近世代数试题
近世代数基础测验卷

近世代数测验题一、填空题(42分)1、设集合M 与M 分别有代数运算 与 ,且M M ~,则当 时, 也满足结合律;当 时, 也满足交换律。
2、对群中任意元素1)(,,-ab b a 有= ;3、设群G 中元素a 的阶是n ,n|m 则m a = ;4、设a 是任意一个循环群,若∞=||a ,则a 与 同构;若n a =||, 则a 与 同构;5、设G=a 为6阶循环群,则G 的生成元有 ;子群有 ;6、n 次对称群n S 的阶是 ;置换)24)(1378(=τ的阶是 ;7、设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=2314432114324321βα,,则=αβ ; 8、设)25)(136()235)(14(==τσ,,则=-1στσ ;9、设H 是有限群G 的一个子群,则|G|= ;10、任意一个群都同一个 同构。
二、证明题(24)1、 设G 为n 阶有限群,证明:G 中每个元素都满足方程e x n=。
2、 叙述群G 的一个非空子集H 作成子群的充要条件,并证明群G 的任意两个子群H 与K 的交K H 仍然是G 的一个子群。
3、 证明:如果群G 中每个元素都满足方程e x =2,则G 必为交换群。
二、解答题(34)1、 叙述群的定义并按群的定义验证整数集Z 对运算4++=b a b a 作成群。
2、 写出三次对称群3S 的所有子群并写出3S 关于子群H={(1),(23)}的所有左陪集和所有右陪集。
参考答案:一、填空题1、满足结合律; 满足交换律;2、11--a b ;3、e ;4、整数加群;n 次单位根群;5、5,a a ;{}{}{}{}5432423,,,,,,,,,,,a a a a a e a a e a e e ;6、n!;47、⎪⎪⎭⎫ ⎝⎛23144321 8、(456)(32)9、|H|:(G:H)10、(双射)变换群;二、证明题1、已知||n G =,|a|=k,则k|n令n=kq,则e a a a q k kq n ===)(即G 中每个元素都满足方程e x n =2、充要条件:H a H a H ab H b a ∈⇒∈∈⇒∈-1;,,;证明:已知H 、K 为G 的子群,令Q 为H 与K 的交设H b a ∈,,则K b a H b a ∈∈,,,H 是G 的子群,有H ab ∈K 是G 的子群,有K ab ∈Q ab ∈∴Ha Ka H a H a ∈∈∈∈∀-11,可知由定理且,则综上所述,H 也是G 的子群。
近世代数计算题

计算题1、在整数环Z 中,令I = {5k |k ∈Z } (1)确定商环Z /I 中的元素。
(2)Z /I 是不是一个整环?求Z /I 的特征。
2、确定3次对称群S 3的所有子群及所有正规子群。
3、求模6的剩余类环Z 6的所有理想。
4、在10次对称群S 10中,σ =⎪⎪⎭⎫⎝⎛1968752431010987654321.(1)将σ表成一些不相交轮换之积。
(2)求| σ|。
5、设G = {2m 7n |m ,n ∈Q} 是关于普通数的乘法构成的群,f :2m 7n |→7n 是G到G 的一个同态映射,求f 的同态核Kerf 。
6、设(Z 16,+,·)是模16的剩余类环,求Z 16的所有理想,求Z 16的所有非零理想的交。
7、在7次对称群S 7中,将(12)(2347)-1(12)-1表为一些互不相交的轮换之积。
8、在高斯整数环Z[i]={a + bi |a , b ∈Z,i 2=-1}中,(1)求主理想(1+i ),(2)求)1(][i i Z +。
9、给出整数加群Z 的所有自同构。
10、设R=Z 4是模4的剩余类环,确定Z 4的所有理想。
11、设R=Z[i]={a + bi |a , b ∈Z ,i 2=-1}是高斯整数环,试求Z[i]的所有单位。
12、设G={ 2m 3n | m, n ∈Q}是关于通常数的乘法作成的群,令 f:2m 3n 2m (1)验证f 是G 到G 的同态映射, (2)确定Ker f 。
13、找出三次对称群3S 的所有子群;找出3S 关于子群H={(1),(12)}的右陪集分解。
14、在整数环Z 中,试求出所有包含30的极大理想。
15、求出模6的剩余类加群Z 6的所有自同构。
16、(10分)求模12的剩余类加群(Z 12,+)的所有自同构映射17、设Z[]i ={}1,,|2-=∈+iZ b a bi a 是高斯整数环,求Z []i 的商域。
近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。
答案:半群2. 一个群G的所有子群的集合构成一个________。
答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。
答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。
答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。
答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。
答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。
正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。
2. 请解释什么是群的同态和同构。
答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。
群的同构是同态,并且是双射,即存在逆映射。
3. 请解释什么是环的零因子和非零因子。
答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。
如果环R中不存在零因子,则称R为无零因子环。
近世代数练习题试题库

