生物信息学整理
博士后生生物学生物信息学知识点归纳总结

博士后生生物学生物信息学知识点归纳总结生物信息学是生物学与信息学的交叉学科,研究如何应用信息技术和计算机科学来处理生物学的大数据和解决生物学问题。
作为一个博士后生物学研究者,了解生物信息学的基本知识点至关重要。
本文将对生物信息学的一些重要知识点进行归纳总结,以供参考。
基本概念1. 生物信息学:生物学与信息学的交叉学科,研究如何应用信息技术和计算机科学来处理生物学的大数据和解决生物学问题。
2. 生物学数据库:收集、存储和管理生物学数据的电子资源,如基因组数据库、蛋白质数据库等。
3. 序列分析:研究DNA、RNA或蛋白质的序列特征,如序列比对、同源性分析、起始子和剪接位点预测等。
4. 结构分析:研究蛋白质的三维结构特征,如蛋白质折叠预测、蛋白质结构比对、结构域识别等。
生物序列分析1. 序列比对:将两个或多个序列进行比对,寻找相同或相似的区域,并分析其功能和进化关系。
2. 序列分类:通过比对已知序列进行分类,如BLAST (Basic Local Alignment Search Tool) 分析。
3. 同源性分析:鉴定不同物种或同一物种的不同序列中的相同区域,例如保守结构域的识别。
4. 基因预测:根据DNA序列,预测其中的基因区域和基因结构,如编码蛋白质的氨基酸序列。
生物结构分析1. 蛋白质折叠预测:根据蛋白质的氨基酸序列,预测其三维结构,有助于理解蛋白质的功能。
2. 蛋白质结构比对:将两个或多个蛋白质的三维结构进行比对,以分析其结构、功能和进化关系。
3. 动力学模拟:使用计算方法对蛋白质和其他生物大分子进行模拟,研究其结构和运动特性。
4. 蛋白质结构域识别:识别蛋白质中独立的功能模块,有助于理解蛋白质的功能和相互作用。
5. 蛋白质互作网络:分析蛋白质相互作用网络,研究生物体内蛋白质的相互作用和信号传递。
基因组学与转录组学1. 基因组测序:对生物体的基因组进行高通量测序,生成大量的DNA序列数据,如全基因组测序和全外显子组测序。
生物学中的生物信息学知识点

生物学中的生物信息学知识点生物信息学是生物学和信息学的交叉学科,将计算机科学、统计学和数学等方法应用于生物学的研究中,以解决生物大数据处理、基因组学、蛋白质组学和生物信息分析等领域的问题。
下面将介绍生物信息学的几个重要知识点。
1. DNA、RNA和蛋白质序列分析DNA、RNA和蛋白质是生物体中三种重要的生物分子,它们的序列信息对于理解生物体的功能和进化有着重要意义。
生物信息学通过各种序列分析方法,如序列比对、序列搜索和序列模式识别,可以揭示DNA、RNA和蛋白质的结构、功能和相互作用等信息。
2. 基因组学和转录组学基因组学是研究生物体基因组的结构和功能的学科。
生物信息学在基因组学领域中发挥着关键作用,能够进行基因组测序、基因注释和基因调控网络的分析。
转录组学是研究生物体基因在特定的时间和空间上的表达模式和调控机制的学科,生物信息学可通过基于高通量测序技术的转录组数据分析,揭示基因表达的规律和调控网络。
3. 蛋白质结构预测和功能注释蛋白质是生物体中最重要的功能分子,其结构与功能密切相关。
通过生物信息学方法,如蛋白质结构预测和功能注释,可以推测蛋白质的结构和功能。
这对于理解蛋白质的生物学功能、药物设计和疾病的研究具有重要意义。
4. 基因调控网络分析生物体内的基因调控网络是复杂的,涉及到多个基因和调控元件的相互作用。
生物信息学可以通过整合转录组、表观基因组学和蛋白质互作数据等信息,构建和分析基因调控网络,揭示基因调控的机制和关键节点。
5. 生物序列和结构数据库为了方便生物信息学研究者进行序列和结构信息的存储和检索,建立了多个公共数据库,如GenBank、Uniprot和PDB等。
这些数据库包含了大量的生物序列和结构数据,为生物信息学研究提供了重要的资源。
6. 高通量测序技术及其数据分析高通量测序技术的出现使得获取生物序列信息的速度大大提高。
生物信息学通过批量处理和分析测序数据,揭示基因组的结构、功能和进化信息。
大学生物信息学专业-复习资料整理

