pcdmis坐标系建立(迭代法)
基于PC—DMIS车身钣金件的三坐标测量方法分析

基于PC—DMIS车身钣金件的三坐标测量方法分析文章从坐标系的建立、零件特征元素的测量、出具检测报告的方法等方面介绍了PC-DMIS软件如何实现车身钣金件的三坐标测量。
标签:PC-DMIS软件;钣金件;三坐标测量1 概述PC-DMIS软件是美国开发的一款三坐标测量软件,具有强大的测量几何量的功能,所以受到广大汽车生产企业的青睐。
车身钣金件分为冲压件和焊接总成件,下面简单介绍一下如何用PC-DMIS软件测量车身钣金件。
2 钣金件的类型对于需要进行三坐标测量的制件,首先要明确是否具备测量支架,两者的测量方法存在很大的差异,文章将分别进行介绍。
3 测量前的准备工作3.1 工件CAD(数模)制件在进行三坐标测量之前,需要测量人员根据检测要求准备好一系列的资料,例如被测工件的数模,图纸、工艺部门提供的检测表等。
PC-DMIS软件需要的数模格式为*.igs、*.stp等,而设计部门通常会把产品数模制作成*.CATIA格式,所以需要先通过CATIA软件将数模转换成*.igs、*.stp 等格式才能使用。
3.2 PC-DMIS软件新建零件程序文件打开PC-DMIS,新建一个以零件号为名称的程序文件*.PRG文件,进入软件后,自动弹出测头校验对话框,测头文件下拉菜单会出现之前已经校验好的测头文件,操作者可以根据需要选择合适的测头文件。
4 建立坐标系对工件进行测量,最重要的步骤就是建立零件坐标系,正确建立零件坐标系对于保证迅速而准确地进行测量工作至关重要。
常用的建立坐标系的方法有三二一法和迭代法。
对于车身钣金件检测工作,通常带检测支架的钣金件使用三二一法,不带检测支架的钣金件使用迭代法,下面将分别进行说明。
4.1 三二一建立坐标系方法三二一建立工件坐标系必须具备以下三个条件:(1)被测零件上必须有一个确定第一个坐标轴方向的实际基准元素。
(2)必须能在垂直于第一坐标轴的平面上确定第二坐标轴的方向。
(3)必须能确定坐标系原点。
《迭代法建坐标》

迭代法建立坐标系:原理/要求通过迭代法,PC-DMIS可以将测定数据从三维上“最佳拟合”到理论点(或可用的曲面),此方法需要至少测量三个特征。
某些特征类型(如点和直线)的三维位置较差,如果选择这些类型的特征之一,则需要添加其它类型特征才能建立精确的坐标系。
第一组特征将使平面拟合特征的质心,以建立当前工作平面法线轴的方位。
此部分(找平-3+)必须至少使用三个特征。
第二组特征将使直线拟合特征,从而将工作平面的定义轴旋转到特征上。
此部分(旋转-2 +)必须至少使用两个特征。
如果未标记任何特征,坐标系将使用“找平”部分中的特征。
从“找平”部分中利用的两个特征将成为倒数第二个和第三个特征。
)最后一组特征用于将零件原点平移到指定位置(设置原点-1)。
如果未标记任何特征,坐标系将使用“找平”部分中的最后一个特征。
迭代法建立坐标系:规则特征类型至少需要的特征数:圆3 个圆:此方法将 3 个DCC 圆用于建坐标系线建议不要使用此特征类型点6个点:此点用作3-2-1 建坐标系槽建议不要将此特征类型用作原点特征组的一部分球体3个球此方法将 3 个DCC 圆用于建坐标系当执行迭代法建坐标系时,应遵守以下一般规则:对于特征组中的每个元素,PC-DMIS都需要测定值和理论值。
第一组元素的法线矢量必须大致平行。
如果特征组中只使用三个特征时不必遵循此规则。
如果使用点特征(矢量、棱或曲面),则需要用所有三组元素(三个用于找平的特征、两个用于旋转的特征和一个用于设置原点的特征)来定义坐标系。
您可以使用任何特征类型,但三维元素是定义更完善的元素,因此可以提高精确度。
3D 特征包括薄壁件圆、槽、柱体、球体或隅角点。
注意:对于薄壁件圆、槽和柱体至少需要三个样例测点。
使用测定点的困难在于只有在建坐标系后,才能知道在何处进行测量,这样导致第一次测量的数据不准确,而3D 特征则第一次即可精确测量。
此外,如果使用点特征(矢量、棱或曲面),旋转特征组中各特征的法线矢量必须具有近似垂直于找平特征组中各特征矢量的法线矢量。
pcdmis坐标系建立(迭代法)PPT课件

夹具公差
26
用于定义一个标号,当每个输入特征在基准方向上的误 差超过在夹具公差框中定义的夹具公差时,PC-DMIS 将转 到此标号。
错误标号
27
是否立即测量所有迭代法建坐标系特征?
