,如果他连续射击4次,则这名射手恰有3次击中目标的概率是()A.C0.83×0.2 B.C0.83C.0.83×0.2 D.C0.8×0.2【考点】n次独立重复试验中恰好发生k次的概率.【分析】由已知条件利用n次独立重复试验中事件A恰好发生k次的概率计算公式求解.【解答】解:∵某射击选手每次射击击中目标的概率是0.8,他连续射击4次,∴这名射手恰有3次击中目标的概率是:p=.故选:A.4.如果随机变量ξ~N(﹣1,σ2),且P(﹣2≤ξ≤﹣1)=0.3,则P(ξ≥0)=()A.0.4 B.0.3 C.0.2 D.0.1【考点】正态分布曲线的特点及曲线所表示的意义.【分析】利用ξ~N(﹣1,σ2),可得图象关于x=﹣1对称,结合P(﹣2≤ξ≤﹣1)=0.3,即可求得结论.【解答】解:∵ξ~N(﹣1,σ2),∴图象关于x=﹣1对称∵P(﹣2≤ξ≤﹣1)=0.3,∴P(﹣1≤ξ≤0)=0.3,∴P(ξ≥0)=0.5﹣0.3=0.2.故选:C.5.用反证法证明命题:“若整数系数一元二次方程ax2+bx+c=0(a≠o)有有理根,那么a,b,c中至少有一个是偶数”时,应假设()A.a,b,c中至多一个是偶数B.a,b,c中至少一个是奇数C.a,b,c中全是奇数D.a,b,c中恰有一个偶数【考点】反证法与放缩法.【分析】用反证法证明数学命题时,应先假设命题的否定成立,求得命题:“a,b,c中至少有一个是偶数”的否定,即可得到结论.【解答】解:由于用反证法证明数学命题时,应先把要证的结论进行否定,得到要证的结论的反面.而命题:“a,b,c中至少有一个是偶数”的否定为:“a,b,c中全是奇数”,故选C.6.某校开设8门选修课程供学生选修,其中A,B,C三门选修课由于上课时间相同,至多选一门.学校规定,每位同学选修三门,则每位同学不同的选修方案种数是()A.30 B.40 C.90 D.240【考点】排列、组合及简单计数问题.【分析】A,B,C三门由于上课时间相同至多选一门,A,B,C三门课都不选,A,B,C 中选一门,剩余5门课中选两门,根据分类计数原理得到结果.【解答】解:∵A,B,C三门由于上课时间相同,至多选一门第一类A,B,C三门课都不选,有C53=10种方案;第二类A,B,C中选一门,剩余5门课中选两门,有C31C52=30种方案.∴根据分类计数原理知共有10+30=40种方案.故选:B7.已知随机变量ξ,η满足2ξ+η=9且ξ~B(5,0.4),则E(η),D(η)分别是()A.2,1.2 B.2,2.4 C.5,2.4 D.5,4.8【考点】离散型随机变量的期望与方差.【分析】根据变量ξ~B(5,0.4)可以根据公式做出这组变量的均值与方差,随机变量2ξ+η=9,知道变量η也符合二项分布,故可得结论.【解答】解:∵ξ~B(5,0.4),∴Eξ=5×0.4=2,Dξ=5×0.4×0.6=1.2,∵2ξ+η=9,∴η=9﹣2ξ∴Eη=E(9﹣2ξ)=9﹣4=5,Dη=D(9﹣2ξ)=4.8,故选:D.8.2016年6月9日是“端午节”,小明的妈妈为小明煮了6个粽子,其中腊肉馅2个,豆沙馅4个,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=()A.B.C.D.【考点】条件概率与独立事件.【分析】由题意,P(A)==,P(AB)==,由公式,即可得出结论.【解答】解:由题意,P(A)==,P(AB)==,∴P(B|A)==,故选:B.9.由曲线y=x,y=x3围成的封闭图形的面积为()A.B.C.D.【考点】定积分在求面积中的应用.【分析】由题意,画出图形,利用定积分表示封闭图形的面积,然后计算.【解答】解:由曲线y=x,y=x3围成的封闭图形如图,所以由曲线y=x,y=x3围成的封闭图形的面积为2=;故选:C.10.设f(x)是定义在R上的减函数,其导函数为f′(x),且满足+x<2016.下面不等式正确的是()A.f(x)>0 B.f(x)<0 C.2f D.2f【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=(x﹣2016)f(x),求出g(x)的单调性,从而求出答案.【解答】解:∵f(x)是定义在R上的减函数,其导函数为f′(x),∴f′(x)<0在R恒成立,∵+x<2016,∴f(x)+(x﹣2016)f′(x)>0,令g(x)=(x﹣2016)f(x),则g′(x)=f(x)+(x﹣2016)f′(x)>0,∴g(x)在R递增,∴g,即2f,故选:C.二、填空题:本大题共5小题,毎小题5分,共25分.11.如图所示,在复平面内,复数z1和z2对应的点分别是A和B,则复数z1•z2对应的点在第四象限.【考点】复数代数形式的乘除运算.【分析】由图可知:z1=﹣2﹣i,z2=i,则z1•z2=1﹣2i,求出在复平面内,复数z1•z2对应的点的坐标,则答案可求.【解答】解:由图可知:z1=﹣2﹣i,z2=i,则z1•z2=i(﹣2﹣i)=1﹣2i,在复平面内,复数z1•z2对应的点的坐标为:(1,﹣2),位于第四象限.故答案为:四.12.函数f(x)=x3﹣3x的单调减区间为(﹣1,1).【考点】利用导数研究函数的单调性.【分析】求函数的导函数,令导函数小于零,解此不等式即可求得函数y=x3﹣3x的单调递减区间.【解答】解:令y′=3x2﹣3<0解得﹣1<x<1,∴函数y=x3﹣3x的单调递减区间是(﹣1,1).故答案为:(﹣1,1).若y与x的线性回归方程为的值为=﹣2x+,则的值为 1.5.【考点】线性回归方程.【分析】求出样本中心坐标,代入回归方程求出.【解答】解:==﹣1,==3.5,由回归直线方程过样本中心点(,)即(﹣1,3.5),则=+2=3.5﹣2=1.5,故答案为:1.5.14.用1,2,3,4,5,6这六个数字组成没有重复数字的六位数,其中1,3,5三个数字互不相邻的六位数有144个.【考点】排列、组合及简单计数问题.【分析】将1,3,5三个数字插入到2,4,6三个数字排列后所形成的4个空中的3个,问题得以解决.【解答】解:将1,3,5三个数字插入到2,4,6三个数字排列后所形成的4个空中的3个,故有A33A43=144个,故答案为:144.15.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(﹣1,2),解关于x的不等式ax2﹣bx+c>0”,给出如下一种解法:解:由ax2+bx+c>0的解集为(﹣1,2),得a(﹣x)2+b(﹣x)+c>0的解集为(﹣2,1),即关于x的不等式ax2﹣bx+c>0的解集为(﹣2,1).参考上述解法,若关于x的不等式+<0的解集为(﹣1,﹣)∪(,1),则关于x的不等式+<0的解集为(﹣3,﹣1)∪(1,2).【考点】进行简单的合情推理;其他不等式的解法.【分析】关于x的不等式+<0可看成前者不等式中的x用代入可得不等式+<0的解集.【解答】解:若关于x的不等式+<0的解集为(﹣1,﹣)∪(,1),则关于x的不等式+<0可看成前者不等式中的x用代入可得,则∈(﹣1,﹣)∪(,1),则x∈(﹣3,﹣1)∪(1,2),故答案为:(﹣3,﹣1)∪(1,2).三、解答题:本大题共6小題,共75分.解答应写出文字说明、证明过程或演算步骤16.巳知a=sinxdx,若二项式(ax﹣)n的展开式中各项系数之和为256.(1)求展开式中二项式系数最大的项;(2)求展开式中的常数项.【考点】二项式系数的性质;定积分.【分析】(Ⅰ)根据定积分的计算求出a的值,根据二项式系数之和为256求得n=8,则展开式中二项式系数最大的项为第5项,根据通项公式即可求出.(Ⅱ)在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得展开式中的常数项.【解答】解:(Ⅰ)a=sinxdx=﹣cosx|=﹣(﹣1﹣1)=3,∵二项式(3x﹣)n的展开式中各项系数之和为256,∴2n=256,∴n=8,∴展开式的通项公式为T r+1=(﹣1)r C8r38﹣r•.