八年级数学函数及其图象单元测试
八年级数学下册《函数的图像》单元测试卷(附带答案)

八年级数学下册《函数的图像》单元测试卷(附带答案)一 单选题1.下列图形中的曲线不能表示y 是x 的函数的是( )A .B .C .D .2.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是( )A .清晨5时体温最低B .17时,小明体温是37.5℃C .从5时至24时,小明体温一直是升高的D .从0时至5时,小明体温一直是下降的3.第十七届省运会在金华隆重举行.一批射击运动员分别乘坐甲乙两辆大巴同时从居住地前往比赛场馆.行驶过程中,大巴甲因故停留一段时间后继续驶向比赛场馆,大巴乙全程匀速驶向比赛场馆.两辆大巴的行程()km s 随时间()h t 变化的图象(全程)如图所示.依据图中信息,下列说法错误..的是( )A .大巴甲比大巴乙先到达比赛场馆B .大巴甲中途停留了0.5hC .大巴甲停留后用1.5h 追上大巴乙D .大巴甲停留后的平均速度是60km/h4.星期天,小王去朋友家借书,如图是他离家的距离y (千米)与时间x (分钟)的关系图像.根据图像信息,下列说法正确的是( ).A .小王去时的速度大于回家的速度B .小王在朋友家停留了10分钟C .小王去时花的时间少于回家所花的时间D .小王去时走下坡路,回家时走上坡路5.如图1,在长方形ABCD 中,动点P 从点B 出发,沿BC CD DA 运动至点A 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .246.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为100米 ①火车的速度为30米/秒 ①火车整体都在隧道内的时间为25秒 ①隧道长度为1050米.其中正确的结论是( )A .①①B .①①C .①①D .①①7.周末,小陈去超市购物 如图是他离家的距离y (千米)与时间x (分钟)的关系图象,根据图象信息:下列说法正确的是( )A .小陈去时的速度为6千米/小时B .小陈在超市停留了15分钟C .小陈去时花的时间少于回家所花的时间D .小陈去时走下坡路,回家时走上坡路8.如图等腰Rt ABC △,AC=BC ,90C ∠=︒点P 由点B 开始沿BC 边匀速运动到点C ,再沿CA 边匀速运动到点A 为止,设运动时间为t ,ABP 的面积为S ,则S 与t 的大致图象是( )A .B .C .D .9.小李和小陆从A 地出发,骑自行车沿同一条路行驶到B 地,小李先出发行驶0.5h 后小陆出发,他们离出发地的距离s (km )和行驶时间t (h )之间的关系图像如图所示,根据图中的信息,有下列说法: ①他们都行驶了20km ①小陆全程共用了2h①小陆出发后1h ,小陆和小李相遇 ①小李在途中停留了0.5h其中正确的有( )A .1个B .2个C .3个D .4个10.甲 乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠 进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用1y元,在乙园采摘需总费用2y元.1y2y与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘草莓更多二填空题11.如图,斑马奔跑的路程与奔跑时间的关系,请你根据图象计算,斑马奔跑5分钟跑了______km.第11题图第11题图第11题图12.某通讯公司有两种电话计费方式:A套餐是月租20元,B套餐是月租0元,一个月内本地通话时间t(分)与费用S(元)的函数关系如图所示.下列结论正确的是______.①A方式的最低消费20元①当通话100分钟时,两种方式的费用都是30元①当打出电话150分钟时,每分钟收费A方式比B方式便宜0.1元.13.甲无人机从地面起飞,乙无人机从距离地面20m高的楼顶起飞,两架无人机同时匀速上升10s.甲乙两架无人机所在的位置距离地面的高度y(单位:m)与无人机上升的时间x(单位:s)之间的关系如图所示,甲无人机的飞行速度为___________m/s14.小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离(单位:米)与时间(单位:分钟)的对应关系如图所示,则小张骑车的速度为_______米/分钟.15.某人从某地出发,骑车前往B地办事,先上坡到达A地后,休息8 min 然后下坡到达B地,8 min办完事,行程情况如图.随后原路返回,若返回时,上下坡速度与原来保持不变,且在A地休息10 min,则他从B地返回到出发地所用的时间是__________min.三解答题16.甲乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,则:(1)A,B两城相距______千米(2)乙车速度为______千米/小时(3)乙车出发后______小时追上甲车.17.