高三数学(文科)试题试题卷

合集下载

高三文科数学试卷电子版

高三文科数学试卷电子版

第1页 共4页 ◎ 第2页 共4页…………外………………内……………○……在※※装※※订※※线………○……第II卷(非选择题)二、填空题(共4题,每题5分,共20分)13.若(x2+a)(x+x)8的展开式中x8的系数为9,则a的值为.14.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a,b个坛子,一共堆了n层,则酒坛的总数S=ab+(a-1)(b-1)+(a-2)(b-2)+…+(a-n+1)(b-n+1).现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为.15.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f'(x1)=f'(x2)=f(b)-f(a)b-a,则称函数f(x)是[a,b]上的“中值函数”.已知函数f(x)=13x3-12x2+m是[0,m]上的“中值函数”,则实数m的取值范围是.16.设函数f(x)=exx+a(x-1)+b(a,b∈R)在区间[1,3]上总存在零点,则a2+b2的最小值为.三、解答题(共6题,共70分)17.已知数列{a n}的各项均为正数,S n为其前n项和,且4S n=a n2+2a n-3.(1)求数列{a n}的通项公式;(2)若T n=a1+1S1−a3+1S3+a5+1S5-…+(-1)n+1a2n-1+1S2n-1,比较T n与1的大小.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且2a sin(C+π6)=b+c.(1)求角A的大小;(2)若a=√7,BA⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =-3,角A的平分线交边BC于点T,求AT的长.19.垃圾是人类生产和生活中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,因此需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个镇进行分析,得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得∑i=120x i=80,∑i=120y i=4 000,∑i=120(x i-x¯)2=80,∑i=120(y i-y¯)2=8 000,∑i=120(x i-x¯)(y i-y¯)=700.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的线性回归方程;(3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:根据以往经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?参考公式:相关系数r=∑i=1n(x i-x¯)(y i-y¯)√∑i=1(x i-x¯)2∑i=1(y i-y¯)2,对于一组具有线性相关关系的数据(x i,y i)(i=1,2,…,n),其回归直线y^=b^x+a^的斜率和截距的最小二乘估计分别为b^=∑i=1nx i y i−nx-y-∑i=1nx i2−nx-2,a^=y-−b^x-.20.如图,已知各棱长均为2的直三棱柱ABC-A1B1C1中,E为AB的中点.(1)求证:BC1∥平面A1EC;(2)求点B1到平面A1EC的距离.21.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√22,且椭圆上一点到两个焦点的距离之和为2√2.(1)求椭圆C的标准方程.(2)过点S(-13,0)的动直线l交椭圆C于A,B两点,试问:在x轴上是否存在一个定点T,使得无论直线l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.22.已知函数f(x)=lnx,g(x)=-12x.(1)令F(x)=ax·f(x)-2x2·g(x),讨论F(x)的单调性;(2)设φ(x)=f(x)x-g(x),若在(√e,+∞)上存在x1,x2(x1≠x2)使不等式|φ(x1)-φ(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.第3页共4页◎第4页共4页参考答案1.D【解析】解法一 因为A ={x ||x |≤3}={x |-3≤x ≤3},(题眼)(方法点拨:含有一个绝对值的不等式的解法口诀是“大于在两边,小于在中间”,即|x |≤a 的解集是{x |-a ≤x ≤a },|x |≥a 的解集是{x |x ≤-a 或x ≥a })B ={x |x ≤2},所以A ∩B ={x |-3≤x ≤2},故选D.解法二 因为3∉B ,所以3∉(A ∩B ),故排除A,B;因为-3∈A 且-3∈B ,所以-3∈(A ∩B ),故排除C.故选D. 【备注】无 2.B【解析】解法一 z =4-3i 2-i=(4-3i)(2+i)(2-i)(2+i)=11-2i 5=115−25i,所以|z |=√(115)2+(-25)2=√5,(题眼)故选B.解法二 |z |=|4-3i2-i |=|4-3i||2-i|=√42+(-3)2√22+(-1)2=√5=√5,故选B.(方法总结:若z 1,z 2∈C ,则|z 1z 2|=|z 1|·|z 2|,|z1z 2|=|z 1||z 2|(|z 2|≠0)) 【备注】无3.A【解析】解法一 由sin x =1,得x =2k π+π2(k ∈Z ),则cos (2k π+π2)=cos π2=0,故充分性成立;又由cosx =0,得x =k π+π2(k ∈Z ),而sin(k π+π2)=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,(判断充分、必要条件应分三步:(1)确定条件是什么,结论是什么;(2)尝试从条件推结论(充分性),从结论推条件(必要性);(3)确定条件和结论是什么关系)故选A.解法二 由sin x =1,得x =2k π+π2 (k ∈Z ),则cos(2k π+π2)=cos π2=0,故充分性成立;又cos 3π2=0,sin 3π2=-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,故选A. 【备注】无 4.A【解析】由题可知,数列{a n }是首项为29、公比为12的等比数列,所以S n =29[1-(12)n ]1-12=210-210-n,T n =29×28×…×210-n=29+8+…+(10-n )=2n(19-n)2,由T n >S n ,得2n(19-n)2>210-210-n,由n(19-n)2≥10,可得n 2-19n +20≤0,结合n ∈N *,可得2≤n ≤17,n ∈N *.当n =1时,S 1=T 1,不满足题意;当n ≥18时,n(19-n)2≤9,T n ≤29,S n =210-210-n>210-1>29,所以T n <S n ,不满足题意.综上,使得T n >S n 成立的n 的最大正整数值为17. 【备注】无 5.B【解析】依题意,1=a 2+b 2-2a ·b =1+1-2a ·b ,故a ·b =12,所以(a -b )·(b -c )=a ·b -b 2-(a -b )·c =(b -a )·c -12=|b -a ||c |·cos<b -a ,c >-12≤1-12=12,当且仅当b -a 与c 同向时取等号.所以(a -b )·(b -c )的最大值为12.故选B.【备注】无 6.D【解析】由已知可得∠xOP =∠P 0OP -∠P 0Ox =π2t -π3,所以由三角函数的定义可得y =3sin∠xOP =3sin(π2t -π3),故选D.【备注】无 7.B【解析】本题主要考查古典概型、排列与组合等知识,考查的学科素养是理性思维、数学应用. “礼、乐、射、御、书、数”六节课程不考虑限制因素有A 66=720(种)排法,其中“数”排在前两节,“礼”和“乐”相邻排课的排课方法可以分两类:①“数”排在第一节,“礼”和“乐”两门课程相邻排课,则有C 41A 22A 33=48(种)排法;②“数”排在第二节,“礼”和“乐”两门课程相邻排课,则有C 31A 22A 33=36(种)排法.(方法总结:解决排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置))故“数”排在前两节,“礼”和“乐”相邻排课的排法共有48+36=84(种),所以“数”排在前两节,“礼”和“乐”相邻排课的概率P =84720=760,故选B. 【备注】无 8.C【解析】解法一 由已知可得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.在平面ACC 1A 1内,过点C 1作C 1H ⊥PC ,垂足为H ,如图.由CC 1⊥底面ABC ,可得CC 1⊥BC ,因为AC ⊥BC ,AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,所以BC ⊥C 1H ,又C 1H ⊥PC ,PC ∩BC =C ,所以C 1H ⊥平面PBC ,连接BH ,故∠C 1BH 就是直线BC 1与平面PBC 所成的角.在矩形ACC 1A 1中,CP =√CA 2+AP 2=√42+22=2√5,sin∠C 1CH =cos∠PCA =AC CP =2√5=√5=C 1H CC 1=C 1H 3,故C 1H =3×√5=√5.故在△BC 1H中,sin∠C 1BH =C 1HBC 1=√53√2=√105,所以直线BC 1与平面PBC 所成角的正弦值等于√105.故选C.解法二 由已知得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.如图,以C 为坐标原点,分别以CB⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ ,C C_1的方向为x ,y ,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,4,2),B (3,0,0),C 1(0,0,3),则CB⃗⃗⃗⃗⃗ =(3,0,0),CP ⃗⃗⃗⃗⃗ =(0,4,2),B ⃗ C_1=(-3,0,3).