28
将测头定位在特征标示=点1,#1(属于6)
起始标号
未定义起始标号: PC-DMIS将转到组成迭代法建坐标系的第一个特征,从此处
开始进行DCC测量。
24
注意: 切勿将矢量点目标半径的值设置得太小(如50微米)。许多CMM无法 准确定位测头,使其接触极小目标上的每个测定点。所以最好将公差设置在5毫 米左右。如果重新测量无休止地继续,则将增加该值。
多于一次。
22
始终全部测量
PC-DMIS 将以 DCC 模式对当前零件程序中的一部分至少重新执行一次,重新
执行哪一部分,取决于起始标号(参见起始标号)。
如果提供起始标号,PC-DMIS 将从该定义标号重新执行到包含当前执行的迭代法
建坐标系命令的“建坐标系/开始”命令;
如果未提供起始标号,PC-DMIS 将从程序中迭代法建坐标系命令所使用的第一个
12
打开自动测量圆对话框
13
14
15
PCDMIS将自动在编辑窗口中创建该点的程序, 同时在视图窗口中出现“圆1”的标识
16
手动操纵机器,产生实测值 (注意:打圆时先打表面三点)
17
18
19
20
21
一次全部测量
PC-DMIS 将以 DCC 模式对所有输入特征至少重新测量一次; 它们将按照“编辑”窗口中迭代法建坐标系命令所指定的顺序来进行测量; PC-DMIS 将在一个消息框中显示将要测量的特征; 在接受移动之前,请确保测头能够接触指定特征而不会与零件发生碰撞; 将不会执行在每个特征之前或之后找到的存储移动; 在对所有特征测量至少一次后,对于测定点类型的特征和未命中其点目 标半径目标的点(参见点目标半径),将继续对特征进行重新测量; 注:在此模式下,由于圆的位置从不改变,PC-DMIS 测量圆的次数不会
PC DMIS 培训教程 CAD++

目录目录 (1)PCDMIS 综述 (3)1. 第一讲 (8)一、如何建立一个测量程序? (9)二、如何校验测头? (9)本讲小结 (16)2. 第二讲 (17)一、如何手动测量特征元素面、线、圆? (18)二、零件坐标系PCS? (19)三、如何自动测量没有CAD的特征元素? (24)本讲小结 (27)3. 第三讲 (29)一、如何进行形位公差的评价(I)? (29)二、如何构造特征元素? (33)本讲小结 (59)4. 第四讲 (60)一、如何进行形位公差的评价(II)? (61)二、如何运行程序? (69)三、如何生成、编辑数据报告和图形报告? (71)本讲小结 (76)5. 第五讲 (77)一、导入CAD模型,并对其作相关操作 (78)二、如何对有CAD模型的工件运用“3-2-1”法建立零件坐标系? (81)三、如何对有CAD模型的工件进行自动测量(I)? (82)四、迭代法 (87)本讲小结 (98)6.第六讲 (99)一、如何对有CAD模型的工件进行自动测量(II)? (100)二、如何使用“阵列”功能进行程序编辑? (106)三、如何在程序中加入注释语句? (109)四、如何显示路径线/模拟测量/重新生成路径线? (112)五、如何设置所需的各种系统参数? (114)六、如何编辑图形窗口中相关参数的设置? (122)本讲小结 (128)7.第七讲 (129)一、如何进行曲线曲面扫描? (130)二、如何进行轮廓度分析? (137)三.用“分析”来分析轮廓度 (138)三、如何将测绘的工件数据导出IGES格式文件? (141)四、如何进行特殊测头的校验? (142)本讲小结 (147)8.附录---用户答疑 (149)1)、PCDMIS软件版本及升级 (150)1.1 PCDMIS的版本及应用 (150)1.2 PCDMIS的模块功能及升级 (150)2)、参数设置 (153)2.1 编辑菜单 (153)3)、校验测头 (154)3.1 配置测头文件 (154)3.2 测头分类 (155)3.3 校验测杆 (155)4)、建零件坐标系 (156)5)、文件的传输 (156)5.1 数据的导出 (156)6)、测量(Auto Feature) (157)6.1 测圆 (157)6.2 测球 (158)6.3 具体应用 (159)7)、扫描 (160)8)、评价 (161)9)、其它 (163)10)、硬件 (164)10.1 测头系统 (164)10.2 日常保养 (181)PCDMIS 综述主要内容PCDMIS软件的应用范围检测工件的基本思路强大的计量与PCDMIS测量软件,为几何量测量的需要提供了完美的解决方案。
pcdmis高级培训(三坐标培训资料)