小明某天离家,先在A处办事后,再到B处购物,购物后回家,下图描述了他离家的距离s(米)与离家后的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)A 处与小明家距离是_________________,小明从家到A 处过程的速度是______________.(2)小明在B 处购物的时间是______________分钟,他从B 处回家过程中速度是_____________.(3)如果小明家 A 处和B 处在一条直线上,那么小明从离家到回家这一过程的平均速度是__________米/分.18.某段时间内,汽车离开甲地到达乙地,并返回甲地,折线ABCDE 描述了汽车的行驶过程中汽车离甲地的路程s (千米)和行驶时间t (小时)之间的关系,根据图中提供的信息,解答下列问题:(1)甲地与乙地之间的路程是______千米,汽车在行驶途中停留了______小时(2)汽车在行驶过程中,哪段时间行驶速度最慢:______(填“AB 段”“CD 段”或“DE 段”),此段时间共行驶______千米(3)汽车在返回时的平均速度是多少?19.小颖根据学习函数的经验,对函数11y x =--的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.(1)列表: x …2- 1- 0 1 2 3 4 … y …2- a 0 b 0 1- c …①=a ___________ b = ___________ c = ___________.①若()6,4A -,(),4B m -为该函数图象上不同的两点,则m =___________(2)描点并画出该函数的图象.(3)①根据函数图象可得,当x =___________时,该函数y 的最大值为___________①观察函数11y x =--的图象,写出该图象的两条性质:___________ ___________参考答案1.B2.C3.C4.B5.B6.A7.A8.B9.B10.D11.612.①①13.814.30015.47.216.(1)解:由图像可得,A ,B 两城两城相距300千米.故答案为300(2)由图像可得,乙车从A 城出发匀速行驶至B 城所需的时间为:413-=(小时)①乙车的速度为:3003100÷=(千米/小时).故答案为100(3)由图像可得,甲车从A 城出发匀速行驶至B 城所需的时间为5小时①甲车的速度为:300560÷=(千米/小时)设乙车出发后a 小时追上甲车①()601100a a +=解得: 1.5a =即乙车出发后1.5小时追上甲车.故答案为1.5.17.解:(1)由图象可知A 处与小明家距离是200m小明从家到A 处过程的速度是200540m /min ÷=.故答案为200m ,40m /min(2)由图象可知小明在B 处购物的时间是20155-=分钟他从B 处回家过程中速度是800(2520)160m /min ÷-=.故答案为5,160m /min(3)由图象可知小明从离家到回家这一过程的路程为80021600m ⨯=,总时间为25min①小明从离家到回家这一过程的平均速度是16002564÷=米/分.18.(1)解:由函数图象可知,甲地与乙地之间的路程是120千米,汽车在行驶途中停留了2 1.50.5-=小时故答案为120,0.5(2)解:AB 段的速度为16080 1.5km /h 3÷=,CD 段的速度为1208040km/h 32-=-,DE 段的速度为12080km /h 4.53=- ①CD 段行驶速度最最慢,此段时间共行驶1208040-=千米故答案为CD 段,40(3)解:由(2)可知汽车在返回时的平均速度是80km /h答:汽车在返回时的平均速度是80km /h .19.(1)解:①当=1x -时,111121a =---=-=-当1x =时,111101b =--=-=当4x =时,141132c =--=-=-故答案为-1,1,-2①()6,4A -,(),4B m -为该函数图象上不同的两点,即411m -=--整理得4m =-(2)解:如图所示:(3)解:①由图象可得当1x =,该函数y 的最大值为1①观察图象可得:该函数的图象是轴对称图形 当1x <时,y 随x 的增大而增大,当1x >时,y 随x 的增大而减小.。
八年级数学函数及其图象单元测试

八年级数学函数及其图象单元测试
八年级数学函数及其图象单元测试
班级___________姓名____________学号__________成绩_______
一、选择题(每小题3 分,共30 分)
1、图1 所示的是某城市冬季某一天的气温随时间变化图,
这一天的温差为().
A 、-2 B、8 C、12 D、16
2、点P(2,-1)在第( )象限.
A 、一B、二C、三D、四
3、函数y=的自变量的取值范围是().
A、B、C、D、全体实数
4、若一次函数的图象经过(1,2),则m 的值为().
A、-1
B、1
C、2
D、任意实数
5、若直线图像如图2所示,则k,b 的取值可能是().