大学生物信息学专业-复习资料整理一、名词解释:生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。
利用数学知识建立各种数学模型;利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。
二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。
FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。
genbank序列格式:是GenBank数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。
该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释:第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。
Entrez检索系统:是NCBI开发的核心检索系统,集成了NCBI的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。
BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。
P94查询序列(querysequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。
P98打分矩阵(scoringmatrix):在相似性检索中对序列两两比对的质量评估方法。
包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。
P29空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。
P29空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的过化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。
生物信息复习资料

生物信息复习资料生物信息复习资料生物信息学是一门综合性学科,涉及生物学、计算机科学和统计学等多个领域。
它的出现和发展,为我们深入研究生物体的基因组、蛋白质组以及其他生物大数据提供了强有力的工具和方法。
在生物信息学的学习和研究过程中,我们需要掌握一些基本的概念、技术和工具。
下面,我将为大家整理一些生物信息学的复习资料,希望能够对大家的学习有所帮助。
一、基本概念1. 生物信息学:生物信息学是一门研究生物体内信息的获取、存储、处理和分析的学科。
它通过运用计算机科学和统计学的方法,挖掘和解释生物体内的基因、蛋白质等分子信息,从而揭示生物体内的生命规律和机制。
2. 基因组学:基因组学是研究生物体基因组结构、功能和演化的学科。
它通过对生物体DNA序列的测定和分析,揭示基因组的组成、基因的定位和功能等信息。
3. 蛋白质组学:蛋白质组学是研究生物体蛋白质组成、结构和功能的学科。
它通过对生物体蛋白质的测定和分析,揭示蛋白质的组成、互作关系和功能等信息。
4. 基因表达谱:基因表达谱是指在特定条件下,生物体内基因的表达水平和模式。
通过对基因表达谱的分析,可以了解基因在不同组织、不同发育阶段或者不同环境条件下的表达情况,从而揭示基因的功能和调控机制。
二、常用技术和工具1. DNA测序技术:DNA测序技术是获取生物体基因组序列的重要方法。
常见的DNA测序技术包括Sanger测序、高通量测序和单分子测序等。
其中,高通量测序技术如Illumina测序和Ion Torrent测序,具有高通量、高准确性和低成本的特点,广泛应用于基因组学和转录组学研究。
2. 生物信息学数据库:生物信息学数据库是存储和管理生物学数据的重要资源。
常见的生物信息学数据库包括GenBank、EMBL、DDBJ、NCBI、Ensembl和Uniprot等。
这些数据库提供了丰富的生物学数据,如基因序列、蛋白质序列、基因表达数据等,为生物信息学的研究和分析提供了基础。
生物信息学资料整理简约版

1.生物信息学(Bioinformatics):是研究生物信息的采集,处理,存储,传播,分析和解释等各方面的学科。
新兴的交叉学科。
PS:生物分子至少携带着三种信息–遗传信息–与功能相关的结构信息–进化信息2.生物信息学主要研究两种信息载体: DNA和蛋白质(1)遗传信息的载体——DNADNA通过自我复制,在生物体的繁衍过程中传递遗传信息;基因通过转录和翻译,使遗传信息在生物个体中得以表达,并使后代表现出与亲代相似的生物性状。
(2)蛋白质的结构决定其功能蛋白质功能取决于蛋白质的空间结构蛋白质结构决定于蛋白质的序列(这是目前基本公认的假设),蛋白质结构的信息隐含在蛋白质序列之中。
3.序列数据库有哪些?特点?如何检索?(1)基因组序列数据库:Genome Database(GDB)数据库:包括人、鼠、斑马鱼和果蝇4种真核生物基因组的注释分析。
由EMBL - EBI和Sanger研究所联合开发。
UCSC Genome Browser:加州大学圣克鲁兹分校建立,包括各种脊椎和无脊椎动物,以及主要模式生物的基因组数据。
(2)核酸序列数据库:EMBL DDBJ GenBank三个数据库每天互相交换数据,GenBank可通过NCBI的检索系统Entrez获取,Entrez集成来自主要DNA和蛋白序列数据库的数据,包括物种、基因组、定位、蛋白结构和结构域等信息。
(3)蛋白质序列数据库:UniProt IPI Nr4序列标签位点STS序列标签位点(sequence-tagged site),是已知核苷酸序列的DNA片段,是基因组中任何单拷贝的短DNA序列,长度在100~500bp之间。
任何DNA序列,只要知道它在基因组中的位置,都能被用作STS标签。
5.CDS和ORF的区别(1)开放读码框是从一个起始密码子开始到一个终止密码子结束的一段序列;不是所有读码框都能被表达出蛋白产物,或者能表达出占有优势或者能产生生物学功能的蛋白。
生物信息学重点