§1 第一章 根底知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
〔 〕1.2 A ×B = B ×A 〔 〕1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
〔 〕 1.4 如果ϕ是A 到A 的一一映射,那么ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
〔 〕1.6 设A 、B 、D 都是非空集合,那么B A ⨯到D 的每个映射都叫作二元运算。
〔 〕1.7 在整数集Z 上,定义“ 〞:a b=ab(a,b ∈Z),那么“ 〞是Z 的一个二元运算。
〔 〕1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 假设A={0,1} , 那么A ⨯A=__________________________________。
2.2 设A = {1,2},B = {a ,b},那么A ×B =_________________。
2.3 设={1,2,3} B={a,b},那么A ⨯B=_______。
2.4 设A={1,2}, 那么A ⨯A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,那么有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,那么()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},那么A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,那么共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},那么A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},那么A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合以下三个条件:_____________________________________________。
《近世代数》习题及答案

《近世代数》作业一.概念解释1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元二.判断题1.Φ是集合n A A A ⨯⨯⨯ 21列集合D 的映射,则),2,1(n i A i =不能相同。
2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。
3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。
4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。
5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。
6.环R 的非空子集S 作成子环的充要条件是:1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。
7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。
8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。
9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。
10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。
11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。
12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么*F 的任何有限子群G 必为循环群。
13. 集合A 的一个分类决定A 的一个等价关系。
( )14. 设1H ,2H 均为群G 的子群,则21H H ⋃也为G 的子群。
( )15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。
( )三.证明题1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。
(精选)近世代数练习题题库

§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
近世代数测试试卷(满分100)

近世代数测试试卷(满分100)姓名 学号 分数一、判断题(对的打√,错的打×,共30分,每小题2分)1.设G 是群,则群G 的任意两个子群的并仍是群G 的子群。
( )2. 一个群G 同它的每个一个商群G N同态; ( ) 3.一个子群的右陪集的个数和左陪集的个数一定相等; ( )4.一个有限群G 的任一个元a 的阶都是整除G 的阶; ( )5.整数加群Z 是个无限循环群; ( )6.S(M)双射变换群关于变换的乘法作成一个群; ( )7.仅有集合A 的元间的一个等价关系不一定能确定A 的一个分类; ( )8.所有一一变换不一定作成一个变换群; ( )9.设G 为整数群,则G 对运算b a b a ⋅=作成一个群; ( )10.A R =,A 的代数运算是普通乘法,则映射2x x →为A 的自同构映射; ( )11.一个集合的所有一一变换可以作成一个变换群; ( )12.整数加群Z 是个无限循环群; ( )13.群G 的不变子群N 的不变子群M 必是G 的不变子群; ( ) 14 n 次单位根乘群n U 是一个n 阶循环群; ( )15.A={所有有理数},A 对于普通加法来说可以自同构; ( )二、填空题(共30分,每小题2分)1. 无限循环群一定和 同构;2. n 次对称群n S 的任意子群,都叫做一个n 次 置换群 ;3.设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为 ;4. G 是一个群,假定G 和G 对于它们的乘法来说 ,则G 是一个群;5.任何一个群都同一个 同构;6.素数阶有限群G 的子群个数等于 ;7.一个群G 的一个不空有限子集H 作为G 的一个子群的充分而且必要条件是 ;8.一个群G 的一个子群N 的陪集所作成的群叫做 ;9. 设G 是p 阶群,(p 是素数),则G 的生成元有 个;10.一个群G 的一个子群H 的 的个数叫做H 在G 里的指数;11. 含有n 元素的任意集合共有 个双射变换;12.如果群G 可由一个元素a 生成,则称G 为由a 生成的一个 ;13.以集合A 的所有子集为元素的集合为A 的幂集,记为()P A ,若集合A 含有n 个元素,则()P A = ;14.M 为实数集,运算23a b a b =+ (满足或不满足)结合律;15.设群G 中元素a 的阶是n ,则k a n =⇔ ;三、解答题(共40分,每小题8分)1. 设{}{}{}=1,2,A B D ==奇,偶,验证()1,2=12→:奇是一个A B ⨯到D 的代数运算。
《近世代数》练习题及参考答案