• 第1章:特殊测头的校验
1.盘形测针的用途· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 2.盘测针的定义及校验· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 3.盘测针的注意事项· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 4.柱测针的用途· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· · 7 5.柱测针的定义及校验· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 6.柱测针的注意事项· · · · · · · · · · · · · · · · · · · · · · · · · ·· · · · · · 8 7.星型测针的用途· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9 6.星型测针的定义及校验· · · · · · · · · · · · · · · · · · · · · · · ·· · · · 9 7.星型测针的注意事项· · · · · · · · · · · · · · · · · · · · ·· · · · · · · · 10 6.五方向测针的用途· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 11 7.五方向测针的定义及校验· · · · · · · · · · · · · · · · ·· · · · · · · · 11 8.五方向测针的注意事项· · · · · · · · · · · · · · · · · · · · · · · · · · · · 12
PC-DMIS综合培训

一. 測頭校驗
3. 柱形針定義及校驗
校驗前的准備: 如下圖, 現有測頭角度只有TIPA0B0, 需新增其它角度
點擊此用於添加角度(詳見下頁)
可以實現隱藏該部件的效果 去掉此選項
雙擊某一部件
一. 測頭校驗
3. 柱形針定義及校驗
添加角度:
可在此輸入添加 也可在此選擇添加
一. 測頭校驗
3. 柱形針定義及校驗
有多個元素時可設定各元 素擬合的加權值.
三. 安全面及工作面設定
1. 安全面設定的意義
如上圖所示, 安全面是指在產品的最外圍建立一個虛擬的 “盒子” , 定義在此 “盒子” 以外為 安全區域. 也就是說, 在三次元量測完畢一個元素待量測下一個元素時, 測針會移動到安全面的位 置, 然后進行下一個元素的量測.
三. 安全面及工作面設定
5. 工作面設定含義
工作面是指當前量測的元素所處的平面, 也可稱為投影面. 在實際量測中必須正確設定工作面. 如 果設定錯誤, 將無法得到正確量測結果. 工作面可由下圖表示出來:
A ZPlus
B XPlus
C YPlus D ZMinus E XMinus F YMinus 注: 在實際使用時, 遠擇Zplus與Zminus對于量測結果是沒有影響的.
•測杆有校測量長度為相對兩個測杆間紅寶石球心連線的距離, 即2與4或3與5號針之間距離; 1號測尖不能單獨使用. •校驗星形測杆通常使用雙標准球. 因為: •例如校驗T1A90B180位置時, 5號測杆就需要在可用工具列表中對從球的矢量方向進行定義 (與主球定義方向相反), 同時要注意: 為了在此處校得的從球數據和在主球上校得的數據相 互聯系, 應該選擇一個在主球上校過, 而且在從球上也能校驗的一個角度, 在從球上也校驗一 次.
PCDMIS高级编程培训教材

2007-4-10
16
典型组合
2007-4-10
17
多测针的使用
在一个程序中,有时单个测针是不能完成所有检测项目的, 需要用到两个或两个以上的测针,这时多个测针之间测 量结果的一致性就是最关键的问题。
2007-4-10
4
薄壁类零件的装夹
薄壁件存在变形的影响 ,因此其装夹对检测结果的影响很 大。 最好的装夹方式是按照理论位置组合夹具,然后把零件 放在夹具上,并在相应位置夹紧。 在选择支撑和夹紧位置时,应当选择和其他零件配合的 位置或者决定整个零件结构的关键位置。 对于夹具有以下要求:一是夹具应具有足够的精度和刚 度;二是夹具应有可靠的定位基准;三是要有夹紧装 置。 在薄壁件的检测中,通常有以下三种类型的夹具: 1.通过软件控制的柔性夹具,如FIVE; 2.按照理论值专门定做的专用夹具; 3.使用相关检具。