⽣物信息学重点⼀、名解1.⽣物信息学:(狭义)专指应⽤信息技术储存和分析基因组测序所产⽣的分⼦序列及其相关数据的学科;(⼴义)指⽣命科学与数学、计算机科学和信息科学等交汇融合所形成的⼀门交叉学科。
2.⼈类基因组测序计划:3基因组学:以基因组分析为⼿段,研究基因组的结构组成、时序表达模式和功能,并提供有关⽣物物种及其细胞功能的进化信息。
p1504基因组:是指⼀个⽣物体、细胞器或病毒的整套基因。
p1505.⽐较基因组学:是指基因组学与⽣物信息学的⼀个重要分⽀。
通过模式⽣物基因组之间或模式⽣物基因组与⼈类基因组之间的⽐较与鉴别,可以为研究⽣物进化和分离⼈类遗传病的候选基因以及预测新的基因功能提供依据。
p1666功能基因组:表达⼀定功能的全部基因所组成的DNA序列,包括编码基因和调控基因。
功能基因组学:利⽤结构基因组学研究所得的各种来源的信息,建⽴与发展各种技术和实验模型来测定基因及基因组⾮编码序列的⽣物学功能。
7蛋⽩质组:是指⼀个基因组中各个基因编码产⽣的蛋⽩质的总体,即⼀个基因组的全部蛋⽩产物及其表达情况。
p1798蛋⽩质组学:指应⽤各种技术⼿段来研究蛋⽩质组的⼀门新兴科学,其⽬的是从整体的⾓度分析细胞内动态变化的蛋⽩质组成成分、表达⽔平与修饰状态,了解蛋⽩质之间的相互作⽤与联系,揭⽰蛋⽩质功能与细胞⽣命活动规律。
9功能蛋⽩质组学:(功能蛋⽩质组,即细胞在⼀定阶段或与某⼀⽣理现象相关的所有蛋⽩)。
10序列对位排列:通过插⼊间隔的⽅法使不同长度的序列对齐,达到长度⼀致。
11 基因组作图:是确定界标或基因在构成基因组的每条染⾊体上的位置,以及同条染⾊体上各个界标或基因之间的相对距离。
p15512 后基因组时代:其标志是⼤规模基因组分析、蛋⽩质组分析以及各种数据的⽐较和整合。
p3⼆填空题1⽣物信息学的发展⼤致经历了3个阶段,分别为前基因组时代、基因组时代、后基因组时代。
p22后基因组时代的标志性⼯作是(基因组分析)(蛋⽩质组分析)以及(各种数据的⽐较和整合)p33前基因组时代的标志性⼯作是⽣物数据库的建⽴、检索⼯具的开发以及DNA和蛋⽩质的序列分析p2 4基因组时代的标志性⼯作是(基因寻找和识别)(⽹络数据库系统的建⽴)以及(交互界⾯的开发)p2 5 ⼈类基因组计划的⽬标是完成四张图,分别是(遗传图谱)(物理图谱)(序列图谱)和(基因图谱)5 HGP由六个国家完成,我国完成了HGP的(1%,即3号染⾊体上3000万个碱基)的测序⼯作。
生物信息学基本知识