《近世代数》练习题及参考答案1.设A={a ,b ,c ,d}试写出集合A 的所有不同的等价关系。
2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.4.设G=。
⎭⎬⎫⎩⎨⎧≠∈⎪⎪⎭⎫ ⎝⎛0,a R a a a a a 证明:G 关于矩阵的乘法构成群。
5.证明:所有形如n m 32的有理数(m ,n ∈Z )的集合关于数的乘法构成群。
参考答案1. 设A= 试写出集合A 的所有不同的等价关系。
解2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
证:(1)显然,Mn(R)为一个具有“+”的代数系统。
(2)∵矩阵的加法满足结合律,那么有结合律成立。
(3)∵矩阵的加法满足交换律,那么有交换律成立。
(4)零元是零矩阵。
∀A ∈Mn(R),A+0=0+A=A 。
(5)∀A ∈Mn(R),负元是-A 。
A+(-A)=(-A)+A=0。
∴(Mn(R),+)构成一个Abel 群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.证:(1)由于E ∈On (R),∵On (R)非空。
(2 ) 任意A,B ∈On (R),有(AB )T=B T A T =B -1A -1=(AB) -1,∴AB ∈On(R),于是矩阵的乘法在On(R)上构成代数运算。
(3) ∵矩阵的乘法满足结合律,那么有结合律成立。
(4)对任意A ∈On (R),有AE=EA=A .∴E 为On (R)的单位元。
(5)对任意A ∈On (R),存在A T ∈On (R),满足AA T =E=AA -1, A T A=E=A -1A .∴A T 为A 在On (R)中的逆元。
∴On (R)关于矩阵的乘法构成一个群。
{}d c b a ,,,4.设G=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 近世代数基础 》
学年 第 学期
考试有关事项说明
考试日期:
考试用时:120分钟 考试地点: 考试形式:
一、填空题(每小题2分,共20分)
1、设集合A 是非空的, 规定: A b a b b a ∈∀=,, . 则“ ”是代数运算, 它 适合 结合律。
2、设G 是由集合S 的若干个变换组成的集合,且G 含有恒等变换,如果G 对于变换乘法是一个群,则G 由 由S 的所有一一变换
组成。
3、若A={a ,b ,c}的代数运算 适合结合律和交换律,试写出右边运算表中 未列出的结果 a b c b c a c a b
4、三次对称群S 3中,τ=(132)的逆元是(231) ,它的
阶是 3 。
5、剩余类加群Z 18中,[6]生成的子群([6])= {[0] [6] [12]} 。
6、设群
G ϕ
~G ,且G=(a )是循环群,则G 也是循环群,它的生成元是
o a b c a a b c b c a c
fai(a) 。
7、设R 是无零因子环,则R 的特征或是 无穷大 或是 素数 。
8. Cayley 定理: 任何一个群都同一个变换群同构 。
9.设N 为群G 的不变子群, G
g gN g ∈∀→,:ϕ 是 G 到G/N 的自然
映射 则 =
ϕKer {x:x 属于G ,fai (x )=G/N 的单位元
_} .