设平面BCP 的法向量为n =(x ,y ,z ),则由{n ⊥CB⃗⃗⃗⃗⃗ ,n ⊥CP⃗⃗⃗⃗ 可得{n·CB ⃗⃗⃗⃗⃗ =3x =0,n·CP ⃗⃗⃗⃗ =4y +2z =0,即{x =0,2y +z =0,得x =0,令y =1,得z =-2,所以n =(0,1,-2)为平面BCP 的一个法向量.设直线BC 1与平面PBC 所成的角为θ,则sin θ=|cos<n ,B ⃗ C_1>|=|n·B⃗⃗ C_1||n||B⃗⃗ C_1|=√(-3)2+32×√12+(-2)2=√105.故选C.【备注】求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角.(2)向量法,sin θ=|cos<AB ⃗⃗⃗⃗⃗ ,n >|=|AB ⃗⃗⃗⃗⃗⃗·n||AB ⃗⃗⃗⃗⃗⃗||n|(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).9.B【解析】本题主要考查集合以及自定义问题的解题方法;G =N,⊕为整数的加法时,对任意a,b ∈N ,都有a ⊕b ∈N ,取c =0,对一切a ∈G ,都有a ⊕c =c ⊕a =a ,G 关于运算⊕为“融洽集”. 【备注】无 10.D【解析】对于A,甲街道的测评分数的极差为98-75=23,乙街道的测评分数的极差为99-73=26,所以A 错误;对于B,甲街道的测评分数的平均数为75+79+82+84+86+87+90+91+93+9810=86.5,乙街道的测评分数的平均数为73+81+81+83+87+88+95+96+97+9910=88,所以B 错误;对于C,由题中表可知乙街道测评分数的众数为81,所以C 错误;对于D,甲街道的测评分数的中位数为86+872=86.5,乙街道的测评分数的中位数为87+882=87.5,所以乙的中位数大,所以D 正确. 故选D. 【备注】无 11.A【解析】本题考查函数的图象与性质,数形结合思想的应用,考查考生分析问题、解决问题的能力. 解法一 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,显然x ≠-3,当x ≠0且x ≠−3时,由|x |-a (x 3+3x 2)=0,得a =|x|x 3+3x 2,设g (x )=|x|x 3+3x 2,则g (x )的图象与直线y =a 有3个不同的交点.当x >0时,g (x )=1x 2+3x ,易知g (x )在(0,+∞)上单调递减,且g (x )∈(0,+∞).当x <0且x ≠-3时,g (x )=-1x 2+3x,g'(x )=2x+3(x 2+3x)2,令g'(x )>0,得-32<x <0,令g'(x )<0,得−3<x <−32或x <−3,所以函数g (x )在(−∞,−3)和(−3,−32)上单调递减,在(−32,0)上单调递增,且当x 从左边趋近于0和从右边趋近于−3时,g (x )→+∞,当x 从左边趋近于-3时,g (x )→−∞,当x →−∞时,g (x )→0,可作出函数g (x )的大致图象,如图所示,由图可知,a >49.综上,实数a 的取值范围是(49,+∞).解法二 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,当x ≠0时,由|x |-a (x 3+3x 2)=0,得1|x|=a (x +3),则该方程有3个不同的根.在同一坐标系内作出函数y =1|x|和y =a (x +3)的图象,如图所示.易知a >0,当y =a (x +3)与曲线y =1|x|的左支相切时,由-1x=a (x +3)得ax 2+3ax +1=0,Δ=(3a )2-4a =0,得a =49.由图可知,当a >49时,直线y =a (x +3)与曲线y =1|x|有3个不同的交点,即方程1|x|=a (x +3)有3个不同的根.综上,实数a 的取值范围是(49,+∞).【备注】【方法点拨】利用方程的根或函数零点求参数范围的方法及步骤:(1)常规思路:已知方程的根或函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图象一定要准确,这种数形结合的方法能够帮助我们直观解题.(2)常用方法:①直接法——直接根据题设条件构建关于参数的不等式,通过解不等式确定参数范围;②分离参数法——先将参数分离,转化成求函数的值域问题加以解决;③数形结合法——先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.(3)一般步骤:①转化——把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况;②列式——根据零点存在性定理或结合函数图象列式;③结论——求出参数的取值范围或根据图象得出参数的取值范围 12.B【解析】因为圆x 2+y 2=a 2与双曲线的渐近线在第一象限的交点为M ,所以∠A 1MA 2=90°,tan∠MOA 2=ba,所以∠PMA 2=90°.因为△MPA 2是等腰三角形,所以∠MA 2P =45°.因为∠PA 2M 的平分线与y 轴平行,所以∠OA 2M =∠PA 2x ,又∠OA 2M +∠A 2MO +∠MOA 2=180°,∠OA 2M =∠A 2MO ,所以∠MOA 2=∠MA 2P =45°,(题眼)所以b a=tan∠MOA 2=1,所以C 的离心率e =c a =√a 2+b 2a 2=√1+b 2a 2=√2.故选B.【备注】无 13.1【解析】二项式(x +1x )8的展开式中,含x 6的项为C 81x 7(1x )1=8x 6,含x 8的项为C 80x 8(1x )0=x 8,所以(x 2+a )(x +1x)8的展开式中,x 8的系数为8+a =9,解得a =1.【备注】无 14.220【解析】根据题目中已给模型类比和联想,得出第一层、第二层、第三层、…、第十层的酒坛数,然后即可求解.每一层酒坛按照正三角形排列,从上往下数,最上面一层的酒坛数为1,第二层的酒坛数为1+2,第三层的酒坛数为1+2+3,第四层的酒坛数为1+2+3+4,…,由此规律,最下面一层的酒坛数为1+2+3+…+10,所以酒坛的总数为1+(1+2)+(1+2+3)+…+(1+2+3+…+10)=1+3+6+…+55=220. 【备注】无 15.(34,32)【解析】由题意,知f '(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f '(x 1)=f '(x 2)=f(m)-f(0)m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x-13m 2+12m (0<x <m ),则{Δ=1+43m 2-2m >0,g(0)=-13m 2+12m >0,g(m)=23m 2-12m >0,解得34<m <32.【备注】无16.e 48 【解析】设x 0为函数f (x )在区间[1,3]上的零点,则e x 0x 0+a (x 0-1)+b =0,所以点(a ,b )在直线(x 0-1)x +y +e x 0x 0=0上,(题眼)而a 2+b 2表示坐标原点到点(a ,b )的距离的平方,其值不小于坐标原点到直线(x 0-1)x +y +e x 0x 0=0的距离的平方,(名师点拨:直线外一点到直线上的点的距离大于等于该点到直线的距离)即a 2+b 2≥e 2x 0x 02(x 0-1)2+12=e 2x 0x 04-2x 03+2x 02.令g (x )=e 2xx 4-2x 3+2x 2,x ∈[1,3],则g'(x )=2e 2x (x 4-2x 3+2x 2)-e 2x (4x 3-6x 2+4x)(x 4-2x 3+x 2)2=2x(x-1)2(x-2)e 2x (x 4-2x 3+x 2)2,则当1≤x <2时,g'(x )<0,当2<x ≤3时,g'(x )>0,所以函数g (x )在区间[1,2)上单调递减,在区间(2,3]上单调递增,所以g (x )min =g (2)=e 48,所以a 2+b 2≥e 48,所以a 2+b 2的最小值为e 48. 【备注】无17.解:(1)令n =1,则4a 1=a 12+2a 1-3,即a 12-2a 1-3=0,解得a 1=-1(舍去)或a 1=3.因为4S n =a n 2+2a n -3 ①,所以4S n +1=a n+12+2a n +1-3 ②,②-①,得4a n +1=a n+12+2a n +1-a n 2-2a n ,整理得(a n +1+a n )(a n +1-a n -2)=0, 因为a n >0,所以a n +1-a n =2,所以数列{a n }是首项为3、公差为2的等差数列,所以a n =3+(n -1)×2=2n +1.(2)由(1)可得,S n =(n +2)n ,a 2n -1=4n -1,S 2n -1=(2n +1)(2n -1), 所以a 2n-1+1S 2n-1=4n (2n+1)(2n-1)=12n-1+12n+1.当n 为偶数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…-(12n-1+12n+1) =1-12n+1<1; 当n 为奇数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…+(12n-1+12n+1)=1+12n+1>1.综上,当n 为偶数时,T n <1;当n 为奇数时,T n >1. 【解析】无 【备注】无 18.无【解析】(1)由已知及正弦定理,得2sin A sin(C +π6)=sin B +sin C ,所以sin A cos C +√3sin A sin C =sinB +sin C.(有两角和或差的正弦(余弦)形式,并且其中有一个角是特殊角时,常常将其展开) 因为A +B +C =π,所以sin B =sin(A +C ),所以sin A cos C +√3sin A sin C =sin(A +C )+sin C ,则sin A cos C +√3sin A sin C =sin A cos C +cos A sin C +sin C ,即√3sin A sin C =sin C cos A +sin C.因为sin C ≠0,所以√3sin A =cos A +1,即sin(A -π6)=12. 因为0<A <π,所以A =π3.