∴它的二项式系数最大的项为第五项,即T5=(﹣1)4C8438﹣4•=5670;(Ⅱ)令8﹣=0,解得r=6,∴展开式中的常数项(﹣1)6C8638﹣6=252.17.到“北上广”创业是很多大学生的梦想,从某大学随机抽查了100人进行了问卷调查,得22己知在这100人中随机抽取1人,抽到想到“北上广”创业的概率是.(1)请将上面的2×2列联表补充完整;(2)能否在犯错误的概率不超过0.001的前提下,认为大学生想到“北上广”创业与性别有关?并说明你的理由;(3)经进一步调查发现,在想到“北上广”创业的20名女大学生中,有5人想到“广州”创业.若从想到“北上广”创业的20名女大学生中任选3人,求在选出的3人中少有2人想到“广州”创业的概率.(參考公式K2=,其中n=a+b+c+d)【考点】独立性检验的应用.【分析】(1)根据在这100人中随机抽取1人,想到“北上广”创业共60人,不想到“北上广”创业共40人,从而可得列联表;(2)利用列联表,计算K2,与临界值比较,可得结论;(3)利用古典概型的概率公式,可得结论.【解答】解:(1)∵在这100人中随机抽取1人,抽到想到“北上广”创业的概率是.(2)K2=≈16.7>10.828,∴能在犯错误的概率不超过0.001的前提下,认为大学生想到“北上广”创业与性别有关;(3)在选出的3人中少有2人想到“广州”创业的概率=.18.已知函数f(x)=e2x﹣(x﹣1)2,(e≈2.71828)(1 )求曲线y=f(x)在点(l,f(1))处的切线方程;(2)设方程f(x)=m﹣1+4x﹣x2在[﹣1,2]上恰有两个不同的实根,求变数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1),从而求出切线方程即可;(2)问题转化为2x+m=e2x在[﹣1,2]上恰有两个不同的交点,得到关于m的不等式组,解出即可.【解答】解:(1)∵f(x)=e2x﹣(x﹣1)2,∴f′(x)=2(e2x﹣x+1),∴f(1)=e2,f′(1)=2e2,∴切线方程是y﹣e2=2e2(x﹣1),即2e2x﹣y﹣e2=0;(2)方程f(x)=m﹣1+4x﹣x2在[﹣1,2]上恰有两个不同的实根,即2x+m=e2x在[﹣1,2]上恰有两个不同的交点,x=﹣1时,e2x=,x=1时,e2x=e2,结合题意,解得:1<m≤2+,即m的范围是(1,2+].19.高二学生即将升入高三,高三学生参加高校自主招生考试是升入理想大学的一条途径.甲、乙、丙三位同学一起参某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该校的预录取生(可在高考中加分录取),两次考试过程相互独立,根据甲中、乙、丙三位同学的平时成绩分析,甲,乙,两三位同学能通过笔试的概率分别是,,;能通过面试的概率分别是,,.(1)求甲、乙、丙三位同学恰有两位通过笔试的概率;(2)设甲、乙、丙三位同学各自经过两次考试后,能被该高校录取的人数为X,求随机变量X的分布列和数学期望E(X).【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)分别记“甲、乙、丙三位同学通过笔试”为事件A,B,C,事件E表示“甲、乙、丙三位同学恰有两位通过笔试”,利用对立事件概率计算公式、互斥事件概率加法公式、相互独立事件概率乘法公式能求出甲、乙、丙三位同学恰有两位通过笔试的概率.(2)“甲乙丙三位同学各自经过两次考试后能被录取”分别记为事件D,E,F,由题意X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望E(X).【解答】解:(1)分别记“甲、乙、丙三位同学通过笔试”为事件A,B,C,事件E表示“甲、乙、丙三位同学恰有两位通过笔试”,则甲、乙、丙三位同学恰有两位通过笔试的概率:P(E)=P(AB)+P(A C)+P(BC)=++=.(2)“甲乙丙三位同学各自经过两次考试后能被录取”分别记为事件D,E,F,则P(D)==,P(E)==,P(F)==,由题意X的可能取值为0,1,2,3,P(X=0)=P()==,P(X=1)=P(++)=++=,P(X=2)=P(+D+)==,P(X=3)=P(DEF)==,X数学期望E(X)==.20.某同学在研究三角形的性质时,发现了有些三角形的三边长有以下规律:①3(3×4+4×5+5×3)≤(3+4+5)2<4(3×4+4×5+5×3);②3(6×8+8×9+9×6)≤(6+8+9)2<4(6×8+8×9+9×6);③3(3×4+4×6+6×3)≤(3+4+6)2<4(3×4+4×6+6×3).分析以上各式的共同特征,试猜想出关于任一三角形三边长a,b,c的一般性的不等式结论,并加以证明.【考点】归纳推理.【分析】根据三个不等式猜测三角形三边长a,b,c的一般性的不等式结论:3(ab+ac+bc)≤(a+b+c)2<4(ab+ac+bc);然后利用比较法证明即可.【解答】解:由已知规律:①3(3×4+4×5+5×3)≤(3+4+5)2<4(3×4+4×5+5×3);②3(6×8+8×9+9×6)≤(6+8+9)2<4(6×8+8×9+9×6);③3(3×4+4×6+6×3)≤(3+4+6)2<4(3×4+4×6+6×3).根据以上各式的共同特征,猜想出关于任一三角形三边长a,b,c的一般性的不等式结论:3(ab+ac+bc)≤(a+b+c)2<4(ab+ac+bc);证明:(a+b+c)2﹣(ab+ac+bc)=a2+b2+c2+2ab+2ac+2bc﹣ab﹣ac﹣bc=a2+b2+c2+ab+ac+bc,因为a>0,b>0,c>0,所以a2+b2+c2+ab+ac+bc>0,所以3(ab+ac+bc)≤(a+b+c)2;(a+b+c)2﹣4(ab+ac+bc)=a2+b2+c2+2ab+2ac+2bc﹣4ab﹣4ac﹣4bc=a2+b2+c2﹣2ab﹣2ac﹣2bc=(a﹣b﹣c)2≥0.21.已知函数f(x)=ln(x+a)(a∈R),g(x)=.(1)当a=1时,证明:f(x)>g(x)对于任意的x∈(0,+∞)都成立;(2)求F(x)=f(x)﹣g(x)的极值点;(3)设c1=1,c n+1=ln(c n+1),用数学归纳法证明:c n>.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值;数学归纳法.【分析】(1)令h(x)=f(x)﹣g(x),求出函数的导数,得到函数的单调性,从而证出结论即可;(2)求出F(x)的导数,通过讨论a的范围,确定函的单调区间,从而求出函数的极值点即可;(3)结合(1)求出ln(1+x)>,根据数学归纳法证明即可.【解答】证明:(1)a=1时,f(x)=ln(x+1),令h(x)=f(x)﹣g(x)=ln(x+1)﹣,(x>0),h′(x)=﹣=≥0,∴h(x)在(0,+∞)递增,∴h(x)>h(0)=0,∴当a=1时,f(x)>g(x)对于任意的x∈(0,+∞)都成立;解:(2)F(x)=f(x)﹣g(x)=ln(x+a)﹣,(x>﹣a,x≠﹣2),F′(x)=﹣=,①当a≤1时,F′(x)≥0恒成立,F(x)递增,无极值点,②当1<a<2时,令F′(x)>0,解得:x>2或x<﹣2,令F′(x)<0,解得:﹣2<x<2,∴F(x)在(﹣a,﹣2)递增,在(﹣2,2)递减,在(2,+∞)递增,∴x=﹣2是极大值点,x=2是极小值点;③当a=2时,F′(x)=,F(x)在(﹣2,2)递减,在(2,+∞)递增,x=2是极小值点,④当a>2时,令F′(x)>0,解得:x>2或x<﹣2,令F′(x)<0,解得:﹣2<x<2,∴F(x)在(﹣a,﹣2)递增,在(﹣2,2)递减,在(2,+∞)递增,x=﹣2是极大值点,x=2是极小值点;证明:(3)由(1)得:a=1时,ln(1+x)>,令x=,则ln(1+)>=,设c1=1,c n+1=ln(c n+1),故n=1时,c1=1>成立,假设n=k时,c k>成立,只需证明n=k+1时,c k+1>成立即可,∵c k+1=ln(c k+1)>ln(1+),而ln(1+)>,故c k+1>成立,故原结论成立.2016年9月9日。