A、k=1,b=1
B、k=1,b=-1
C、k=-1,b=1
D、k=- 1,b=-1
6、已知正比例函数y=(3k-1)x,若y 随x 的增大而增大,则k 的取值范围
是()
A、B、C、D、
7、李明骑自行车上学,最初以某一匀速行进,中途停下修车耽误了几分钟,为了按时到校,李明加快了速度,仍保持匀速行进,结果按时到校。
表
示李明所走的路程s(千米)与所用时间t(小时)之间的函数的图象大致是()。
初二数学函数及其图象单元测试卷

初二数学函数及其图象单元测试卷姓名: 班级: 分数一、填空题:1、点A (2,—3)关于y 轴对称的点的坐标是 。
2、若点(m ,m+2)在x 轴上,则P 点的坐标是 。
3、函数23+-=x xy 中自变量x 的取值范畴是 4、若P 点的坐标为(m ,n ),且mn<0,m>0,则P 点在第 象限 5、如图,是其双曲线的一个分支,则其解析式为 。
6、已知直线y=3x-5,则其图象不通过第 象限, 它与坐标轴围成的三角形的面积是 。
7、已知点(1,11)和(—2,7)是函数b ax y -=2图象上的点,则a= ,b= , 8、已知点P (x 1,y 1)和点Q (x 2,y 2)在函数b x y +=2的图象上,若x 1>x 2,比较大小y 1 y 2。
(填“>”、“=”、“<” )9、写出一个自变量的取值范畴是1≥x 的函数 。
10、写出一个通过二、三、四象限的一次函数的解析式: 。
11、已知函数16+-=x y ,当x= 时,函数的值为012、把直线22--=x y 向上平移3个单位的直线是 。
13、弹簧挂上物体会伸长,测得一弹簧的长度当所挂物体的质量有下面的关系那么弹簧总长y 与所挂物体质量x (千克)之间的函数关系式为二、选择题1、若直线b kx y +=通过第一、二、四象限,则k ,b 的取值范畴是( ) A 、k>0,b>0 B 、k>0,b<0 C 、k<0,b>0 D 、k<0,b<02、下列语句叙述正确的有( )个①横坐标与纵坐标互为相反数的点在直线y= —x 上; ②点P (2,0)在y 轴上;③若点P 的坐标为(a ,b ),且ab=0,则P 点是坐标原点;④函数xy 3-=中y 随x 的增大而增大;A 、1个B 、2个C 、3个D 、4个 3、若一次函数1)1(2-+-=m x m y 的图象通过原点,则m 的值为( )A 、--1B 、1±C 、1D 、任意实数 4、当k<0,反比例函数xky =和一次函数k kx y +=的图象大致是( )ABCD5、若92)3(--=m xm y 是正比例函数,则m 的值为( )。
八年级下册数学第17章 函数及其图象测试题(二)

第17章函数及其图象测试题(二)(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 若y=mx+m-1是正比例函数,则m的值为()A.0 B.1 C.1-D.2 2. 关于正比例函数y=-3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=13时,y=13.对于双曲线2kyx-=,当x>0时,y随x的增大而增大,则k的取值范围为()A.k<2 B.k≤2 C.k>2 D.k≥24. 正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A B C D5. 把函数y=x的图象向上平移3个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)6. 已知函数y=ax-3和y=kx的图象交于点P(2,-1),则关于x,y的二元一次方程组3y axy kx=-⎧⎨=⎩,的解是()A.21xy=-⎧⎨=-⎩,B.21xy=⎧⎨=-⎩,C.21xy=⎧⎨=⎩,D.21xy=-⎧⎨=⎩,7. 若点(-1,m)和(2,n)在直线y=-x+b上,则m,n,b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n8. 设min(x,y)表示x,y中的最小值.例如min{0,2}=0,min{12,8}=8,则关于x的函数y=min{3x,-x+4}可以表示为()A.y=()(3141)y x xx x=⎧-+≥⎪⎨⎪⎩,<B.y=()413()1x xx x-+≥⎧⎪⎨⎪⎩<,C.y=3x D.y=-x+49. 如图1,在平面直角坐标系中,点A(m,6),B(3,n)均在反比例函数(0)ky kx=>的图象上,若三角形AOB的面积为8,则k的值为()A.3 B.6 C.9 D.12图1 图210. 如图2,直线142yx=+与x轴,y轴分别交于点A和点B,点C(-4,2),点D为线段OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为()A.(-1,0)B.(-2,0)C.(-3,0)D.(-4,0)二、填空题(本大题共6小题,每小题3分,共18分)11. 若点P的坐标是(2a+1,a-4),且P点到两坐标轴的距离相等,则P点的坐标是.12. 若点A(a,2a+3)在第二、四象限两坐标轴夹角的平分线上,则a= .13. 如图3,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集是.图3 图414. 某商场对一款运动鞋五天中的售价与销量关系的调查显示,售价是销量的反比例函数(统计数据见下表).已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为元/双.15. 已知关于x的一次函数y=(m-3)x+m+2的图象经过第一、二、四象限,则关于x的一次函数y=(m+2)x-m+3必经过第象限.16. 如图4,三角形OAB的顶点A在双曲线6(0)y xx=>上,顶点B在双曲线4(0)y xx=-<上,AB中点P恰好落在y轴上,则三角形OAB的面积为.三、解答题(本大题共7小题,共52分)17.(6分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.18.