(2)由BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3可知cb cos 2π3=-3,因此bc =6. 由a 2=b 2+c 2-2bc cos∠BAC =(b +c )2-2bc -bc =7,可得b +c =√7+3×6=5. 由S △ABC =S △ABT +S △ACT 得,12bc sin π3=12c ·AT ·sin π6+12b ·AT ·sin π6,(与角平分线相关的问题,常常利用三角形的面积来解决)因此AT =bcsinπ3(b+c)sinπ6=6×√325×12=6√35. 【备注】无19.解:(1)由题意知,相关系数r =∑i=120(x i -x ¯)(y i -y ¯)√∑i=1(x i -x ¯)2∑i=1(y i -y ¯)2=√80×8 000=78=0.875, 因为y 与x 的相关系数接近于1,所以y 与x 之间具有较强的线性相关关系.(2)由题意可得,b ^=∑i=120(x i -x ¯)(y i -y ¯)∑i=120(x i-x ¯)2=70080=8.75,a ^=y -−b ^x -=4 00020-8.75×8020=200-8.75×4=165,所以y ^=8.75x +165.(将变量x ,y 的平均值代入线性回归方程,求得a ^)(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X (单位:万元)的分布列为E (X )=-50×0.1+0×0.4+50×0.3+100×0.2=30(万元).购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y (单位:万元)的分布列为E (Y )=-30×0.3+20×0.4+70×0.2+120×0.1=25(万元).因为E (X )>E (Y ),所以该镇选择购买一台甲款垃圾处理机器更划算.(根据已知数据,分别计算随机变量X 和Y 的分布列、期望,期望越大,说明节约费用的平均值越大,也就越划算)【解析】本题主要考查变量相关性分析、线性回归方程的求解、概率的计算以及随机变量期望的意义和求法,考查的学科素养是理性思维、数学应用.第(1)问,由已知数据,代入相关系数公式,求得相关系数r 即可判断x 和y 的相关程度;第(2)问,根据最小二乘估计公式,求得b ^,a ^的值,从而确定y 关于x 的线性回归方程;第(3)问,根据统计数据计算随机变量X 和Y 的分布列,并分别求期望,由期望的意义可知,数值越大表示节约的垃圾处理费用的平均值越大,从而确定购买哪一款垃圾处理机器. 【备注】无20.(1)如图,连接AC 1交A 1C 于点O ,连接OE ,则BC 1∥OE.(题眼)BC 1∥OEOE ⊂平面A 1EC BC 1⊄平面A 1EC }⇒BC 1∥平面A 1EC.(运用直线与平面平行的判定定理时,关键是找到平面内与已知直线平行的直线)(2)如图,连接A 1B ,则V A 1-ACE =12V A 1-ABC =12×13V ABC-A 1B 1C 1=12×13×√34×22×2=√33.(题眼) 根据直三棱柱的性质,易得A 1A ⊥平面ABC ,因为CE ⊂平面ABC ,所以AA 1⊥CE .因为E 为AB 的中点,△ABC 为正三角形,所以CE ⊥AB. 又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,所以CE ⊥平面ABB 1A 1, 因为A 1E ⊂平面ABB 1A 1,所以A 1E ⊥CE .在Rt△A 1CE 中,A 1E ⊥CE ,A 1C =2√2,A 1E =√5,EC =√3,所以S △A 1CE =12×√5×√3=√152. 设点A 到平面A 1EC 的距离为h ,则点B 1到平面A 1EC 的距离为2h .因为V A 1-ACE =V A-A 1CE =13×S △A 1CE ×h ,(点到平面的距离可转化为几何体的体积问题,借助等体积法来解决.等体积法:轮换三棱锥的顶点,体积不变;利用此特性,把三棱锥的顶点转换到易于求出底面积和高的位置是常用方法) 所以h =2√55,即点A 到平面A 1EC 的距离为2√55, 因此点B 1到平面A 1EC的距离为4√55.【解析】无【备注】高考文科数学对立体几何解答题的考查主要设置两小问:第(1)问通常考查空间直线、平面间的位置关系的证明;第(2)问通常考查几何体体积的计算,或利用等体积法求点到平面的距离.21.解:(1)由椭圆的定义可得2a =2√2,则a =√2, ∵椭圆C 的离心率e =ca =√22,∴c =1,则b =√a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),(由于存在直线l 与x 轴重合的情形,故需进行分类讨论) 由{x =my-13y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立,则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T ,则TA ⊥TB ,TA⃗⃗⃗⃗⃗ =(my 1-t -13,y 1),TB ⃗⃗⃗⃗⃗ =(my 2-t -13,y 2), 则TA ⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(my 1-t -13)(my 2-t -13)+y 1y 2 =(m 2+1)y 1y 2-m (t +13)(y 1+y 2)+(t +13)2=-16(m 2+1)-m(t+13)×12m18m 2+9+(t +13)2=(t +13)2-(12t+20)m 2+1618m 2+9=0,∵点T 为定点,∴t 为定值,∴12t+2018=169,(分析式子结构,要使此式子的取值与m 无关,必须要将含有m 的相关代数式约去,通常采用分子与分母的对应项成比例即可解决) 解得t =1,此时TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(43)2-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0).综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .【解析】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,考查的学科素养是理性思维、数学探索.(1)首先由椭圆的定义求得a 的值,然后根据离心率的公式求得c 的值,从而求得b 的值,进而得到椭圆C 的标准方程;(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),与椭圆方程联立,得到y 1+y 2,y 1y 2,由题意得出TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =0,然后根据平面向量数量积的坐标运算及T 为定点求得t 的值,当直线l 与x 轴重合时,验证即可,最后可得出结论. 【备注】无22.(1)∵F (x )=ax ·f (x )-2x 2·g (x ),∴F (x )=x +ax ·ln x , ∴F'(x )=1+a +a ln x .①当a =0时,F (x )=x ,函数F (x )在(0,+∞)上单调递增;②当a >0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递增,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )<0,当x ∈(e -1-1a ,+∞)时,F'(x )>0,所以当a >0时,F (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递减,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )>0,当x ∈(e -1-1a ,+∞)时,F'(x )<0,∴F (x )在(0,e -1-1a )上单调递增,在(e -1-1a ,+∞)上单调递减. (2)由题意知,φ(x )=lnx x+12x,∴φ'(x )=1-lnx x 2−12x 2=1-2lnx 2x 2,令φ'(x )=0,得x =√e ,∴x >√e时,φ'(x )<0,∴φ(x )在(√e ,+∞)上单调递减.不妨设x 2>x 1>√e ,则φ(x 1)>φ(x 2),则不等式|φ(x 1)-φ(x 2)|≥k |ln x 1-ln x 2|等价于φ(x 1)-φ(x 2)≥k (ln x 2-ln x 1),即φ(x 1)+k ln x 1≥φ(x 2)+k ln x 2.令m (x )=φ(x )+k ln x ,则m (x )在(√e ,+∞)上存在单调递减区间, 即m'(x )=φ'(x )+kx=-2lnx+2kx+12x 2<0在(√e ,+∞)上有解,即-2ln x +2kx +1<0在(√e ,+∞)上有解,即在(√e ,+∞)上,k <(2lnx-12x)max .令n (x )=2lnx-12x(x >√e ),则n'(x )=3-2lnx 2x 2(x >√e ),由 n'(x )=0得x =e 32, ∴函数n (x )=2lnx-12x在(√e ,e 32)上单调递增,在(e 32,+∞)上单调递减.∴n (x )max =n (e 32)=2ln e 32-12e 32=e -32,∴k <e -32.故k 的取值范围为(-∞,e -32).【解析】本题考查利用导数研究函数的单调性和最值,考查分类讨论思想、化归与转化思想的灵活应用,考查考生的运算求解能力以及运用所学知识分析问题和解决问题的能力.(1)通过对函数求导,对参数进行分类讨论,来讨论函数的单调性;(2)依据函数的单调性将不等式转化为函数存在单调递减区间,最后转化为函数的最值问题来解决.【备注】【素养落地】本题将函数、不等式等知识融合起来,借助导数研究函数的性质,考查逻辑推理、数学运算等核心素养.【技巧点拨】解决本题第(2)问的关键是化归与转化思想的应用,先利用函数的单调性将不等式转化为φ(x1)+k ln x1≥φ(x2)+k ln x2,然后根据式子的结构特征构造函数m(x)=φ(x)+k ln x,将m(x)在(√e,+∞))max.上存在单调递减区间转化为m'(x)<0在(√e,+∞)上有解,进而转化为k<(2lnx-12x。