程。
2007-4-10
22
3-2-1建立零件坐标系
无CAD模型时3-2-1坐标系的建立
方法Ⅰ a.建立坐标系第一轴向 b.建立坐标系第二轴向 c.确定坐标系原点
a
b
c
方法Ⅱ 通过旋转平移当前坐标系建立新的坐标系
2007-4-10
围绕某一轴向(如z 正)旋转另一轴向 (如x正)(按右手定 则顺时针为负值,逆 时针为正值)
2007-4-10
10
星形测针的校验
星形测针
星型测杆的定义及校验(以 PS7R为例)
1. 新建一个测头文件 2. 在“测头说明”里选择测头组件:
PH10MQ CONCERT30MM_TO_M8THRD PROBE_TP20 EXTEN20MM
pcdmis坐标系建立(迭代法)

仅仅旋转:将坐标系限制为只能旋转, 而不能应用任何平移。
仅仅平移:此选项将坐标系限制为只能 平移,而不能应用任何旋转。
矢量:同样求所拟合的特征之间的误差 的平均值,但所有的误差都将处于适量方 向上。
例:
X Y Z I JK
理论值 1 1 1 0 0 1
实测值 4 2 0.95
数据调整 1 1 0.95
点目标半径
利用点目标半径,您可以在每个点周围指定一个大小为目标半径的假想公差 区域(或目标)。这样您就能接触指定公差内的任何位置。如果测定点不在此区 域内,PC-DMIS将以DCC模式重新测量该点。
• 如果将测量值拟合到理论值后,有一个或多个输入特征在 其指定基准轴上的误差超过此公差值,PC-DMIS 将自动转 到误差标号(如果有)。请参见误差标号。 • 如果未提供误差标号,PC-DMIS 将显示一条错误消息, 指出每个基准方向上的误差。然后,您将可以选择接受基准 并继续执行零件程序的其余部分,或取消零件程序的执行。
测定特征开始重新执行; 如果第一个特征之前有存储移动点,PC-DMIS 还将执行这些移动点; 重新执行过程将持续到迭代法建坐标系命令所使用的最后一个测定特征为止; 如果此命令之后有存储移动,将不会执行这些移动; 对于,第一次进行自动迭代,通常选择“一次全部测量”。
定义起始标号: PC-DMIS会在重新测量迭代法建坐标系特征时转到此标号。
多于一次。
始终全部测量
PC-DMIS 将以 DCC 模式对当前零件程序中的一部分至少重新执行一次,重新 执行哪一部分,取决于起始标号(参见起始标号)。 如果提供起始标号,PC-DMIS 将从该定义标号重新执行到包含当前执行的迭代法
建坐标系命令的“建坐标系/开始”命令; 如果未提供起始标号,PC-DMIS 将从程序中迭代法建坐标系命令所使用的第一个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手动操纵机器,产生实测值
打开自动测量圆对话框
PCDMIS将自动在编辑窗口中创建该点的程序,
同时在视图窗口中出现“圆1”的标识
手动操纵机器,产生实测值 (注意:打圆时先打表面三点)
一次全部测量
PC-DMIS 将以 DCC 模式对所有输入特征至少重新测量一次; 它们将按照“编辑”窗口中迭代法建坐标系命令所指定的顺序来进行测量; PC-DMIS 将在一个消息框中显示将要测量的特征; 在接受移动之前,请确保测头能够接触指定特征而不会与零件发生碰撞; 将不会执行在每个特征之前或之后找到的存储移动; 在对所有特征测量至少一次后,对于测定点类型的特征和未命中其点目 标半径目标的点(参见点目标半径),将继续对特征进行重新测量; 注:在此模式下,由于圆的位置从不改变,PC-DMIS 测量圆的次数不会 多于一次。
最小/最大:使用输入特征的关联尺寸确定,
是否有坐标系允许最佳拟合坐标系的所有 特征输入都处于给定的公差范围内。
(此选项仅用于2D最佳拟合坐标系)
特征加权
米左右。如果重新测量无休止地继续,则将增加该值。
点目标半径
利用点目标半径,您可以在每个点周围指定一个大小为目标半径的假想公差 区域(或目标)。这样您就能接触指定公差内的任何位置。如果测定点不在此区 域内,PC-DMIS将以DCC模式重新测量该点。
• 如果将测量值拟合到理论值后,有一个或多个输入特征在 其指定基准轴上的误差超过此公差值,PC-DMIS 将自动转 到误差标号(如果有)。请参见误差标号。 • 如果未提供误差标号,PC-DMIS 将显示一条错误消息, 指出每个基准方向上的误差。然后,您将可以选择接受基准 并继续执行零件程序的其余部分,或取消零件程序的执行。