(6分)已知一次函数y=(3-m)x+2m-9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当-1≤x≤2时,求y的取值范围.19.(6分)已知y=y1+y2,y1与(x-1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.求y关于x的函数表达式.20.(8分)如图5所示,在平面直角坐标系中,直线AC与x轴交于点A,与y轴交于点B(0,52),且与反比例函数10(0)y xx=>的图象交于点C,CD⊥y轴于点D,CD=2.(1)求直线AC的表达式;(2)根据函数图象,直接写出当反比例函数10(0)y xx=>的函数值y≥5时,自变量x的取值范围;(3)设点P是x轴上的点,若三角形PAC的面积等于10,直接写出点P的坐标.售价x(元/双)200 240 250 400销售量y(双)30 25 24 15图521.(8分)如图6,已知A (a ,-2a ),B (-2,a )两点是反比例函数my x=与一次函数y=kx+b 图象的两个交点.(1)求一次函数和反比例函数的表达式; (2)求三角形BAO 的面积;(3)观察图象,直接写出不等式0mkx b x+->的解集.图622.(8分)某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y (℃)与通电时间x (分)的关系如图7所示,回答下列问题:(1)当0≤x ≤8时,求y 与x 之间的函数表达式; (2)求出图中a 的值;(3)某天早上7∶20,李老师将放满水后的饮水机电源打开,若他想在8∶00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?图723.(10分)甲、乙两人同时登山,两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图8所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是 米/分钟,乙在A 地提速时距地面的高度b 为 米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求甲和乙提速后y 和x 之间的函数关系式; (3)登山多长时间时,乙追上了甲,此时乙距A 地的高度为多少米?图8附加题(20分,不计入总分)24. 近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图9所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应自变量的取值范围;(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?图9(山东于秀坤)第17章 函数及其图象测试题(二)一、1. B 2. C 3. A 4. A 5. D 6. B 7. C 8. A 9. B 10. B二、11. (-9,-9)或(3,-3) 12. -1 13. x<-2 14. 300 15. 一、二、三 16. 5 三、17. (1)P (0,-3). (2)P (-12,-9). (3)P (2,-2).18. 解:(1)因为一次函数y=(3-m )x+2m-9的图象与y 轴的负半轴相交,y 随x 的增大而减小, 所以3−m <0,2m−9<0,解得3<m <4.5.因为m 为整数,所以m=4.(2)由(1)知,m=4,则该一次函数表达式为y=-x-1. 因为-1≤x≤2,所以-3≤-x-1≤0,即y 的取值范围是-3≤y≤0.19. 解:根据题意,设111k y x =-,y 2=k 2x (k 1,k 2≠0). 因为y=y 1+y 2,所以121k y k x x =+-. 因为当x=2时,y 1=4,y=2,所以11242 2.k k k =⎧⎨+=⎩,.所以k 1=4,k 2=-1.所以41y x x =--. 20. 解:(1)因为CD ⊥y 轴于点D ,CD=2,所以点C 的横坐标为2.把x=2代入反比例函数10(0)y x x =>得,1052y ==.所以C (2,5). 设直线AC 的表达式为y=kx+b ,把B (0,52),C (2,5)代入得522 5.b k b ⎧=⎪⎨⎪+=⎩,解得545.2k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以直线AC 的表达式为5542y x =+. (2)由图象可知,当反比例函数10(0)y x x=>的函数值y ≥5时,自变量x 的取值范围是0<x ≤2. (3)P (-6,0)或(2,0).21. 解:(1)因为A (a ,-2a ),B (-2,a )两点在反比例函数my x=的图象上,所以m=-2a ·a=-2a ,解得a=1,m=-2.所以A (1,-2),B (-2,1),反比例函数的表达式为2y x=-.将点A (1,-2),点B (-2,1)代入y=kx+b 中,得221k b k b +=-⎧⎨-+=⎩,,解得11.k b =-⎧⎨=-⎩,所以一次函数的表达式为y=-x-1.(2)在直线y=-x-1中,令y=0,则-x-1=0,解得x=-1,所以C (-1,0). 所以S △AOB =S △AOC +S △BOC =12×1×2+12×1×1=32. (3)x<-2或0<x<1.22. 解:(1)当0≤x ≤8时,设y 与x 之间的函数表达式为y=kx+b (k ≠0).将(0,20),(8,100)代入y=kx+b ,得208100b k b =⎧⎨+=⎩,,解得1020.k b =⎧⎨=⎩,所以当0≤x ≤8时,y 与x 之间的函数表达式为y=10x+20. (2)当8≤x ≤a 时,设y 与x 之间的函数表达式为22(0)k y k x=≠. 将(8,100)代入2k y x =,得2100kx=,解得k 2=800. 所以当8≤x ≤a 时,y 与x 之间的函数表达式为800y x=. 将(a ,20)代入800y x=,解得a=40. (3)依题意,得800x≤40,解得x ≥20. 