1. DNA: 遗传物质(遗传信息的载体) 双螺旋结构,A, C, G, T四种基本字符的复杂文本2. 基因(Gene):具有遗传效应的DNA分子片段3. 基因组(Genome):包含细胞或生物体全套的遗传信息的全部遗传物质。
人类包括细胞核基因组和线粒体基因组OR 一个物种中所有基因的整体组成4. 人类基因组:3.2×109 bp5.HGP的最初目标通过国际合作,用15年时间(1990~2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA的全部核苷酸序列,定位约10万基因,并对其它生物进行类似研究。
6.HGP的终极目标阐明人类基因组全部DNA序列;识别基因;建立储存这些信息的数据库;开发数据分析工具;研究HGP实施所带来的伦理、法律和社会问题。
7.遗传图谱(genetic map)又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。
遗传图谱的建立为基因识别和完成基因定位创造了条件。
8. 遗传连锁图:通过计算连锁的遗传标志之间的重组频率,确定它们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)表示。
9. 物理图谱(physical map)是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。
绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。
10. 转录图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。
11. 序列图谱:随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。
DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。
生物信息学期末考试重点总结

第一章DNA、RNA和蛋白质序列信息资源生物信息学的概念:专指应用信息技术储存和分析基因组测序所产生的分子序列及其相关数据,也称分子生物信息学。
三大核酸序列数据库GenBank(NCBI)美国国家生物技术信息中心,EMBL欧洲分子生物学实验,DDBJ日本DNA序列资料库序列信息通常用FASTA和GenBank两种格式显示第二章双序列比对数据库查询:指对序列、结构以及各种二次数据库中的注释信息进行关键词匹配。
数据库搜索:通过特定相似性比对算法,找出核酸或蛋白质序列数据库中与检测序列具有一定程度相似性的序列。
区别:数据库搜索专门针对核酸和蛋白质序列数据库而言,其搜索对象不是数据库的注释信息,而是序列信息。
检测序列:新测定的,希望通过数据库搜索确定其性质或功能的序列目标序列:通过数据库搜索得到的和检测序列具有一定相似性的序列同源性的意义:具有共同祖先。
两个物种中有两个性状满足下列任一条件,就可称为同源性状:(1)它们与这些物种的祖先类群中所发现的某个性状相同(2)(2)它们是具有祖先一后裔的不同性状同源(homology)-具有共同的祖先同源序列:共同祖先趋异进化形成垂直同源(ortholog)种系形成过程中起源于一个共同祖先的不同种系中的DNA或蛋白质序列水平同源(paralog)由序列复制事件产生的相似(similarity)用来描述检测和目标序列之间相同DNA/蛋白质序列占比高低。
同源序列一般是相似的,但相似序列不一定是同源的。
相似性:大于50%可认为是同源性序列,小于20%无法确定同源性目的:通过数据库搜索,推测该未知序列可能属于哪个基因家族,具有哪些生物学功能。
可能找到已知三维结构的同源蛋白质而推测其可能的空间结构。
在序列数据库中对查询序列进行同源性比对.整体比对:从全长序列出发(分子系统学)局部比对:序列部分区域相似性(分子结构与功能性研究)数据库搜索的基础是序列的相似性比对,即双序列比对(pairwise alignment)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、什么是中性学说、数据库管理系统、基因芯片(DNA芯片)、分子钟、概念
性翻译
2.数据模型是数据库结构和语义的一种抽象描述,由哪三个部分组成。
3.国际上最重要的公共核苷酸序列数据库有哪3个
4.GenBank序列投送工具包括哪些
5.最常用的序列相似性查询工具有哪些
6.EST分析工具很多,除商用的(如Incyte-Lifetools)外,公用的工具通常分为哪3类
7、数据库的体系结构分为哪3个数据抽象级别
8.什么是基因树和物种树
9、人类的5种模式生物分别是什么
10、系统树的构建方法主要有哪些
11.系统树的构建方法主要有哪些
12.国际上最通用的系统树构建软件包是什么
13.基因组作图主要涉及的工作有哪些
14、为什么要分析DNA序列?
15、为什么需要蛋白质组学?
16、序列对位排列的主要用途是什么?
17.基因组计划的主要研究内容是什么
18. cDNA、EST、CDS、UTR之间的关系。
19、动态规划算法应用于二条蛋白质序列比对,结果的表示要类似于下表。
ATG -CA 最大得分:3。