下学期高二期末考试理科数学试卷-(全解全析)

下学期高二期末考试理科数学试卷-(全解全析)

下学期高二期末考试 理科数学·全解全析1.B 【解析】由题意知{|2216}{0,1,2,3}A x x =∈-<-<=Z ,(2,2)B =-,故A B =I {0,1}.故选B. 2.D 【解析】根据否命题的定义可知,“若1a >,则2,2aa 至少有一个为正”的否命题为“若1a ≤,则2,2aa 都不为正”,即“若1a ≤,则20a ≤且20a≤”.故选D.3.C 【解析】由2ln 2()xf x x=可得24322ln 212ln 22()x x xx x f x x x ⋅--'==,则3110()812()2f -'==.故选C. 4.B 【解析】由20x x -+>可得01x <<,由题意可得(0,1)是(,2)a a +的真子集,故021a a ≤⎧⎨+≥⎩(等号不同时成立),解得10a -≤≤.故选B.5.B 【解析】由条件可得{1,2,3,4,5,6,8}A B =---U ,{1,2,5,6}A B =--I ,故A B e {3,4,8}=-,则所求子集的个数为328=.故选B. 6.A 【解析】因为log 2log log 2242(25a =====,ee113d (3ln )|3b x x x===⎰,2384c ==,所以b c a <<.故选A.7.D 【解析】因为2222(1)10x x x +-=-+>,所以222x x +>,故命题p 为真命题;当1x >时,ln 0x >,故命题q 为假命题,则p q ∧为假命题,p q ⌝∨为假命题,p q ⌝∧为假命题,p q ∧⌝为真命题.故选D. 8.C 【解析】由3()f x x mx =+可得2()3f x x m '=+,由条件可得(1)39f m '=+=-,故12m =-,则2()3(4)f x x '=-,为偶函数,即①正确;由()0f x '=可得2x =-或2,所以(,2)x ∈-∞-时,()f x 单调递增,(2,2)x ∈-时,()f x 单调递减,(2,)x ∈+∞时,()f x 单调递增,故②错误,③正确;由22x x -+2≥,且()f x 在[2,)+∞上单调递增,得(22)(2)x x f f -+≥,即④正确.综上可知,正确的命题有①③④,共3个.故选C.9.B 【解析】因为22sin 2)(x x x f =,所以2)()2sin(2)(x x x f --=-)(2sin 22x f xx -=-=,所以)(x f 为奇函数,所以其图象关于原点对称,故排除选项A 、C ;当1x =时,(1)2sin 20f =>,故排除选项D .故选B .10.A 【解析】由条件可得,当0x <时,22()()(2)2f x f x x x x x =--=-+=--.当0x <时,10x -<,由(1)()0x f x ->可得()0f x <,即220x x --<,故2x <-;当01x ≤<时,由(1)()0x f x ->可得()0f x <,即220x x -<,故01x <<;当1x >时, 由(1)()0x f x ->可得()0f x >,即220x x ->,故2x >.综上可知,所求不等式的解集为(,2)(0,1)(2,)-∞-+∞U U .故选A.11.D 【解析】设网站A 利用这篇小说每月获得的利润为()z x (单位:万元),则()(2)42(z x y x x =-=+-2322)(4)2206460x x x x -=-+-,则2()64064z x x x '=-+,由()0z x '=可得128,43x x ==,所以当823x <<时,()0z x '>;当843x <<时,()0z x '<;当45x <≤时,()0z x '>,故83x =时,()z x 取得极大值,4x =时,()z x 取得极小值,且8()(5)3z z <,故网站A 要利用这篇小说获得最大利润,则每次阅读的定价应为5元.故选D. 12.C 【解析】由1()ex f x x +=可得1()(1)e x f x x +'=+,由()0f x '=可得1x =-,由()0f x '>可得1x >-,由()0f x '<可得1x <-,则当1x =-时,()f x 取得最小值(1)1f -=-.当x →-∞时,()0f x →;当x →+∞时,()f x →+∞.因为211()[()]()42g x f x mf x m =+++,所以令()f x t =,可得21142y t mt m =+++.22m m ∆=--,若0∆=,可得1m =-或2.当1m =-时,不满足0m >,舍去;当2m =时,由2210y t t =++=,可得1t =-,不满足(1,0)t ∈-,舍去.若0∆>,由220m m -->解得1m <-(舍去)或2m >,有两种情况:①方程211042t mt m +++=在(1,0)-上有1个实数根,设211()42h t t mt m =+++,则只需1111(0)(1)()(1)04242h h m m m -=+-++<,由2m >解得2m >;②方程211042t mt m +++=在(0,)+∞上有两个不同的实数根,但0211042mm ⎧-<⎪⎪⎨⎪+>⎪⎩,因此舍去.综上可知,实数m 的取值范围是(2,)+∞.故选C.13.4 【解析】由题意知33π()sin122f ==-,则23(())(1)2log 442f f f =-==. 14.(,2)-∞ 【解析】由条件可得(1)()f x f x +=-()f x =,故1T =是()f x 的一个周期,故(2019)(1)22f f m ==-,由(2019)2f <可得222m -<,解得2m <.15.【解析】222000()d πd 2πd a a af x x x x x x x x =+=+⎰⎰⎰,根据定积分的几何意义可知x 等于圆2224a x y +=的面积的14,即x 221ππ4416a a =⨯=,而222200πππd |28aa x a x x ==⎰,故22220πππ()d 22π1684a a a a f x x =⨯+==⎰,结合0a >,得a =16.11(,)(,)e e -∞-+∞U【解析】由322()()f x f x x x '=-可得22()2()x f x xf x x '+=,即22[()]x f x x'=,结合0x >,故2()2ln x f x x C =+(C 为常数),即22ln ()x C f x x +=(C 为常数),由(1)1f =-可得1C =-,故22ln 1()x f x x -=,则34(1ln )()x f x x-'=,由()0f x '=可得e x =,且(0,e)x ∈时,()0f x '>;(e,)x ∈+∞时,()0f x '<,故当e x =时,()f x 取得极大值,即最大值21(e)ef =,由条件只需221e m >,则1e m >或1e m <-,即11(,)(,)e em ∈-∞-+∞U .17.