10.假设 F 是一个四个元素的域, 则 F 的特征是: 2 .
二、单选题(每小题2分,共20分)
1、设R 是实数集,R 的代数运算是普通乘法,以下映射中是R 到R
的同态满射的是( B )。
A 、x →3x ; B 、x →x 3 ; C 、x →x+2 D 、x →-x
2、下列各集合对给定的代数运算做成一个交换群的是( A D )。
A 、 实数集R ,对普通乘法;
B 、 非负实数集,对普通加法;
C 、G ={ ⎪⎪⎭
⎫ ⎝
⎛d c
b a
| a ,b ,c ,d ∈R ,
≠d
c
b a },对矩阵乘法;
D 、U 4 ={ 1,-1,i ,-i| i 2 = -1 },对普通乘法。
3、下列命题中,不正确的是( A )。
A 、 集A 的变换群是交换群;
B 、群G 与它的每一个商群同态;
C、每一个群都与一个变换群同构;
D. 阶为素数p的群必是循环群;
4、下列命题中,不正确的是()。
A、若环R有单位元1,则R =(1);
B、每一个环至少有一个主理想;
C、A ={ 4 r| rєz }是Z的一个理想;
D. Z4={ [0],[1],[2],[3] }是整数环Z的一个理想。
5.设ϕ是有理数域,在Q上定义乘法 : ,
ϕ则
+
a-
∈
b
=
∀
,ab
a
b
,
a
b
( A )是(Q, )的单位元。
A、0
B、1
C、-1
D、2
6.设R是一个环,则下列断言不正确的是( D )。
A、R没有零因子,则R中消去律成立;
B、R中消去律成立,则R中没有零因子;
C、R中右消去律成立,则R中左消去律也成立;
D. R中必有零因子。
7.设R ={ a+b2|a,b∈Z },R中运算是普通数的加法与乘法,则( D )。
A、R是一个数域;
B、R是一个除环;
C、R是一个模2剩余类环;
D、R是一个整环。
8.设环R与环R同态,0是R的零元,则下列断言不正确的是( B )。
A、R中零元的象是R中的零元o;
B、R中零元0的象不仅是R中的零元o;
C、当R有不同于零元o的单位元1时,R的零元0的象不是R的单位元1;
D. 当R仅有一个元素时,R的任意元素α的象都是R的零元。
9.在中,下()成立。
A. (3, 5) = (5),
B. (3, 5) = (3)
C. (3, 5) = (1)
D. (3, 5) = (15)
10. 设N 为群G 的不变子群,则下列断言中不正确的是( A )。
A. G
a H aHa ∈∀⊆-,1
, B. H h G a H aha ∈∀∈∀∈-,,1.
C. ,,1
G a H aHa
∈∀=- D. .,,H h G a ha ah ∈∀∈∀=
三、设A ={ 偶数集 },规定A 的元间的一个关系~:a ~b ⇔6|a-b 。
1. 证明~是等价关系;2、利用等价关系~,给出A 的一个分类。
(10分)
四.设 G = S 3, H = {(1), (12)}, 求H 在 G 中的所有左陪集。
(10分)
五、求S3, 中不能与(12)交换的元。
(10分)
六、设G 是有限群,,G
≤试用Langrange定理证明:
H≤
K
K
K
G= (10分)
[H
H
G
:
:
].
][
[
]
:
七.设R 是偶数环, 求(4)。
(10分)
八、在Guass 整数环}
Z∈
+
i
3i
∈是一个素
Z
a
=中,证明][
bi
|
,
{
]
b
[Z
a
元.(10分)。