高三文科数学模拟试题含答案

高三文科数学模拟试题含答案

高三文科数学模拟试题含答案高三文科数学模拟试题本试卷共150分,考试时间120分钟。

第Ⅰ卷(选择题,共50分)一、选择题(共10小题,每小题5分,共50分。

在每小题中,只有一项是符合题目要求的)1.复数3+ i的虚部是()。

A。

2.B。

-1.C。

2i。

D。

-i2.已知集合A={-3,-2,0,1,2},集合B={x|x+2<0},则A∩(CRB) =()。

A。

{-3,-2,0}。

B。

{0,1,2}。

C。

{-2,0,1,2}。

D。

{-3,-2,0,1,2}3.已知向量a=(2,1),b=(1,x),若2a-b与a+3b共线,则x=()。

A。

2.B。

11/22.C。

-1.D。

-24.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()。

A。

4π/3.B。

π。

C。

3π/2.D。

2π5.将函数f(x)=sin2x的图像向右平移π/6个单位,得到函数g(x)的图像,则它的一个对称中心是()。

A。

(π/6,0)。

B。

(π/3,0)。

C。

(π/2,0)。

D。

(π,0)6.执行如图所示的程序框图,输出的s值为()。

开始是否输出结束A。

-10.B。

-3.C。

4.D。

57.已知圆C:x^2+2x+y^2=1的一条斜率为1的切线l1,若与l1垂直的直线l2平分该圆,则直线l2的方程为()。

A。

x-y+1=0.B。

x-y-1=0.C。

x+y-1=0.D。

x+y+1=08.在等差数列{an}中,an>0,且a1+a2+⋯+a10=30,则a5⋅a6的最大值是()。

A。

4.B。

6.C。

9.D。

369.已知变量x,y满足约束条件2x-y≤2,x-y+1≥0,设z=x^2+y^2,则z的最小值是()。

A。

1.B。

2.C。

11.D。

3210.定义在R上的奇函数f(x),当x≥0时,f(x)=2,当x<0时,f(x)=1-|x-3|,则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()。

四川省雅安市2023-2024学年高三下学期4月月考试题 数学(文)含答案

四川省雅安市2023-2024学年高三下学期4月月考试题 数学(文)含答案

2024届高三数学试题(文科)(答案在最后)考生注意:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:高考全部内容。