(本小题满分10分)【解析】(1)曲线C 的极坐标方程可化为22ρ=,则直角坐标方程为222x y +=,则曲线C 的圆,(2分) 直线l 的参数方程化为普通方程可得10x y +-=,(3分)则圆心O 到直线l 的距离为2d =,则曲线C 上的点到直线l 22=.(5分)(2)把12x y ⎧=⎪⎪⎨⎪=⎪⎩代入222x y +=,整理得210t -=,(7分)设点A ,B 对应的参数分别为12,t t ,则121t t =-, ∴12||||||1PA PB t t ⋅==.(10分) 18.(本小题满分12分)【解析】(1)由222[log ]3[log ]0x x -<可得20[log ]3x <<,再由所给定义可得2[log ]1x =或2,(3分) ∴21log 3x ≤<,则28x ≤<, 即[2,8)M =.(6分)(2)当12m m +≥,即1m ≤时,N =∅,满足N M ⊆;(8分)当N ≠∅时,由N M ⊆可得122812m m m m +≥⎧⎪≤⎨⎪+<⎩,解得14m <≤.(11分)综上可知,实数m 的取值范围是(,4]-∞.(12分) 19.(本小题满分12分)【解析】(1)由2()e ln(1)xf x x =-+可得22()e 1x xf x x '=-+, 则(1)e 1,(1)e ln 2f f '=-=-,故曲线()f x 在1x =处的切线为(e ln 2)(e 1)(1)y x --=--,(3分) 令0x =可得1ln 2y =-,令0y =可得ln 21e 1x -=-, 故曲线()f x 在1x =处的切线与坐标轴围成的三角形的面积为21ln 21(1ln 2)|1ln 2|||2e 12(e 1)--⋅-⋅=--.(6分)(2)当0x >时,2120x x +≥>,故220<11xx ≤+,而e 1x>,故当0x >时,()0f x '>,即()f x 在(0,)+∞上单调递增.(9分)再由()f x 是定义在R 上的偶函数及(ln )(2)f x f <-可得|ln |2x <,故2ln 2x -<<,即221e e x <<, 即x 的取值范围是221(,e )e.(12分)20.(本小题满分12分)【解析】(1)由πsin()4ρθ+=可得sin cos 8ρθρθ+=, 化为直角坐标方程可得80x y +-=, 则直线l 的斜率为1-, 故倾斜角为135°.(3分)由cos x y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数),可得2213y x +=, 则曲线C 的普通方程为2213y x +=.(6分) (2)设11(cos )P ϕϕ,则点P 到直线l的距离为1π|2sin()8|d ϕ+-==当1πsin()16ϕ+=-时,d取得最大值1πsin()16ϕ+=时,d取得最小值(9分)由直线PQ 与l 的夹角为60°可得||sin 603d PQ ==︒,故||PQ(12分) 21.(本小题满分12分)【解析】由()2()xf x f x a +-= ①,可得()2()xf x f x a --+= ②, 由①②可得1()(2)3x x f x a a -=-.(2分)(1)若p 为真命题,由1()3f x >-恒成立可得11(2)33x x a a -->-,即220xx a a --<,即(1)(2)0xxa a +-<恒成立,故02xa <<恒成立.(4分)当1a >时,可得22a ≤,即1a <≤;当01a <<时,可得2a <,显然成立,则01a <<.综上可知,实数a 的取值范围是(0,1)U .(6分) (2)若q 为真命题,则根据指数函数的性质可得01a <<. 由p q ∨为真,p q ∧为假可知,p ,q 一真一假.若p 为真命题,q 为假命题,可得0111或a a a ⎧<<<≤⎪⎨>⎪⎩1a <≤(9分)若p 为假命题,q 为真命题,可得01a a ⎧>⎪⎨<<⎪⎩,无解.综上可知,实数a 的取值范围是.(12分) 22.(本小题满分12分)【解析】(1)由2()e4xf x ax =-可得2()2e 4x f x a '=-,当0a ≤时,()0f x '>,故()f x 在(,)-∞+∞上单调递增,没有极值;(2分)当0a >时,由2()2e04xf x a '=-=可得1ln 22x a =.当1(,ln 2)2x a ∈-∞时,()0f x '<;当1(ln 2,)2x a ∈+∞时,()0f x '>,∴()f x 在1ln 22x a =处取得极小值,即1()(ln 2)22ln 22f x f a a a a ==-极小值.由22ln 20a a a -=可得ln21a =,故e2a =.综上可知,e2a =.(5分)(2)由()4ln 24f x x x x >-可得2e 44ln 24xax x x x ->-,则2e44ln 240xax x x x --+>.由0x >可得2e ln 214xa x x<-+恒成立.令2e ()ln 214x g x x x =-+1()2x >,则()最小值a g x <,(7分) 2222(21)e 1(21)e 4()44x x x x xg x x x x ---'=-=,令2()(21)e 4xh x x x =--,则2()4e 4x h x x '=-.令2()4e4xp x x =-,则22()4e 8e x x p x x '=+,当12x >时,()0p x '>, 则2()4e 4xh x x '=-在1(,)2+∞上单调递增,且1()()2e 402h x h ''>=->,∴()h x 在1(,)2+∞上单调递增,又32231()e 30,(1)e 4042h h =-<=->,∴存在唯一的03(,1)4x ∈,使得0()0h x =, 即0200(21)e40x x x --=,故02004e 21x x x =-,(9分)且当01(,)2x x ∈时,()0h x <,即()0g x '<;当0(,)x x ∈+∞时,()0h x >,即()0g x '>,∴()g x 的极小值(即最小值)为0200000e 1()ln 21ln 21421x g x x x x x =-+=-+-,显然,0()g x 在03(,1)4x ∈上关于0x 单调递减.由03(,1)4x ∈可得001ln 2121x x -+-133<ln 13ln 322214-+=-⨯-, ∴33ln2a <-.(12分)。