因为x ≤40,所以20≤x ≤40.所以他应在7∶40~8∶00时间段内接水. 23. 解:(1)10 30(2)设甲的函数关系式为y=kx+b.由题意,得10020300b k b +⎧⎨⎩=,=,解得10=100.k b ⎧⎨⎩=,所以甲的关系式为y=10x+100.设乙提速后的函数关系式为y=mx+n.由于m=30,且图象经过(2,30),所以30=2×30+n ,解得n=-30. 所以乙提速后的关系式为y=30x-30.(3)由题意,得10x+100=30x-30 ,解得x=6.5. 把x=6.5代入y=10x+100,得y=165.所以相遇时乙距A 地的高度为165-30=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A 地的高度为135米.24. 解:(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则b =4,7k 1+b =46,解得k 1=6,b =4.则y=6x+4,此时自变量x 的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)因为爆炸后浓度成反比例下降,所以可设y 与x 的函数关系式为y =2k x(k 2≠0). 由图象知y =2k x 过点(7,46),所以27k =46.所以k 2=322.所以y =322x.此时自变量x 的取值范围是x >7. (2)当y=34时,由y=6x+4,得6x+4=34,x=5.所以撤离的最长时间为7-5=2(小时).所以撤离的最小速度为3÷2=1.5(km/h ).(3)当y=4时,由y=322x,得x=80.5. 80.5-7=73.5(小时).所以矿工至少在爆炸后73.5小时才能下井.。
数学八年级下华东师大版第十八章函数及其图象单元测试题

第18章?函数及其图象?测试题 班别: 姓名: 得分:一、填空题〔每题3分,共30分〕1、在圆的面积公式 S =π R 2中,π是 〔填“常量〞或“变量〞〕,S 和R 是 〔填“常量〞或“变量〞〕.2、假设点P 的坐标是(a ,b ),当a >0,b <0时,点P 的位置在第 象限.3、点A (2,3)和B (-2,m )关于原点对称,那么m = .4、当x =2时,函数 y =-2x +3的值是 .5、一次函数 y =5x -2,y 随增大x 的而 .6、函数y =-2x +4,当 y =2时,x = .7、函数 y =-5x +10,当x < 时,函数 y 的值大于0.8、= .9、直线 y =ax +7, y =4-3x , y =2x -11相交于同一点,那么a = .10、一次函数y =-2x +2的图象与x 轴交于点A ,与 y 轴交于点B ,那么△AOB 面积等于 .二、选择题(每题3分,共42分)11、齿轮每分钟转100转,转动t 分钟,转数为n ,那么用含t 的代数式来表示n 的解析式是( ).A 、t n 100=B 、100n t = C 、n =100+t D 、n =100t 12、水池贮水800立方米,每小时放水2立方米,t 小时后,水池中的水为Q 立方米,用t 表示Q 的函数关系式为( ).A 、Q =800-2tB 、Q =800+2tC 、t Q 2800=D 、Q =2t 13、函数421-=x y 中,字变量x 的取值范围是 ( ).A 、x ≥2B 、x >-2C 、x >2D 、x <214、假设xm m y )3(-=是反比例函数,那么m 必须满足 ( ). A 、m ≠3 B 、m ≠0 C 、m ≠0或m ≠3 D 、m ≠0且m ≠315、以下变量之间的变化关系不是一次函数的是( ).A 、圆的周长和它的半径B 、等腰三角形的面积与它的底边长C 、2x +y =5中的y 与xD 、菱形的周长P 与它的一边长a16、以下有序实数对中,为函数y =2x -1中自变量x 与函数y 的一对对应值是( ).A 、(-2.5,-4)B 、(-0.25,0.5)C 、(1,3)D 、(2.5,4)17、如果点A (-3,a )与点B (3,4)关于y 轴对称,那么a 的值为( ).A 、3B 、-3C 、4D 、-418、函数 y =2x -1与y =3x +2的图象交于点P ,那么点P 在( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限19、一次函数y =x +1不经过的象限是( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限20、一次函数的图象如右图所示,那么这个一次函数的解析式是( ).A 、y =-2x +2B 、 y =-2x -2C 、 y =2x -2D 、 y =2x -221、反比例函数x k y =的图象过点〔2,–1〕,那么这个函数的解析式是〔 〕. A 、x y 2-= B 、x y 2= C 、x y 1-= D 、xy 1= 22、一次函数y =kx -k 的图象的大致位置是( ).A B C D 23、函数 y =k (x -1)与)0(≠=k xk y 在同一坐标系中的图象的位置可能是( ).A B C D24、某车开场行驶时,油箱里有24升油,如果每小时耗油4升,那么油箱里的剩余油量y 〔升〕与行驶时间x 〔小时〕之间的函数关系式和图象是( ).A B C D三、解答题〔每题12分,总分值48分〕 25、将函数32+-=x y 的图象平移,使它平移后经过点〔2,–1〕,求平移后的直线所对应的解析式.yx OM AB P O y xC A B26、如图,两个一次函数的图象交于y 轴上的一点B ,且分别交x 轴于A 、C 两点.假设∣OA ∣:∣OB ∣:∣OC ∣=1:2:3,且ΔABC 的面积是16,求这两个一次函数的解析式.27、如右图,P 是反比例函数)0(>=k x k y 的图象上的任意一点,过点P 作x 轴的垂线,垂足为M ,1=∆POM S . (1)求k 的值; (2)直线x y =与这个反比例函数的图象交于点A 和B ,求A ,B 两点的坐标.28、某团队去北京旅游,甲旅行社的条件是:团长买一张全票,那么其余队员可享受半价优惠;乙旅行社的条件是:全团人员按票价的6折优惠.全程票价是240元.(1)设该团队人数是x ,甲旅行社的收费为1y 元,乙旅行社的收费为2y 元,分别求出1y 、2y 与x 之间的函数关系式;(2)试讨论, 团队人数为多少时两家旅行社收费一样;团队人数x 在什么范围,选择甲旅行社比拟优惠.。