第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2,1,4,8A =-,{},B xy x A y A =∈∈,则B 中元素的最小值为()A.-16B.-8C.-2D.322.若向量()1,5a =- ,(),1b x x =+ ,a b ∥,则x =()A.16-B.16C.14-D.143.若圆C :221x y +=与圆D :()()()222340x y r r -+-=>外切,则r =()A.2B.3C.4D.54.设α,β为两个不同的平面,m ,n 为两条不同的直线,且m α⊂,n β⊂,则“m n ⊥”是“αβ⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若复数()()()i 4i ,z x y x y x y =+-∈R 的实部为4,则点(),x y 的轨迹是()A.短轴长为4的椭圆B.实轴长为4的双曲线C.长轴长为4的椭圆D.虚轴长为4的双曲线6.函数()2sin sin 2f x x x =-是()A.最小正周期为π的奇函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为2π的偶函数7.设()*2n n n+∈N 的整数部分为n a ,则数列{}n a 的前30项和为()A.465B.466C.467D.4688.若函数()()()20.5log 20f x x ax a a =-+>的值域为R ,则()f a 的取值范围是()A.(],3-∞- B.(],4-∞- C.[)4,-+∞ D.[)3,-+∞9.一质点的速度v (单位:m/s )与时间t (单位:s )满足函数关系式322v t at =+,其中a 为常数.当1t =时,该质点的瞬时加速度为8m/s 2,则当2t =时,该质点的瞬时加速度为()A.28m/s 2B.26m/s 2C.32m/s 2D.24m/s 210.已知函数()21xf x a =--,()242g x x x a =-+-,则()A.当()g x 有2个零点时,()f x 只有1个零点B.当()g x 有3个零点时,()f x 有2个零点C.当()f x 有2个零点时,()g x 只有2个零点D.当()f x 有2个零点时,()g x 有4个零点的最小值为()A. B.5C. D.612.在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,60ABD ∠=︒,PB ,PC 与底面ABCD 所成的角分别为α,β,且45αβ+=︒,则PAAB=()A.22B.32-C.22- D.32第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.一组样本数据12,15,12,13,18,10,16,19,15,12的众数为_____________,中位数为____________.14.若x ,y 满足约束条件1,23,x y x y -≥⎧⎨-≤⎩则x y +的取值范围是____________.15.甲、乙、丙、丁四位同学的座位要进行调整,且四位同学的座位就在他们四人之间随机调整(每人不能坐回自己的原位),则调整座位之后,甲和乙的座位恰好交换的概率为____________16.已知定义在R 上的函数()f x 满足()()()()()226f x y f x f y f x f y +=--+,()14f =,则()1ni f i ==∑___________()*n ∈N .三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知甲社区有120人计划去四川旅游,他们每人将从峨眉山与青城山中选择一个去旅游,将这120人分为东、西两小组,两组的人数相等,已知东小组中去峨眉山的人数是去青城山人数的两倍,西小组中去峨眉山的人数比去青城山的人数少10.(1)完成下面的2×2列联表,并判断是否有99%的把握认为游客的选择与所在的小组有关;去峨眉山旅游去青城山旅游合计东小组西小组合计(2)判断是否有99%的把握认为游客的选择与所在的小组有关,说明你的理由.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥0.0500.0100.0010k 3.8416.63510.82818.(12分)已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin c A B =,a =.(1)求A ;(2)若D 为AB 边上一点,且4CD b =,证明:BCD △外接圆的周长为π.19.(12分)如图,在直三棱柱111ABC A B C -中,11113A C B C ==,11A B =,D 为11A B 的中点.(1)证明:1B C ∥平面1AC D .(2)若以1AB 为直径的球的表面积为48π,求三棱锥11B AC D -的体积.20.(12分)已知函数()log 2a f x x x =+-.(1)当01a <<时,求()f x 的单调区间;(2)定义[]x 表示不超过x 的最大整数,当1e a -=时,证明:()f x 有两个零点1x ,2x ,并求[]12x x +的值.参考数据:ln 20.693≈,ln 3 1.099≈,ln 7 1.946≈.21.(12分)双曲线C :()222210,0x y a b a b-=>>上一点(D 到左、右焦点的距离之差为6.(1)求C 的方程.(2)已知()3,0A -,()3,0B ,过点(5,0)的直线l 与C 交于M ,N (异于A ,B )两点,直线MA 与NB 交于点P ,试问点P 到直线2x =-的距离是否为定值?若是,求出该定值;若不是,请说明理由.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.22.[选修4—4:坐标系与参数方程](10分)在极坐标系中,O 为极点,曲线M 的方程为4tan cos θρθ=,曲线N 的方程为sin m ρθ=,其中m 为常数.(1)以O 为坐标原点,极轴为x 轴的正半轴,建立直角坐标系,求曲线M 与N 的直角坐标方程;(2)设1m =,曲线M 与N 的两个交点为A ,B ,点C 的极坐标为(),0t ,若ABC △的重心G 的极角为4π,求t 的值.23.[选修4—5:不等式选讲](10分)已知()30,0a b a b +=>>.(1)若13b a -<-,求b 的取值范围;(2()1a b +的最大值.2024届高三数学试题参考答案(文科)1.A 【解析】本题考查集合中的元素,考查逻辑推理的核心素养.()min 2816xy =-⨯=-.2.A 【解析】本题考查平面向量的共线问题,考查数学运算的核心素养.因为a b ∥ ,所以()150x x -+-=,解得16x =-.3.C 【解析】本题考查圆与圆的位置关系,考查直观想象的核心素养.依题意可得1CD r ==+,解得4r =.4.D 【解析】本题考查点、线、面的位置关系与充分必要条件的判定,考查空间想象能力与逻辑推理的核心素养.如图1,当m n ⊥时,α与β不一定垂直.如图2,当αβ⊥时,m 与n 不一定垂直.所以“m n ⊥”是“αβ⊥”的既不充分也不必要条件.5.C 【解析】本题考查复数的运算与实部以及曲线与方程,考查数学运算的核心素养.因为()()22i 4i 43i x y x y x y xy +-=+-,所以2244x y +=,即2214x y +=,所以点(),x y 的轨迹是长轴长为4的椭圆.6.B 【解析】本题考查三角函数的周期性与奇偶性,考查逻辑推理的核心素养.因为()()()()2sin sin 22sin sin 2f x x x x x f x -=---=-+=-,所以该函数为奇函数.因为sin y x =,sin 2y x =的最小正周期分别为2π,π,所以()2sin sin 2f x x x =-的最小正周期为2π.7.D 【解析】本题考查数列的新定义与数列求和,考查逻辑推理与数学运算的核心素养.当1n =时,123n a =+=;当2n =时,213n a =+=;当2n >时,201n<<,n a n =.故数列{}n a 的前30项和为()3302833343064682+⨯++++⋅⋅⋅+=+=.8.B 【解析】本题考查对数函数、二次函数、一元二次不等式,考查逻辑推理的核心素养.依题意可得22x ax a -+要取遍所有正数,则280a a =-≥△,因为0a >,所以8a ≥,所以()()0.50.52log 2log 16log 164f a a =≤=-=-.9.A 【解析】本题考查导数的概念,考查应用意识与逻辑推理的核心素养.262v t at '=+,当1t =时,628v a =+=,解得1a =.当2t =时,24428v '=+=,所以该质点的瞬时加速度为28m/s 2.10.D 【解析】本题考查函数的零点,考查直观想象与逻辑推理的核心素养.作出21xy =-,242y x x =-+的大致图象,如图所示.由图可知,当()g x 有2个零点时,()f x 无零点或只有一个零点;当()g x 有3个零点时,()f x 只有1个零点;当()f x 有2个零点时,()g x 有4个零点.11.B 【解析】本题考查抛物线定义的应用,考查直观想象的核心素养及化归与转化的数学思想.设()4,2A -,()1,0F -,(P x ,易知点P 的轨迹是抛物线24y x =-的上半部分.PA PF +.因为F 为抛物线24y x =-的焦点,所以PF 等于P 到抛物线24y x =-的准线1x =的距离,所以PA PF +的最小值等于A 到准线1x =的距离,所以的最小值为5.12.B 【解析】本题考查线面角与三角恒等变换,考查直观想象与数学运算的核心素养.设AB a =,PA b =,因为60ABD ∠=︒,所以2AC BD a ==,所以tan tan bPBA aα=∠=,tan tan 2b PCA a β=∠=.因为45αβ+=︒,所以()tan tan 2tan 11tan tan 12b b a a b ba a αβαβαβ+++===--⨯,解得32b a =(负根已舍去).13.12;14【解析】本题考查样本的数字特征,考查数据处理能力.将这组数据按照从小到大的顺序排列为10,12,12,12,13,15,15,16,18,19,则这组数据的众数为12,中位数为1315142+=.14.(],3-∞【解析】本题考查简单的线性规划,考查直观想象与逻辑推理的核心素养.作出约束条件表示的可行域(图略),当直线z x y =+经过点()2,1A 时,z 取得最大值3,所以x y +的取值范围是(],3-∞.15.19【解析】本题考查古典概型,考查应用意识.四位同学的所有换位情况如下图所示:由图可知甲和乙的座位恰好交换的概率为.1916.1222n n ++-【解析】本题考查抽象函数与数列的交汇,考查数学抽象、逻辑推理、数学运算的核心素养.令1y =,得()()()()()()11221622f x f x f f x f f x +=--+=-.设数列{}n a 满足122n n a a +=-,14a =,则()1222n n a a +-=-,122a -=,所以数列{}2n a -是首项为2,公比也为2的等比数列,则22nn a -=,则22nn a =+,所以11122222212n nn i i a n n ++=-=+=+--∑.17.解:(1)2×2列联表如下:去峨眉山旅游去青城山旅游合计东小组402060西小组253560合计6555120(2)因为()221204035252010807 6.63560606555143K ⨯⨯-⨯==>>⨯⨯⨯,所以有99%的把握认为游客的选择与所在的小组有关.18.(1)解:因为sin sin c A B =,所以ac =,即c =,又a =,所以222222cos 22b c a A bc +-==-.因为()0,A π∈,所以56A π=.(2)证明:在ACD △中,由正弦定理,得sin sin CD bA ADC=∠,则sin 1sin 8b A ADC CD ∠==,则()1sin sin sin 8BDC ADC ADC π∠=-∠=∠=.设BCD △外接圆的半径为R ,则28sin aR a BDC===∠,所以BCD △外接圆的周长为π.19.(1)证明:连接1A C 交1AC 于点E ,则E 为1A C 的中点,连接DE ,因为D 为11A B 的中点,所以1DE B C ∥,又DE ⊂平面1AC D ,1B C ⊂/在平面1AC D ,所以1B C ∥平面1AC D .(2)解:因为1111A C B C =,D 为11A B 的中点,所以111C D A B ⊥,且11C D ==.因为以1AB 为直径的球的表面积为48π,所以2448ππ⨯=⎢⎥⎣⎦,解得14AA =.因为11B CD △的面积112S =⨯=,所以11111433B ACD AB C D V V -==⨯=.20.(1)解:()f x 的定义域为()0,+∞,()ln 1ln x a f x x a+'=.令ln 10x a +=,得1ln x a=-.当10,ln x a ⎛⎫∈-⎪⎝⎭时,()0f x '<,所以()f x 的单调递减区间为10,ln a ⎛⎫- ⎪⎝⎭.当1,ln x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '>,()f x 的单调递增区间为1,ln a ⎛⎫-+∞ ⎪⎝⎭.(2)证明:当1e a -=时,()ln 2f x x x =-+-,则()f x 在()0,1上单调递减,在()1,+∞上单调递增.112ln 7204949f ⎛⎫=-+> ⎪⎝⎭,13ln 2022f ⎛⎫=-< ⎪⎝⎭,()31ln 30f =-<,73ln 7ln 2022f ⎛⎫=-+> ⎪⎝⎭,由零点存在性定理知()f x 有两个零点1x ,2x ,且111,492x ⎛⎫∈⎪⎝⎭,273,2x ⎛⎫∈ ⎪⎝⎭,则1213,449x x ⎛⎫+∈ ⎪⎝⎭,所以[]123x x +=.21.解:(1)依题意可得222226,61,a ab =⎧⎪⎨⎪-=⎩解得3a =,21b =,故C 的方程为2219x y -=.(2)由题意可得直线l 的斜率不为0,设l 的方程为5x my =+,设()11,M x y ,()22,N x y ,联立225,1,9x my x y =+⎧⎪⎨-=⎪⎩得()22910160m y my -++=,则290m -≠,122109m y y m -+=-,122169y y m =-.直线AM :()1133y y x x =++,直线BN :()2233yy x x =--,联立()1133y y x x =++与()2233yy x x =--,消去y 得()()()()()212112121122121212112138888333222y x y my my y y y y my y y x x y x y my my y y my y y ++++-++====--+++11222112216806488999416162299m m my y m m m m my y m m -------===-++--,解得95x =,所以点P 在定直线95x =上.因为直线95x =与直线2x =-之间的距离为195,所以点P 到直线2x =-的距离为定值,且定值为195.22.解:(1)由4tan cos θρθ=,得()24sin cos cos 0θρθθ=≠,则()224sin cos cos 0ρθρθθ=≠,所以()240y x x =≠,所以曲线M 的直角坐标方程为()240x y x =≠.曲线N 的直角坐标方程为y m =.(2)因为1m =,所以曲线N 的直角坐标方程为1y =,代入24x y =,得2x =±,不妨设()2,1A -,()2,1B ,依题意可得C 的直角坐标为(),0t ,则G 的坐标为22110,33t -++++⎛⎫⎪⎝⎭,即2,33t ⎛⎫⎪⎝⎭.因为重心G 的极角为4π,所以233t =,解得2t =.23.解:(1)因为()30,0a b a b +=>>,所以3a b =-且03b <<,所以1b b -<,则1b b b -<-<,解得12b >,又03b <<,所以b 的取值范围为1,32⎛⎫ ⎪⎝⎭.(24342138222a b a b ++++++≤+==,4≤,当且仅当1a =,2b =时,等号成立.()221311422a b a b +++⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b +=,即1a =,2b =()1a b +++的最大值为4+4=8.。

高三数学试题(文)

高三数学试题(文)