高二下期末理科数学考试卷及答案

高二下期末理科数学考试卷及答案

高二下期末理科数学考试卷及答案
高二下学期期末统测理科数学试题
 本试卷分选择题和非选择题两部分,共4页,满分150分.考试时间120分钟.
 注意事项:
 1.答选择题前,考生务必将自己的姓名、座位号、考试科目填写在答题卷上.
 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.
 3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.
 4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管.
 参考公式:
 锥体的体积公式,其中是锥体的底面积,是锥体的高.
 第一卷
 一、选择题:(每小题5分,共40分,将你认为正确的一个答案填在答卷相应题序的表格内)
 1.已知复数,则在复平面内对应的点位于
 (A)第一象限(B)第二象限(C)第三象限(D)第四象限
 2.“”是“”的
 (A)充分不必要条件(B)必要不充分条件。

浙江省效实中学10-11学年高二下学期期末试题数学理缺答案.pdf

浙江省效实中学10-11学年高二下学期期末试题数学理缺答案.pdf

宁波效实中学2010学年第二学期期末考试高二数学试卷(理科) 注:(1)不可用计算器;(2)将所有答案写在答题卷上;(3)答卷背面还有题目. 一.选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合要求的) 1.的值为 ( ▲ ) A.B.C.D. 2. 已知全集,,,那么集合是(▲) A.B.C. D. 3.已知,则 ( ▲ ) A.B.C.D. 4.函数的图象经怎样的平移后所得的图象关于点中心对称( ▲ ) A.向左平移B.向右平移C.向左平移D.向右平移 5.设定义在上的函数满足.若,则(▲) A.B.C.D. 6.已知的周长等于,面积是且,则边的长是 ( ▲ ) A.B.C.D. 7.对于正实数,函数在上为增函数,则函数的单调递减区间为( ▲ ) A.B.C.D. 8.函数在处有极值为10,则 ( ▲ ) A. B. C.或D.或 9.已知函数图象连续不断,直线是函数图象的对称轴.当时单调递增,则满足的所有之和为( ▲ ) A.B.C.D. 10.已知定义在实数集上的函数满足:,且的导数在上恒有,则不等式的解集为 ( ▲) A. B. C. D. 二.填空题:(本大题共7小题,每小题3分,共21分) 11.函数以为切点的切线方程为 ▲ . 12.已知的恰好有不同两个,则边的长的取值范围为 ▲ . 13.若,则 ▲ (用表示). 14.已知函数(且).若.则 ▲ . 15.函数(,,)的图象在上有唯一一个最低点且图象过点,则函数的解析式为 ▲ . 16.已知,那么的取值范围为 ▲ . 17.已知定义域为的函数满足:,的解析式为 ▲ ;当()时,函数的值域为区间,且区间长度为,则常数的值为 ▲ .. 宁波效实中学2010学年第二学期期末考试高二数学答卷(理科) 班级 学号 姓名 得分 一.选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合要求的) 12345678910二.填空题:(本大题共7小题,每小题3分,共21分) 11. ;12. ;13. ; 14. ;15. ;16. ; 17. ; . 三.解答题:(本大题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.已知函数的定义域为,集合. (1)当时,求; (2)若,求实数的取值范围. 19.已知函数. (1)求函数的最小正周期及单调增区间; (2)当时,求的最值及相应的值. 20.在中,角所对的边分别为.已知 (1)求的值; (2)若,求边上的高. (注:背面还有两个题) 21.已知函数,. (1)讨论函数单调性; (2)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值. 22.设是图象过的函数组成的集合.已知函数, ,(且),并且有. (1)求的值并判断是否是中元素; (2)若,写出满足不等式的的集合(可以直接写出结果); (3)已知.若存在实数使方程有三个不同的实数解.求的范围. 高二数学备课组命题、校对 高考学习网( 您身边的高考专家 欢迎广大教师踊跃来稿,稿酬丰厚。