初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案函数是数学中非常重要的概念,在初二数学中也是学习的重点之一。
理解函数的概念以及掌握函数图像的绘制对于学习数学非常关键。
下面将为大家提供一些初二数学函数概念与图像的练习题及答案,以帮助大家更好地掌握这一知识点。
练习题一:给出以下函数,判断它们是否为函数,并画出它们的图像。
1. 函数f(x) = 2x + 12. 函数g(x) = √x3. 函数h(x) = x^2 + 14. 函数k(x) = |x|答案一:1. 函数f(x) = 2x + 1 是函数。
它的图像为一条直线,斜率为2,截距为1.2. 函数g(x) = √x 是函数。
它的图像为一条抛物线,开口向上,过点(0,0).3. 函数h(x) = x^2 + 1 是函数。
它的图像为一条抛物线,开口向上,顶点为(0,1).4. 函数k(x) = |x| 是函数。
它的图像为以原点为对称中心的一条直线段.练习题二:给出以下函数的图像,写出它们的解析式。
1.图像描述:一条斜率为1,截距为2的直线段。
解析式:f(x) = x + 22.图像描述:一条横纵坐标均为正的对数曲线。
解析式:g(x) = ln(x)3.图像描述:一个顶点在坐标原点的开口向下的抛物线。
解析式:h(x) = -x^24.图像描述:一条横坐标为负的直线段。
解析式:k(x) = -2答案二:1. 图像描述所给出的直线的斜率为1,截距为2,因此解析式为f(x) = x +2.2. 图像描述所给出的曲线是对数曲线,横纵坐标均为正,因此解析式为g(x) = ln(x).3. 图像描述所给出的抛物线是一个顶点在坐标原点的开口向下的抛物线,因此解析式为h(x) = -x^2.4. 图像描述所给出的直线段横坐标为负,因此解析式为k(x) = -2.练习题三:根据函数的图像,判断它们的性质。
1. 以下函数图像是否为奇函数?图像描述:一条关于y轴对称的曲线。
答案:是奇函数。
2019-2020学年度华东师大版数学八年级下册第十七章 《函数及其图像》(含解析)第17章 单元测试

第十七章函数及其图像单元测试班级:姓名:学号:成绩:一、选择题1.对于圆的面积公式S=πR2,下列说法中,正确的为()A. π是自变量B. R是常量C. R是自变量D. π和R是都是常量.其中y是x函数的是() 2.关于变量x,y有如下关系:①x−y=5;②y2=2x;③:y=|x|;④y=3xA. ①②③B. ①②③④C. ①③D. ①③④3.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.4.如图,是反比例函数y1=k和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()xA. 1<x<6B. x<1C. x<6D. x>15.关于函数y=−2x+1,下列结论正确的是()A. 图象必经过点(−2,1)B. 图象经过第一、二、三象限C. 图象与直线y=−2x+3平行D. y随x的增大而增大6.已知反比例函数y=−2,下列结论不正确的是()xA. 图象经过点(−2,1)B. 图象在第二、四象限C. 当x<0时,y随着x的增大而增大D. 当x>−1时,y>27.当x=−3时,函数y=x2−3x−7的函数值为()A. −25B. −7C. 8D. 11(k≠0)的图象经过点(2,−3),则k的值为()8.若反比例函数y=kxA. 5B. −5C. 6D. −69.若反比例函数y=2k+1的图象位于第一、三象限,则k的取值可以是()xA. −3B. -2C. -1D. 010.在平面直角坐标系中,点P(-2,3-π)所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米12.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.二、填空题13. 王明在班级的座位是“第3列第5排”,若用(3,5)表示,则(5,3)表示的实际意义是______. 14. 在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是______.15. 若一次函数y =−2x +b(b 为常数)的图象经过第二、三、四象限,则b 的值可以是 (写出一个即可).16. 已知点P(x,y)在第四象限,且到y 轴的距离为3,到x 轴的距离为5,则点P 的坐标是 . 17. 已知y =(k −1)x +k 2−1是正比例函数,则k = . 18. 函数y =√x+2−√3−x 中自变量x 的取值范围是 .19. 如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,−1)和(−3,1),那么“卒”的坐标为 .20.如图,在平面直角坐标系中,A是x轴上的任意一点,BC平行于x轴,分别交y=4x (x>0),y=kx(x<0)的图象于B,C两点若△ABC的面积为3,则k的值为______.三、解答题21.已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式.(2)若图象与x轴交与点A,与y轴交与点B,求出点A、B的坐标,并画出图象。
八年级数学函数及其图象单元测试题G