第一学期学分认定考试 高三数学(文)试题2014.01本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分共150分.考试时间120分钟. 注意事项:1.用0.5毫米黑色签字笔(中性笔)将有关信息填在答题卡规定的位置上,按要求贴好条形码.2.第I 卷答案请用2B 铅笔把答题纸上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试题卷上.3.第II 卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题纸各题目指定区域;如需改动,先划掉原来的解答,然后再写上新的解答;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.参考公式:2341=4==;=33S R V R V S h V S h ππ球球锥体底柱体底;;第I 卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分;在每小题给出的四个选项中只有一个是符合题目要求的. 1.设全集(){}(){}2,21,ln 1x x U R A x R B x R y x -==∈<=∈=-,则下图中阴影所表示集合为A.{}1x x ≥B.{}12x x ≤< C.{}01x x <≤D.{}1x x ≤2.某高中共有学生2000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则应在高三年级抽取的学生人数为 A.24 B.18 C.16 D.123. 已知命题22:2:23p x Rq a y x ax ∃∈===-+;命题是函数在区间[)1,+∞递增的充分但不必要条件.给出下列结论:①命题“p q ∧”是真命题;②命题“p q ⌝∧”是真命题;③命题“p q ⌝∨”是真命题;④命题“p q ∨⌝”是假命题 其中正确说法的序号是 A.②④ B.②③C.②③④D.①②③④4.平面向量a b 与的夹角为()60,2,0,1,2a b a b ==+=则B.C.4D.125.已知角α终边上一点)2sin 23tan P αα-=,则A.1--B.1-C.-D. 06.函数()01xxa y a x=<<图象的大致形状是7.已知函数()()2sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为()f x π,则的单调递增区间 A.()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B.()2,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ C.(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D.(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦8.抛物线()20,3x py M x =上一点到焦点的距离为5,则实数p 的值为 A.8-B.4C.8D.169.函数()()321f x x ax =+-+∞在区间,内是增函数,则实数a 的取值范围是 A.[)3+∞,B.[)3-+∞,C.()3-+∞,D.()-∞,-310.圆22446050x y x y x y +-++=--=被直线所截得的弦长等于B.2C.1D.511.设函数()()()[]()13,3,2f x x x f xf x∈+=-∈--=对任意x R,都有f且当时,sin2xπ,则()2014f=A.0B.12C.1-D.112.在区间[]1,4内取数a,在区间[]0,3内取数b,则函数()()2154f x x b=+-有两个相异零点的概率是A.56B.79C.19D.29第II卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.设变量x,y满足约束条件2,,2xy xx y≤⎧⎪≤⎨⎪+≥⎩则目标函数2z x y=+的最小值为____________.14.函数()()log310,1ay x a a=+->≠的图象恒过定点A,若点A在直线10mx ny++=上,其中0mn>,则12m n+的最小值为________.15.一个几何体的三视图如右图所示,则这个几何体的表面积为________.16. 设曲线()()1*11ny x n N+=∈在点,处的切线与x轴的交点的横坐标为1239,lgn n nx a x a a a a=+++⋅⋅⋅+令,则的值为_________.三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知()()()22sin .cos 2,,,f x x x x a b c ππ=---分别为△ABC 中角A ,B ,C的对边,角A 为锐角且()0f A (I )求角A 的大小;(II)若2,a b ==ABC 的面积S.18.(本小题满分12分)已知四棱锥,//,90S ABCD AD BC ABC -∠=,面SAB ⊥底面ABCD,,2,,2SA SB a BC a AB AD a =====点E ,F ,M 分别是SB ,BC ,CD 的中点. (I )求四棱锥S-ABCD 的体积; (II )证明:AB SM ⊥; (III )证明:SD//面AEF.19.(本小题满分12分)已知等差数列{}n a 的各项均为正整数,13a =,前n 项和为3412n S S a a ,且恰是与的等比中项.(I )求{}n a 的通项公式; (II )证明:1211134n S S S ++⋅⋅⋅⋅⋅⋅+<20.(本小题满分12分)袋里装有7个球,每个球上分别标有从1到7的一个号码,这些球以等可能性(假定不受重量的影响)从袋里取出.已知号码n 的球重27833n n -+克, (I )如果任意取出一球,求其重量大于号码数的事件A 的概率; (II )如果同时任意取出两球,求它们重量相同的事件B 的概率.21.(本小题满分12分)已知()()323,ln f x x ax x g x x b =-+=+(I )若曲线()()()1f x h x g x x x=+=在处的切线是0x y +=,求实数a 和b 的值;(III )若()3x f x =是的极值点,求()[]02f x 在,上的最大最小值.22.(本小题满分14分)已知()2212121x F F C y a a +=>1、分别是椭圆:的左、右焦点,O 为坐标原点.(I )若椭圆2212131y x C C -=与双曲线:的离心率互为倒数,求此时实数a 的值;(II )若直线()101l F 经过点和点,,且原点到直线l 又另一条直线m ,斜率为1,与椭圆1C E F OE OF ⊥交于,两点,且,求直线m 的方程;(III )若在直线2x =上存在点P ,使线段121PF M MF PF ⊥的中点满足.求实数a 的取值范围.11。

陕西省咸阳中学2022-2023学年高三下学期第六次质量检测文科数学试题(1)

陕西省咸阳中学2022-2023学年高三下学期第六次质量检测文科数学试题(1)

一、单选题1. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1206石,验得米内夹谷,抽样取米一把,数得252粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .138石D .1665石2. 甲、乙两人是某学校的门岗保安,根据值班安排,甲每连续工作4天后休息1天,乙每连续工作2天后休息1天.若这学期开学第一天甲、乙都休息,在不调整作息时间的情况下,则在整个学期内(按120天算),甲、乙在同一天工作的概率为( )A.B.C.D.3. 函数且,在上的最大值与最小值之和为,则等于A .4B.C .2D.4. 设集合,则( )A.B.C.D.5. 核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为0.5%,在感染新冠病毒的条件下,标本检出阳性的概率为99%.若该地全员参加核酸检测,则该地某市民感染新冠病毒且标本检出阳性的概率为( )A .0.495%B .0.9405%C .0.99%D .0.9995%6.如图,已知正方体的棱长为2,为棱的中点,为棱上的点,且满足,点、、、、为过三点、、的面与正方体的棱的交点,则下列说法的是A.B.三棱锥的体积C .直线与面的夹角是D.错误7. 已知向量,,则( )A.B.C.D.8. 如图①,“球缺”是指一个球被平面所截后剩下的部分,截得的圆面叫做球缺的底,垂直于截面的直径被截得的一段叫做球缺的高.已知球缺的体积公式为,其中是球的半径,是球缺的高.某航空制造公司研发一种新的机械插件,其左右两部分为圆柱,中间为球切除两个相同的“球缺”剩余的部分,制作尺寸如图②所示(单位:cm ).则该机械插件中间部分的体积约为()( )陕西省咸阳中学2022-2023学年高三下学期第六次质量检测文科数学试题(1)陕西省咸阳中学2022-2023学年高三下学期第六次质量检测文科数学试题(1)二、多选题三、填空题A.B.C.D.9. 某地区城乡居民储蓄存款年底余额(单位:亿元)变化情况如图所示,下列判断一定正确的是()A .该地区城乡居民储蓄存款年底余额总数逐年上升B .到年农村居民存款年底总余额已超过了城镇居民存款年底总余额C .城镇居民存款年底余额逐年下降D .年城乡居民存款年底余额增长率大约为10. 有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起,已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有( )A .任取一个零件是第1台生产出来的次品概率为0.015B .任取一个零件是次品的概率为0.0525C .如果取到的零件是次品,则是第2台车床加工的概率为D .如果取到的零件是次品,则是第3台车床加工的概率为11.设双曲线的左、右焦点为,,直线为的一条斜率为正数的渐近线,为坐标原点.若在的左支上存在点,使点与点关于直线对称,则下列结论正确的是( )A.B .的面积为C .双曲线的离心率为D .直线的方程是12. 已知递增数列的各项均为正整数,且其前项和为,则( )A .存在公差为1的等差数列,使得B .存在公比为2的等比数列,使得C .若,则D .若,则13.若数列满足,存在,对任意,使得,则的取值范围是__________.14.在等腰三角形中,底边,,,若,则_______.15. 是数列前项和,,,给出以下四个结论:①;四、解答题②;③;④.其中正确的是___________(写出全部正确结论的番号).16. 已知函数,曲线在点处的切线方程为(其中是自然对数的底数).(1)求实数,的值;(2)求证:.17. 袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求:(Ⅰ)第一次摸到红球的概率;(Ⅱ)在第一次摸到红球的条件下,第二次也摸到红球的概率;(Ⅲ)第二次摸到红球的概率.18.如图,正四棱锥中,分别为的中点.设为线段上任意一点.(1)求证:;(2)当为线段的中点时,求直线与平面所成角的余弦值.19. 已知函数.(其中,为参数)在点处的切线方程为.(1)求实数,的值;(2)求函数的最小值;(3)若对任意的,不等式恒成立,求实数的取值范围.20. 已知函数.(1)设是的极值点.求,并求的单调区间;(2)证明:当时,.21. 在斜三棱柱中,是等腰直角三角形,,,平面底面,.(1)证明:;(2)求平面与平面夹角的正弦值.。