高二数学下学期期末考试理科试题含答案

高二数学下学期期末考试理科试题含答案

第二学期高二年级期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.复数z 满足()134i z i -=+,则z =( )A.52B.2C. D.52.设集合{}419A x x =-≥,03x B xx ⎧⎫=≤⎨⎬+⎩⎭,则A B ⋂等于( )A.(3,2]--B.5(3,2]0,2⎡⎤--⋃⎢⎥⎣⎦C.5(,2],2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D.5(,3),2⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.二项式(52x +的展开式中,3x 的系数为( )A.80B.40C.20D.104.由直线2y x =及曲线24y x x =-围成的封闭图形的面积为( ) A.1B.43C.83D.45.已知命题:p 若0x >,则sin x x <,命题 :q 函数2()2xf x x =-有两个零点,则下列说法正确的是( )①p q ∧为真命题;②p q ⌝∨⌝为真命题;③p q ∨为真命题;④p q ⌝∨为真命题 A.①②B.①④C.②③D.①③④6.函数3()1f x ax x =++有极值的一个充分不必要条件是( ) A.1a <- B.1a <C.0a <D.0a >7.为了解某社区居民的家庭年收入年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:但是统计员不小心丢失了一个数据(用m 代替),在数据丢失之前得到回归直线方程为0.760.4y x =+,则m 的值等于( )A.8.60B.8.80C.9.25D.9.528.2020年全国高中生健美操大赛,某市高中生代表队运动员由2名男生和3名女生共5名同学组成,这5名同学站成一排合影留念,则3名女生中有且只有两位女生相邻的排列种数共有( ) A.36B.54种C.72种D.144种9.《易经》是中国传统文化中的精髓.下图是易经先天八卦图(记忆口诀:乾三连、坤六断、巽下断、震仰盂、坎中满、离中虚、艮覆碗、兑上缺),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),现从八卦中任取两卦,已知每卦都含有阳线和阴线,则这两卦的六根线中恰有四根阳线和两根阴线的概率为( )A.13B.514C.314D.1510.观察下列算式:311=3235=+ 337911=++ 3413151719=+++若某数3n 按上述规律展开后,发现等式右边含有“2021”这个数,则n =( ) A.42B.43C.44D.4511.如图是一个质地均匀的转盘,一向上的指针固定在圆盘中心,盘面分为A ,B ,C 三个区域,每次转动转盘时,指针最终都会随机停留在A ,B ,C 中的某一个区域,且指针停留在区域A ,B 的概率分别是p 和1206p p ⎛⎫<<⎪⎝⎭.每次转动转盘时,指针停留在区域A ,B ,C 分别获得积分10,5,0.设某人转动转盘3次获得总积分为5的概率为()f p ,则()f p 的最大值点0p 的值为( )A.17B.18C.19D.11012.定义在(2,2)-上的函数()f x 的导函数为()f x ',已知2(1)f e =,且()2()f x f x '>,则不等式24(2)xe f x e -<的解集为( )A.(1,4)B.(2,1)-C.(1,)+∞D.(0,1)二、填空题:本大题共4小题,每小题5分,共20分. 13.命题“0x ∃<,220x x -->”的否定是“______”. 14.曲线1ln y x x=-在1x =处的切线在y 轴上的截距为______. 15.我国在2020年11月1日零时开始展开第七次全国人口普查,甲、乙等5名志愿者参加4个不同社区的人口普查工作,要求每个社区至少安排1名志愿者,每名志愿者只去一个社区,则不同的安排方法共有______种.16.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲、乙在每局中获胜的概率均为12,且各局胜负相互独立,比赛停止时一共打了ξ局,则ξ的方差()D ξ=______.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知函数()|3|f x x =-,()|4|g x x m =-++. (1)当9m =时,解关于x 的不等式()()f x g x >;(2)若()()f x g x >对任意x R ∈恒成立,求实数m 的取值范围. 18.(本小题满分12分)盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的A ,B ,C 三种样式,且每个盲盒只装一个.(1)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占23;而在未购买者当中,男生女生各占50%.请根据以上信息填写下表,并判断是否有95%的把握认为购买该款盲盒与性别有关?附:)22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:(2)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1,3周数据进行检验.①请用4,5,6周的数据求出)关于x 的线性回归方程y bx a =+;(注:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-)②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠? 19.(本小题满分12分)在某学校某次射箭比赛中,随机抽取了100名学员的成绩(单位:环),并把所得数据制成了如下所示的频数分布表; (1)求抽取的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)已知这次比赛共有2000名学员参加,如果近似地认为这次成绩Z 服从正态分布()2,N μσ(其中μ近似为样本平均数x ,2σ近似为样本方差2 1.61s =),且规定8.27环是合格线,那么在这2000名学员中,合格的有多少人?(3)已知样本中成绩在[9,10]的6名学员中,有4名男生和2名女生,现从中任选3人代表学校参加全国比赛,记选出的男生人数为ξ,求ξ的分布列与期望E ξ. [附:若()2~,Z N μσ,则()0.6827P Z μσμσ-<<+=,(22)0.9545P Z μσμσ-<<+=, 1.27≈,结果取整数部分]20.(本小题满分12分) 已知()23x x f e x e =--. (1)求函数()f x 的解析式; (2)求函数()f x 的值域;(3)若函数1()g x f kx x ⎛⎫=-⎪⎝⎭在定义域上是增函数,求实数k 的取值范围. 21.(本小题满分12分)随着5G 通讯技术的发展成熟,移动互联网短视频变得越来越普及,人们也越来越热衷于通过短视频获取资讯和学习成长.某短视频创作平台,为了鼓励短视频创作者生产出更多高质量的短视频,会对创作者上传的短视频进行审核,通过审核后的短视频,会对用户进行重点的分发推荐.