八年级数学函数及其图象单元测试题G一、填空题:(每题3分,共45分)1.已知13--=y y x ,把它写成y 是x 的函数的形式是 2.若点M (1+a ,2b-1)在第三象限内,则点N (a-1,1-2b )点在第 象限 3.点P (3,5)到y 轴的距离为 ,到x 轴的距离为 4.点(-3,2),(a ,1+a )在函数1-=kx y 的图像上,则______,==a k 5.已知y 与4x-1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 6.当m= 时,函数3)2(32+-=-m xm y 是一次函数7.关于x 的一次函数35-+=m x y ,若要使其成为正比例函数,则m= 8.已知m 是整数,且一次函数2)4(+++=m x m y 的图象不过第二象限,则m= 9.一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________________10.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k= ,b= 11.直线y=2x-3向下平移4个单位可得直线y=______________,再向左平移2个单位可得直线y=_________ ___12.当b 时,一次函数3)1(--=x b y 与反比例函数xb y 3+=有交点 13.如图,已知函数y ax b =+和y kx =的图象交于点P,则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是14.如图,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 .15.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B n的坐标是______________.二、选择题:(每题3分,共36分)1.在平面直角坐标系中,点(-1,-2)所在的象限是…………………………………( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2.下列函数中,y 随x 的增大而减小的有…………………………………………………( )①12+-=x y ② ③31x y +-= ④x y )21(-=A.1个B.2个C.3个D.4个3.直线b kx y +=1过第一、二、四象限,则直线k bx y -=2不经过…………………( )A 、第一象限B 、第二象限C 、、第三象限D 、第四象限 4.既在直线y=-3x-2上,又在直线y=2x+8上的点是……………………………………( )A 、(-2,4)B 、(-2,-4)C 、(2,4)D 、(2,-4) 5.直线y=-x -2与y=x+3的交点在………………………………………………………( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 6.已知点P (9,-2)关于原点对称的点是Q ,Q 关于y 轴对称的点是R ,则点R 的坐标是( )A 、(2,-9)B 、(-9,2)C 、(9,2)D 、(-9,-2) 7.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路回,若横轴表示时间t ,纵轴表示与山脚的距离h ,则下面四个图中反映全程h 与t 的关系图是………………( )8.下列图象中,不是y 的函数的是…………………………………………………………( )x9.当k>0时,反比例函数xky =和一次函数y=kx-k 的图象大致为…………………….( )10.如图,P 是双曲线上一点,且图中阴影部分的面积为3,则此反比例函数的解析式为( ) A 、x y 6= B 、x y 6-= C 、xy 3= D 、x y 3-=11.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是………………( )A .0x >B .0x <C .2x >D .2x <12.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.下 图描述了他上学的情景,下列说法中错误..的是…………………( ) A .修车时间为15分钟 B .学校离家的距离为2000米C .到达学校时共用时间20分钟D .自行车发生故障时离家距离为1000米三、解答题:(共39分)1.(5分)已知一次函数的图象经过点A (2,1),B (-1,-3). (1)求此一次函数的解析式.(2)求此一次函数的图象与x 轴、y 轴的交点坐标. (3)求此一次函数的图象与两坐标轴所围成的三角形面积.xxxx(分钟)2.(5分)已知直线y=2x+1和y=3x+b 的交点在第三象限,求常数b 的取值范围.3.(5分)已知关于x 的一次函数2)73(-+-=a x a y 的图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求a 的取值范围.4.(6分)如下图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标. (2)求出两函数解析式.(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值.5.(6分)如图,反比例函数xy 2=的图像与一次函数b kx y +=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C.(1)求一次函数解析式. (2)求C 点的坐标. (3)求△AOC 的面积.6.(6分)某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定了两种优惠方案:①买一个书包赠送一个文具盒子;②全部总价九折付款。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学函数及其图象单元测试
班级___________姓名____________学号__________成绩_______
一、选择题(每小题3分,共30分)
1、图1所示的是某城市冬季某一天的气温随时间变化图,
这一天的温差为( ). A 、 -2 B 、 8 C 、 12 D 、16 2、点P (2,–1)在第( )象限.