高三数学文科试题

高三数学文科试题

高三文科数学试题说明:试题满分150分,时间120分钟。

分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,选项按要求涂在答题卡,第Ⅱ卷为第3页至第4页,按要求写在答题卡指定位置。

一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|32}M m m m =∈≤-≥Z 或,{|13}N n n =∈-Z ,≤≤C )Z M N ⋂=则(( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,2. 定义集合运算:|xA B z z x A y B y ⎧⎫*==∈∈⎨⎬⎩⎭,,.设{}02A =,,{}12B =,,则集合A B *的所有元素之和为( )A .0B .2C .3D .63. 在等差数列{}n a 中,若2006200720086a a a ++=,则该数列的前2013项的和为( ) A .2012 B .2013C . 4024D .40264. 在△ABC 中,cos cos A bB a=,则△ABC 一定是 ( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5. 已知a 、b 、c∈R,下列命题正确的是 ( ) A .a >b ⇒ ac 2>bc 2B .b a cbc a >⇒> C .110a b ab a b >⎫⇒>⎬<⎭ D .110a b ab a b>⎫⇒>⎬>⎭ 6. 定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则 ( )A. (5)(3)(1)f f f <-<B. (1)(3)(5)f f f <-<C. (3)(1)(5)f f f -<<D. (5)(1)(3)f f f <<-7. 设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a = ( ) A .2 B .12 C .12- D .2-8. 若函数()(21)()x f x x x a =+- 为奇函数,则sin 3a π=( ).A.12B.32C.34D. 19. 已知变量x 、y 满足约束条件11y x xy y ≤⎧⎪+≤⎨≥-⎪⎩,则32z x y =+的最大值为( )A .-3 B. 25C. -5D. 410. 已知函数2sin(2)(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1B .2C .21D .31 11. 函数()sin lg f x x x =-零点的个数( )A .3B. 4C. 5D. 612. 函数3,0()log 1,0xex f x x x ⎧<⎪=⎨-≥⎪⎩的图像的是( )y 2π11 O二、填空题:(本大题共4小题,每小题4分,共16分.将答案填在题中的横线上) 13. 函数lg(5)2x y x -=-的定义域是 .14. 40(2)2x a x x ++≥>-恒成立,则a 的取值范围是______________. 15. 已知等比数列{}n a 的前n 项和为n S ,其中252,16a a ==,则2182n n nS S ++的最小值是 .16. 在下列命题中:①对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x>0时,()0,()0,f x g x ''>>则x<0时()().f x g x ''> ②函数sin(2)6y x π=-图象的一个对称中心为点(,0)3π;③若函数()f x 在R 上满足1(2)()f x f x +=-,则()f x 是周期为4的函数; ④在ABC ∆中,若20OA OB OC ++=,则AOC BOC S S∆=;其中正确命题的序号为_________________________________。

高三文科数学试卷(含答案)经典题

高三文科数学试卷(含答案)经典题

高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。

(完整版)高三文科数学试题

(完整版)高三文科数学试题

高三文科数学试题(考试时间为120 分钟,共150 分)第Ⅰ卷一、选择题:本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.1. 已知会集M x ( x 2)(x 1)0 , N x x 10 ,则 M N =()A .(1,2)B.(11), C .(2,1) D .(2, 1)2..复数5i()2i1A .2 iB .1 2i C.2 i D .1 2i3. 在独立性检验中,统计量K 2有两个临界值: 3.841 和 6.635 ;当K2> 3.841 时,有 95%的掌握说明两个事件有关,当K2> 6.635时,有 99% 的掌握说明两个事件有关,当K 2 3.841时,认为两个事件没关 .在一项打鼾与患心脏病的检查中,共检查了2000 人,经计算的 K 2=20.87,依照这一数据解析,认为打鼾与患心脏病之间()A .有 95%的掌握认为两者有关B .约有 95% 的打鼾者患心脏病C .有 99%的掌握认为两者有关D .约有 99% 的打鼾者患心脏病4.已知椭圆x2y2F 1、 F2, M 是椭圆上一点, N 是 MF 1的中点,161 的左右焦点分别为12若 ON1,则 MF1的长等于()A 、 2B、 4C、 6 D 、 5x+ y≥05. 在平面直角坐标系中,不等式组x- y+ 4≥0表示的平面地域面积是()x≤19A . 3B . 6C .2D. 96. l 是某 参加 2007 年高考的学 生身高条形 , 从左到右的各 条 形 表 示的 学 生 人 数 依 次A 1 ,、 A 2 、 ⋯ 、 A 10 。

(如 A 2表示身高 ( 位: cm) 在 [150 ,155) 内的学生人数 ) . 2 是 l 中身高在必然范 内学生人数的一个算法流程 . 要 身高在160 ~ 180cm( 含 160cm ,不含 180cm) 的 学生人数,那么在流程 中的判断 框内 填写的条件是A.i<9B.i<8C.i<7D.i<6()7.一个几何体的三 如 所示,其中正 是一个正三角形, 个几何体的 ( )A .外接球的半径3B .表面731331 11C .体3D .外接球的表面 4163正视图 侧视图8.一个球的表面 等于,它的一个截面的半径,球心到 截面的距离( )A .3B .C . 1D . 31俯视图225π 5π9.已知角 α的 上一点的坐sin6 ,cos 6, 角 α的最小正()5π2π5π11πA. 6B. 3C. 3D. 610 . 双曲 x2y 21(a 0, b 0) 的左焦点 F ( c,0)( c 0)作 x 2y 2 a 2 的切a 2b 24 ,切点 E ,延 FE 交双曲 右支于点P ,若 OFOP2OE , 双曲 的离心率()A .2B .10C . 10D . 105211.a1 , 关于 x 的不等式 a( x a)( x1) 0 的解集是 ()a(A) { x | xa ,或 x 1}(B) { x | x a}(C) { x | xa ,或 x 1 }(D) { x | x 1}aaa 12. 已知 a n3( n N * ) , 数列 { a n } 的前 n 和 S n ,即 S na 1 a 2a n ,2n5使 S n0 的 n 的最大()第Ⅱ卷本卷包括必考和考两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学(文科)试题试题卷一.选择题(共10题,每题5分,共50分) 1.sin 42sin 72cos 42cos72+=()A .sin 60B .cos 60C .sin114D . cos1142. 已知集合{|213}A x x =+>,2{|60}B x x x =+-≤,则A B = ( ).A [3,2)(1,2]-- .B (3,2](1,)--+∞ .C (3,2][1,2)-- .D (,3)(1,2]-∞-3.若,,,a b c R a b ∈<则下列不等式恒成立的是( )A .11a b> B .22a b < C .2211a bc c <++ D .ac bc < 4.在等差数列{}n a 中,若622a =,则8102a a -的值为( )A .11B .12C .21D .225.已知a 、b 均为单位向量,它们的夹角为60°,那么||a b +=( )A .3B .2C .4D 6.在复平面内,复数1i i++(1+3i )2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7. 将函数x y sin =的图象上各点的横坐标缩小为原来的一半,纵坐标保持不变,然后将所得曲线向左平移4π单位,得到()x f y =函数的图象,则()()f x =A. ⎪⎭⎫⎝⎛+42sin πx B. ⎪⎭⎫ ⎝⎛+82sin πx C. x 2cos D. ⎪⎭⎫ ⎝⎛-22sin πx 8.若数列}{n a 的前n 项的和32n n S a =-,那么这个数列的通项公式为( ) A .13()2n n a -=B .113()2n n a -=⨯ C .32n a n =- D .13n n a -=9.函数||1x y a =-(1)a >的大致图像是( )10.定义在R 上的函数f(x)满足()(2)f x f x =+,当]5,3[∈x 时,|4|2)(--=x x f ,则)6(s i n ),2(cos ),1(sin πf f f 的大小关系是( )A .)2(cos )1(sin )6(sinf f f <<πB .)2(cos )6(sin)1(sin f f f <<πC .(cos 2)(sin1)(sin)6f f f π<< D .)6(sin)2(cos )1(sin πf f f <<二.填空题(共4题,每题5分,共20分;两空的第一空2分,第二空3分) 11.已知1tan 2,tan()7βαβ=-=,则tan α= . 12.在条件02021x y y x ≤≤⎧⎪≤≤⎨⎪-≥⎩下, 3z x y =-的最大值是13.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为________.14.观察下表中的数字排列规律,则第8行的第2个数是_______;第n 行(2n ≥)第2个数是__________.三.解答题(共6题,共80分) 15.(本小题满分12分)若函数)0(cos sin sin )(2>-=a ax ax ax x f 的图象与直线m y =(m 为常数)相切,并且最小正周期为2π. (Ⅰ)求a 和m 的值;(Ⅱ)若点),(00y x A 是)(x f y =图象的对称中心,且∈0x [0,2π],求点A 的坐标.16.(本小题满分14分)已知不等式230{|1,}x x t x x m x R -+<<<∈的解集为 (1)求t ,m 的值;(2)若函数f(x)=-x 2+ax +4在区间(],1-∞上递增,求关于x 的不等式2log (32)0a mx x t -++-<的解集.17.(本小题满分14分)如图,在三棱锥S-ABC 中,平面SAC ⊥平面ABC ,且△SAC 是正三角形, △ABC 是等腰直角三角形,其中AC=CB ,O 是AC 的中点,D 是AB 的中点.(Ⅰ) 求证:OD//平面SBC; (Ⅱ) 求证:SO ⊥AB .18.(本小题满分12分)某校为扩大教学规模,从今年起扩大招生,现有学生人数为b 人,以后学生人数年增长率为4.9‰.该校今年年初有旧实验设备a 套,其中需要换掉的旧设备占了一半.学校决定每年以当年年初设备数量的10%的增长率增加新设备,同时每年换掉x 套的旧设备,(1)如果10年后该校学生的人均占有设备的比率正好比目前翻一番,那么每年应更换的旧设备是多少套? (2)依照(1)更换速度,共需多少年能更换所有需要更换的旧设备?CBAOSD19. (本小题满分14分)已知函数22()4()f x x ax a a R =-+∈. (Ⅰ)如果关于x 的不等式()f x ≥x 的解集为R ,求实数a 的最大值;(Ⅱ)设函数3()23()g x x af x =+,如果()g x 在区间(0,1)上存在极小值,求实数a 的取值范围. 20. (本小题满分14分)已知3()f x x ax =-+在(0,1)上是增函数。