短视频创作者上传一条短视频后,先由短视频创作平台的智能机器人进行第一阶段审核,短视频审核通过的概率为35,通过智能机器人审核后,进入第二阶段的人工审核,人工审核部门会随机分配3名员工对该条短视频进行审核,同一条短视频每名员工审核通过的概率均为12,若该视频获得2名或者2名以上员工审核通过,则该短视频获得重点分发推荐.(1)某创作者上传一条短视频,求该短视频获得重点分发推荐的概率;(2)若某创作者一次性上传3条短视频作品,求其获得重点分发推荐的短视频个数的分布列与数学期望.22.(本小题满分12分)已知2()sin sin xxf x x e xe x ax a x =--+. (1)当()f x 有两个零点时,求a 的取值范围; (2)当1a =,0x >时,设()()sin f x g x x x=-,求证:()ln g x x x ≥+.六安一中2020~2021学年第二学期高二年级期末考试数学试卷(理科)参考答案一、选择题:二、填空题:13.0x ∀<,220x x --≤ 14.-315.240 16.114三、解答题:17.解:(1)当9m =时,由()()f x g x >,得341x x -++>,4349x x x <-⎧⎨--->⎩或43349x x x -≤≤⎧⎨-++>⎩或3349x x x >⎧⎨-++>⎩ 解得,5x <-或x 无解或4x >, 故不等式的解集为(,5)(4,)x ∈-∞-⋃+∞.(2)因为()()f x g x >恒成立,即|3||4|x x m ->-++恒成立, 所以|3||4|m x x <-++恒成立,所以min (|3||4|)m x x <-++, 因为|3||4||(3)(4)|7x x x x -++≥--+=(当43x -≤≤时取等号)所以min (|3||4|)7x x -++=,所以实数m 的取值范围是(,7)-∞. 18.解:(1)则2 4.714 3.8411109060140K =≈>⨯⨯⨯,故有95%的把握认为“购买该款盲盒与性别有关”. (2)①由数据,求得5x =,27y =,由公式求得222(45)(2527)(55)(2627)(65)(3027)5ˆ(45)(55)(65)2b--+--+--==-+-+-, 5ˆˆ27514.52ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. ②当1x =时,ˆ 2.5114.517y=⨯+=,|1716|2-<; 同样,当3x =时,ˆ 2.5314.522y=⨯+=,|2223|2-<. 所以,所得到的线性回归方程是可靠的.19.解:(1)由所得数据列成的频数分布表,得样本平均数4.50.055.50.186.50.287.50.268.50.179.50.067x =⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)知~(7,1.61)Z N ,10.6827(8.27)0.158652P Z -∴≥==∴在这2000名学员中,合格的有:20000.15865317⨯≈人(3)由已知得ξ的可能取值为1,2,31242361(1)5C C P C ξ===,2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===, ξ∴的分布列为:1232555E ξ=⨯+⨯+⨯=(人)20.解:(1)令x e t =,(0)t >,则ln x t =,由()23x x f e x e =--,得()ln 23f t t t =--, 所以函数()f x 的解析式为()ln 23f x x x =--.(2)依题意知函数的定义域是(0,)+∞,且1()2f x x'=-, 令()0f x '>,得102x <<,令()0f x '<,得12x >,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减, 所以max 1()ln 242f x f ⎛⎫==--⎪⎝⎭;又因为0x →,()f x →-∞, 所以函数()f x 的值域为(,ln 24]-∞--.(3)因为12()ln 3g x f kx x kx x x ⎛⎫=-=---- ⎪⎝⎭在(0,)+∞上是增函数, 所以212()0g x k x x '=-+-≥在(0,)+∞上恒成立, 则只需2min 12k x x ⎛⎫≤-+ ⎪⎝⎭,而221211112488x x x ⎛⎫-+=--≥- ⎪⎝⎭(当4x =时取等号),所以实数k 的取值范围为1,8⎛⎤-∞- ⎥⎝⎦.21.解:(1)设“该短视频获得重点分发推荐”为事件A ,则21302333311113()C 115222210P A C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ (2)设其获得重点分发推荐的短视频个数为随机变量X ,X 可取0,1,2,3.则3~3,10X B ⎛⎫⎪⎝⎭, 030333343(0)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;121333441(1)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭; 212333189(2)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;30333327(3)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以随机变量X 的分布列如下:343441189279()0123100010001000100010E X =⨯+⨯+⨯+⨯=(或39()31010E X =⨯=) 22.解:(1)由题知,()()(sin )x f x xe a x x =--有两个零点,sin 0x x -=时,0x =故当0x xe a -=有一个非零实根设()x h x xe =,得()(1)xh x x e '=+,()h x ∴在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.又1(1)h e-=-,(0)0h =,0x >时,(0)0h >;0x <时,(0)0h <. 所以,a 的取值范围是1a e=-或0a >. (2)由题,()()1sin x f x g x xe x x==--法一:()1ln ln x x xe x x xe -≥+=,令0x t xe =>,令()ln 1(0)H t t t t =-->11()1t H t t t -'=-=()H x ∴在(0,1)上单调递减,在(1,)+∞上单调递增. ()(1)0H x H ∴≥=.1ln x xe x x ∴-≥+法二:要证1ln x xe x x -≥+成立故设()ln 1xM x xe x x =---,1()(1)xM x x e x ⎛⎫'=+-⎪⎝⎭,(0)x >, 令1()x N x e x =-,则21()0x N x e x'=+>,()N x ∴在(0,)+∞上单调递增又1202N ⎛⎫=<⎪⎝⎭,(1)10N e =->, 01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00N x =.001x e x ∴=,00ln x x =-,()M x ∴在()00,x 上单调递减,在()0,x +∞上单调递增.()0min 0000[()]ln 10x M x M x x e x x ∴==---=.1ln x xe x x ∴-≥+。