A 、 一
B 、二
C 、 三
D 、四 3、函数 ).
A 、2x ≥
B 、2x ≤
C 、2x ≠
D 4、若一次函数(1)1y m x =-+的图象经过(1,2),则m 的值为( A 、-1 B 、1 C 、2 D 、任意实数
5、若直线b kx y +=图像如图2所示,则k ,b 的取值可能是( ).
A 、k =1,b=1
B 、k=1,b=-1
C 、k=-1,b=1
D 、k=-1,b=-1 6、已知正比例函数y=(3k —1)x ,若y 随x 的增大而增大,则k 的取值范围是( )
A 、13x >
B 、 13x >-
C 、13x <
D 、1
3x <-
7、李明骑自行车上学,最初以某一匀速行进,中途停下修车耽误了几分钟,为了按时到校,李明加快了速度,仍保持匀速行进,结果按时到校。
表示李明所走的路程s (千米)与所用时间t (小时)之间的函数的图象大致是( )
8、已知函数y=–x
k
的图象过点(-1,3),那么下列各点在函数1y kx =+的图
象上的是 ( ).
A 、(3,1)
B 、(3,10)
C 、(2,-5)
D 、(2,8)
时) 图2
9、当k<0,反比例函数x
k
y =和一次函数k kx y +=的图象大致是( ).
A
B C D
10、已知甲、乙两弹簧的长度ycm 与所挂物体xkg 之间的函数解析式分别为
1122,y k x b y k x b =+=+,图象如图3的长为1y ,乙弹簧的长为2y ,则1y 与2y A 、12y y > B 、12y y = C 、12y y < D 、不能确定
二、填空题(每小题3分,共24分)
11、点A (–2,a –1)与点B (b ,1)关于y 轴对称,则12、一次函数y= –2x –3与x 轴的交点坐标为__________.
13、若y 与x 成反比例,且图象经过点(–2,6),则y 与x 之间的函数解析式为
_________ .
14、甲、乙两地相距100千米,汽车以每小时40千米的速度由甲地开往乙地,
汽车离乙地的路程s (千米)与时间t (小时)之间的函数关系是______________.
15、把直线22--=x y 向上平移3个单位的直线是 . 16、已知直线y=3x-5,它与坐标轴围成的三角形的面积是 . 17、已知一次函数的图象经过点P (2,-3),写出一个符合条件的一次函数的
解析式 .
18、已知点P (x 1,y 1)和点Q (x 2,y 2)在函数b x y +=2的图象上,若x 1>x 2,
比较大小y 1 y 2。
(填“>”、“=”、“<” ).
三、解答题(每题19~21分各10分,第22、23题各8分共46分) 19、一次函数b kx y +=的图象经过点(0,-3)、(2,-1).
(1)求,k b 的值;
(2)若直线经过点A(-2,a ),求a 的值.
20、利用一次函数的图象,求方程组⎩
⎨⎧=+=+7173y x y x 的解
21、用1l 表示反比例函数k
y x
=
在第一象限内的图象,已知图象1l 过点A(2,1),图象2l 与1l 关于x 轴对称,试求图象2l 的函数解析式(x >0)
22、如图4表示一艘轮船与一艘快艇沿相同路线从甲港到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:
(1) 快艇出发多长时间赶上轮船?
(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少? (3)请求出表示轮船行驶过程的函数解析式(不需写出自变量取值范围);
23、某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A 县10
辆,调往B 县8辆.已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为40元和80元;从乙仓库调运一辆农用车到A 县和B 县的运费分别为30元和50元.
(1)设从乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式; (2)若要让总运费不超过900元,问共有几种调运方案; (3)求出总运费最低的调运方案,最低运费是多少?
)
图4。