始终全部测量
PC-DMIS 将以 DCC 模式对当前零件程序中的一部分至少重新执行一次,重新 执行哪一部分,取决于起始标号(参见起始标号)。 如果提供起始标号,PC-DMIS 将从该定义标号重新执行到包含当前执行的迭代法 建坐标系命令的“建坐标系/开始”命令; 如果未提供起始标号,PC-DMIS 将从程序中迭代法建坐标系命令所使用的第一个 测定特征开始重新执行; 如果第一个特征之前有存储移动点,PC-DMIS 还将执行这些移动点; 重新执行过程将持续到迭代法建坐标系命令所使用的最后一个测定特征为止; 如果此命令之后有存储移动,将不会执行这些移动; 对于,第一次进行自动迭代,通常选择“一次全部测量”。
标系创建。
3D最佳拟合坐标系使用原始数据,并 使其与理论值相关联。它不会使用先前的 坐标系,而将创建一个全新的坐标系。
最佳拟合方法
最小二乘方(默认)
3D最佳拟合坐标系的约束
求最佳拟合中所有特征之间的拟合误差的平均值。
旋转和平移(默认):
当使用测量机数据与理论值相关联时,它能为 坐标系提供充分的灵活性。
仅仅旋转:将坐标系限制为只能旋转, 而不能应用任何平移。
仅仅平移:此选项将坐标系限制为只能
平移,而不能应用任何旋转。
矢量:同样求所拟合的特征之间的误差
的平均值,但所有的误差都将处于适量方 向上。
例: 理论值 实测值 数据调整
X 1 4 1
Y 1 2 1
Z 1 0.95 0.95
I 0
J 0
K 1
创建迭代法坐标系
导入CAD模型,并进行相关图形处理与操作,
注意对模型坐标系及被测元素的观察。
确认程序开头为“手动”模式
选择“自动特征”,打开自动测量矢量点对话框
确定当前模式为“曲面模式”
用鼠标在CAD模型“点1”位置点击一下,注意此点的法线 矢量方向。
对照工件图纸的要求,在“自动测量”界面中对该点 的坐标值 进行相应的更改,点击“查找(F)”按钮;
定义起始标号: PC-DMIS会在重新测量迭代法建坐标系特征时转到此标号。
起始标号
未定义起始标号: PC-DMIS将转到组成迭代法建坐标系的第一个特征,从此处 开始进行DCC测量。
注意: 切勿将矢量点目标半径的值设置得太小(如50微米)。许多CMM无法 准确定位测头,使其接触极小目标上的每个测定点。所以最好将公差设置在5毫
迭代法建立坐标系
迭代法建立零件坐标系主要应用于PCS的原点不在工件本身、或无法找 到相应的基准元素(如面、孔、线等)来确定轴向或原点,多为曲面类零件 (汽车、飞机的配件,这类零件的坐标系多在车身或机身上)。 原理:
找正: 第一组特征将使平面拟合特征的质心,以建立当前工作平面法线轴的方位。 此部分(找正 - 3 +)必须至少使用三个特征。 旋转: 下一组特征将使直线拟合特征,从而将工作平面的定义轴旋转到特征上。此 部分(旋转 -2 +)必须至少使用两个特征。如果未标记任何特征,坐标系将使用 “找平”部分中的特征。(从“找平”部分中利用的两个特征将成为倒数第二个和第 三个特。) 原点—最后一组特征用于将零件原点平移到指定位置(设置原点 - 1)。如果未标记 任何特征,坐标系将使用“找平”部分中的最后一个特征。
建议
所有特 征 的类型 圆 直线 点 槽 球体 3个圆
至少需要的特征数
此方法将3个DCC圆用于建立坐标系
建议不要使用此特征类型 6个点 此点用作3-2-1建立坐标系
建议不要使用此特征类型 3个球 此方法将3个球体用于建立坐标系
最佳拟合坐标系
坐标系特征
坐标系选项
活动平面
2D最佳拟合坐标系需要一个起始坐标系。 起始坐标系在指定的工作平面中基于当前坐
用于键入一个拟合公差值,PC-DMIS 将根据该值对组
成迭代法坐标系的元素与其理论值进行比较。 夹具公差
用于定义一个标号,当每个输入特征在基准方向上的误 差超过在夹具公差框中定义的夹具公差时,PC-DMIS 将转 到此标号。 错误标号
是否立即测量所有迭代法建坐标系特征?
将测头定位在特征标示=点1,#1(属于6)
迭代法坐标系规则
1、对于特征组中的每个元素,PC-DMIS都需要测定值和理论值。第
一组元素的法线矢量必须大致平行。此规则的一项例外是特征组中只使 用三个特征的情况。 2、如果使用测定点(矢量、棱或曲面),则需要用所有三组元素(三 个用于找平的特征、两个用于旋转的特征和一个用于设置原点的特征) 来定义坐标系。您可以使用任何特征类型,但三维元素是定义更完善的 元素,因此可以提高精度。