高二下学期期末考试数学理科试题(解析版)

高二下学期期末考试数学理科试题(解析版)
【答案】A
【解析】
试题分析:首先求出这组数据的横标和纵标的平均数,写出这组数据的样本中心点,把样本中心点代入线性回归方程求出a的值
解:∵ =4.5,
∴这组数据的样本中心点是(2,4.5)
∵y与x线性相关,且 =0.95x+ ,∴4.5=0.95×2+a,∴a=2.6,
故选A.
考点:线性回归方程.
12.已知函数 的定义域为 ,且 ,若方程 有两个不同实根,则 的取值范围为()
故a>b>c,
故选D.
【点睛】本题考查了指数函数以及对数函数的单调性问题,是一道基础题,解题关键是选择好中间量.
11.(2014•武侯区校级模拟)已知x、y的取值如下表所示:
x

1
3
4
y
2.2
4.3
4.8
6.7
若从散点图分析,y与x线性相关,且 =0.95x+ ,则 值等于()
A. 2.6B. 6.3C. 2D. 4.5
二、填空题(共4题,每题5分)
13.命题“∃x0∈R, ”为假命题,则实数a的取值范围是________.
【答案】
【解析】
【分析】
由题得“ x0∈R, ”为真命题,根据二次函数的图象和性质得到关于 的不等式,解不等式即得解.
【详解】由题得“ x0∈R, ”为真命题,
所以 ,
所以 .
故答案为
【点睛】本题主要考查特称命题的否定,考查二次函数的图象和性质,意在考查学生对这些知识的理解掌握水平.
6.一件产品要经过2道独立的加工程序,第一道工序的次品率为a,第二道工序的次品率为b,则产品的正品率为( )
A.1-a-bB.1-abC.(1-a)(1-b)D.1-(1-a)(1-b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10-11学年高二下期期末考试数学(理科)试卷
满分:150分 考试时间:120分钟 命题人:黄初灿
一、选择题(共10小题,每小题5分,满分50分。

请将答案填涂在答题卡上)
1、已知复数z a i =+(0<a ),若||z =则z 在复平面内的对应点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
2、圆4sin ρθ=的圆心坐标是( )
A .(0,4)
B .(4,0)
C .(0,2)
D .(2,0) 3、若函数8ln 2)(2++-=x x x f ,则函数的单调递增区间是( ) A.)1,(--∞ B. )0,1(- C. )1,0( D. ),1(+∞ 4、在1,2,3,4,5五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 ( ) A 、0.2 B 、0.25 C 、 0.3 D 、0.4 5、两个实习生每人加工一个零件.加工为一等品的概率分别为
23和3
4
,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为
A 、12
B 、512
C 、14
D 、1
6
6、设随机变量X 服从正态分布N(0,1),若(1)P X p >=,则(10)P X -<< =
A .12p +
B .1p -
C .12p -
D .1
2
p -
7、若函数3()2f x x ax =+-在区间(1,)+∞内是增函数,则实数a 的取值范围是 A 、[)3,-+∞ B 、()3,-+∞ C 、[)0,+∞ D 、()0,+∞ 8、下列结论错误的...是( )
A .命题“若p ,则q ”与命题“若,q ⌝则p ⌝”互为逆否命题;
B .命题:,20x p x R ∀∈>,则命题p ⌝:,20x x R ∃∈≤;
C .若q p ∨为假命题,则p 、q 均为假命题;
D .“若22,am bm <则a b <”的逆命题为真命题.
9、6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法。

( ) A 、380 B 、480 C 、580 D 、680
10、函数3215
()333
f x x x x =+-+的图像与x 轴有几个交点( )
A 、0个
B 、1个
C 、2个
D 、3个
二、填空题(共5小题,每小题4分,满分20分。

请将答案填在答题卷对应横线上)
11、计算41
=⎰
12、已知52345012345(1)x a a x a x a x a x a x -=+++++,则24a a +的值等于 _ 13、有10个三好学生名额,分配到6个班,每班至少1个名额,共有 种不同的分配方案。

(用数字回答)
14、若z C ∈,且221z i +-=,则22z i --的最小值为 15、观察下图: 第1行:1 第2行:2 3 4 第3行:3 4 5 6 7 第4行:4 5 6 7 8 9 10 …………
则第____________行的各数之和等于2
2011.
三、解答题(共6小题,满分80分) 16、本小题13分 已知如下等式:212316⨯⨯=
, 22235126⨯⨯+=,222347
1236
⨯⨯++=,当
*n N ∈时,试猜想2222123n ++++ 的值,并用数学归纳法给予证明
17、本小题13分
已知
n
的展开式中,第六项为常数项。

(1)求n ; (2)求含2x 的项的二项式系数; (3)求展开式中所有项的系数和。

18、本小题13分
已知∈m R ,函数2()()e x f x x mx m =++. (Ⅰ)若1-=m ,求函数)(x f 的极值;
(Ⅱ)若函数()f x 的单调递减区间为()4,2--,求实数m 的值。

19、本小题13分
在直角坐标系xoy 中,曲线C 的参数方程为⎩⎨⎧==αα
sin 4cos 4y x (α为参数),点M 是曲
线C 上的动点.
(I)求线段OM 的中点P 的轨迹的直角坐标方程;
(II)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线L 的极坐标方程为(cos sin )10(0)ρθθρ-+=>,求点P 到直线L 距离的最大值.
20、本小题14分
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分
别为54、53、52
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.
21、本小题14分
已知函数32()4f x ax bx x =++的极小值为8, 其导函数'()y f x =的图象经过点()2,0-,如右图所示. (1)求()f x 的解析式; (2)求()f x 的递增区间
(3)若函数()()g x f x k =-在区间[]3,2-上有两个不同的零点,求实数k 的取值范围.
参考答案:
一、选择题 BCCCB DADBB
二、填空题 11、
14
3
12、15 13、126 14、3 15、1006 16、解:由已知,猜想2222(1)(21)
1236
n n n n ++++++=
下面用数学归纳法给予证明:
(1)当1n =时,由已知得原式成立;
(2)假设当n k =时,原式成立,即2222(1)(21)
1236
k k k k ++++++=
那么,当1n k =+时,222222(1)(21)
123(1)(1)6
k k k k k k ++++++++=
++ 22(1)(21)6(1)(1)(276)
66k k k k k k k +++++++==
(1)(2)(23)6k k k +++=
=(1)[(1)1][2(1)1]
6
k k k +++++
故1n k =+时,原式也成立。

由(1)、(2)知2222(1)(21)
1236
n n n n ++++++= 成立
17、解:(1)55
5
6n n
T C -= 1551105555333333()()3()n n n n C x x C x ---==
由已知110
033
n -=,所以10n =;
(2)102
1033
110103()k k k k k k k T C C x --+==

102233
k -=,解得2k =,所以含2x 的项的二项式系数为2
1045C = (3)令1x =,得展开式中所有项的系数和为101010(13)(2)2-=-= 18、
19、(2)(I)x 2
+y 2
=4; (II)
.
20、解析:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1
23)i A i =,,,则
14()5P A =
,23()5P A =,32
()5P A =, ∴该选手被淘汰的概率
112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++
142433101
555555125=+⨯+⨯⨯=

(Ⅱ)ξ的可能值为12
3,,,11
(1)()5P P A ξ===

1212428
(2)()()()5525P P A A P A P A ξ====⨯=

12124312
(3)()()()5525P P A A P A P A ξ====⨯=

ξ∴的分布列为
181257
1235252525E ξ∴=⨯+⨯+⨯=
. 21、(1)32()24f x x x x =--+
(2)2
(-2,)3。

相关文档
最新文档