(I )求实数a 的取值的集合A ;(II )当a 取A 中的最小值时,定义数列{}n a 满足1(0,1)a b =∈,且12()n n a f a +=试比较n a 与1n a +的大小?(III )在(II )的条件下,问是否存在正实数c ,使得0<ca c a n n -+<2对于一切*n N ∈恒成立?若存在,求出c 的取值范围;若不存在,说明理由。

___________高三数学(文科)试题答案一、选择题:二、填空题:11.3 12.-3 13.0 14.29;222n n -+三、解答题:15.解:(Ⅰ)21)2cos 2(sin 212sin 21)2cos 1(21)(++-=--=ax ax ax ax x f 21)42sin(22++-=πax ………………………(4分) ∵)(x f y =的图象与m y =相切.∴m 为)(x f 的最大值或最小值. 即221+=m 或221-=m ……(6分) 又因为)(x f 最小正周期为2π. 又0,222>==a a T ππ 所以2=a ……………………(8分) (Ⅱ) 即21)44sin(22)(++-=πx x f ……………………(9分) 令0)44sin(=+πx .则)(,164)(,4400Z k k x Z k k x ∈-=∴∈=+ππππ(10分) 由0≤164ππ-k ≤,()2k Z π∈得k =1,2, 因此对称中心为)21,163(π、)21,167(π. (12)16.解:⑴ 不等式t x x +-32<0的解集为{|1,}x x m x R <<∈∴⎩⎨⎧==+t m m 31得⎩⎨⎧==22t m⑵ f(x)=44222a a x ++--)(在(,1]-∞上递增,∴1,22a a ≥≥又0loglog)32()23(22<x x at x mx a+--++-= ,由2≥a ,可知0<x x 322+-<1由2230x x -<, 得0<x <23 由22310x x -+>,得x <21或x >1 故原不等式的解集为{x|0<x <21或1<x <23}17.(Ⅰ)证明: ∵O 是AC 的中点,D 是AB 的中点 ∴OD//BC,又BC ⊆平面SCD,OD ⊄平面SCD∴ OD//平面SBC; …………………………………6分(Ⅱ) 证明:SAC ∆是正三角形, O 是AC 的中点,∴SO AC ⊥.又∵平面SAC ⊥平面ABC ,∴SO ACB ⊥平面,∴SO AB ⊥. …………………………………12分18.解:(1)设今年学生为b 人,则10年后学生为b (1+4.9‰)10=1.05b ,由题设可知,1年后的设备为(110%) 1.1a x a x ⨯+-=-.2年后的设备为22(1.1)(110%) 1.1 1.1 1.1(1 1.1)a x x a x x a x -⨯+-=--=-+. 3年后的设备为23232(1.1 1.1)(110%) 1.1 1.1 1.1 1.1(11.11.1)a x x x a x x x a x --⨯+-=---=-++ ……10年后的设备为1029101.1(1 1.1 1.1 1.1)1(1 1.1)2.61 1.12.616.a x a x a x ⨯-++++⨯-=-⨯-=-由题设得2.61621.05a x a b b -=⨯ ,解得132x a =.(2)全部更换旧设备还需116232aa ÷=. 答:(1)每年更换旧设备为2116a m .(2)按此速度全部更换旧设备还需16年.19.解: (Ⅰ)()f x x ≥ 的解集为R ,22(41)0x a x a ∴-++≥恒成立2240(41)a a -≤∴∆=+,即212810a a ++≤解得11.26a -≤≤-故a 的最大值为1.6-………………………………6分 (Ⅱ)由已知可得:3222()23123g x x ax a x a =+-+ 则'22()66126()(2)g x x ax a x a x a =+-=-+令'()0g x =得x a =或2.x a =-………………………………8分(1)若0a =,则'()0g x ≥, ()g x ∴在R 上单调递增,在(0,1)上无极值; (2)若0a >,则当2x a <-或x a >时,'()0g x >;当2a x a -<<时,'()0g x < ∴当x a =时,()g x 有极小值;又 ()g x 要在区间(0,1)上存在极小值,∴01a <<………………11分 (3)若0a <,则当'2()0x a x a g x <>->或时,;当'2()0a x a g x <<-<时, ∴当2x a =-时,()g x 有极小值;又 ()g x 要在区间(0,1)上存在极小值,∴1021,02a a <-<<<∴-……14分 综上所述,当102a <<-或01a <<时,()g x 要在区间(0,1)上存在极小值 20.解:①设任意12,x x ∈(0,1),且12x x <,则33111122332112222121211222212121()()()()()()()() ()()f x f x x ax x ax x x a x x x x x x x x a x x x x x x x x a -=-+--+=-+-=-+++-=-++-由题意知:11()()0f x f x -< 且 12x x < 2221210x x x x a ∴++-<恒成立12,x x ∈(0,1) ∴ 222121x x x x ++∈(0,3) ∴ 3a ≥∴A :[3, +∞ ]②由题意知:3a =a=3时,312()3n n n n a f a a a +==-+ ∴ 311322n n n a a a +=-+ ,n N ∈ ∴ 332113111(1)22222n n n n n n n n n a a a a a a a a a +-=-+-=-+=--由①可知313()22g x x x =-+ 在(0,1)为增函数 ∴1(0,1)a b =∈∴ 332111313131222222a a a b b =-+=-+<-+= 又 221(3)02a b b =->∴2(0,1)a ∈ ……由此猜想:(0,1)n a ∈以下用数学归纳法证明:(0,1)n a ∈ 1) 由已知:12,(0,1)a a ∈2) 设(2,)n k k k N =≥∈时,结论成立∴(0,1)k a ∈∴1n k =+时, 311322k k k a a a +=-+ 313()22g x x x =-+在(0,1)为增函数∴33113130001112222k a +=-+<<-+=∴101k a +<<∴对于一切正整数n ,均有 (0,1)n a ∈∴211(1)02n n n n a a a a +-=--> ∴ 1n n a a +>③ 设存在正实数c ,使0<ca c a n n -+<2恒成立 ∴n a c > 21n n n a c ca c a c +=+-- 即: 211n c a c -<<-恒成立, 即201n ca c<<-即 12na c c ->即 3n a c >∴3n a c >恒成立. 1n n a a +> 对任意n 成立. ∴ 13a c >∴103a c <<,即c 的取值范围为:(0,)3b。

相关文档
最新文档