新人教版七年级数学下册《八章 二元一次方程组 三元一次方程组的解法2》教案_0
人教版七年级下册数学:三元一次方程组的解法2(3)

思考:用代入 法消元可以吗? 计算会简便吗?
猜想:能用加减法消 元吗?如果能,消哪 个未知数比较好?
回顾“加减法”解 二元一次方程组
2a+3b=8①,
a
b
1② ,
②×3,得
“加减法”解三元一次方程组
3x 4z 7①, 2x 3y z 9②, 5x 9 y 7z 8③.
3x 2 x
y y
z 3①, 类比迁移解决新问题
3z 11②,
x
y
z
10③.
①+②,消y,得 ①+③,消y, 得
5x 2z 14 4x 2z 13
组成二元一次方程组, 得
5x 2z 14,
1
x 3,
所以2 原方程组的解是
y
6.5,
4x
2z 13. x 3,
z 0.5.
由⑤③,得
x 2(3 z) 9, 2z x 47.
x 2z 3, 即 2z x 47.
解这个二元一次方程组得
x z
22 z 12.5.
把 12.5,
x
2代2 入①,得y=15.5
x 22,
所以原方程组的解是: y 12.5,
z 15.5.
类比迁移解决新问题
解三元一次方程组
③
类比迁移解决新问题
对于这个方程组,消哪个元比较方便?理由是什么?
将③代入①②,得
4y y z 12, 4y 2y 5z 22.
即
5y z 12, 6y 5z 22.
解这个二元一次方程组得
y 2
z
2.
把
x 8,
人教版七年级下册数学:三元一次方程组的解法2

∴三元一次方程组的解为:
由(4)、(5)组成方程组得:
_5_x_-__y_=__4_____
_4_x_+__3_y_=__7____
解这个方程组得:xy
__1___ __1___
x ___1__
y
__1___
z ___2__
四、巩固练习
仿照例2完成下列问题:
2、在等式y=ax2+bx+c中,当x=1时,y=2;当
(2)×2-(3)得:
解得:z=____
_____x_+_3_y_=__1_5____(5)
∴三元一次方程组的解为:
由(4)、(5)组成方程组得:
__x_-__y_=__-_1____ __x+__3_y_=__1_5____
解这个方程组得:xy
_____ __4___
x _____
y
__4___
▪ 2、方程 ▪ ▪
x 1 y,
①
x y z 14, ②
x y 2z 5 ③
中,
▪ 根据方程①的特点,用含 y的代数式表示x,所以
先消未知数 x 会比较简单,于是可把方程 ① 分 别代入方程 ②和 ③,得到关于 y 和 z 的二元
一次方程组。
▪3何观解察下回列忆方如(1)xy
y z
都是利用消元的思想:把“多元”化成“一元”,从而求出方程组的
六、作业
教科书: 第106页 习题第1、2、4题
2019年6月录制
依题意得:
2x+y+z=15 x+2y+z=16 x+y+2z=17
请观察这个三元一次方程组有何特点?与前面解过 的有何不同?如何解这个三元一次方程组呢?
人教版七年级数学下第8章二元一次方程组8.4 三元一次方程组的解法习题课件

脐橙品种
ABC
每辆汽车运载量/吨 6 5 4
每吨脐橙获利/百元 12 16 10
如何安排三种脐橙装运,才能使此次销售获利达到 14.08 万元?
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
解:设装运 A,B,C 三种脐橙的车辆数分别为 x,y,z 辆,
x+y+z=20,
依题意,得6x+5y+4z=100, 72x+80y+40z=1 408.
3
7
=__2__;将 x 的值代入变形得到的二元一次方程组中,求得 y=__6__;最
5
后将 x 和 y 的值同时代入①得 z=__6__.
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
x=-2,
y=2,
y=2,
3.方程组x+y=0,
的解是___z_=__4______.
x-y+z=0
x=2, 解由①、④组成的方程组,得z=1.
x=2, 将z=1 代入③,得 y=4.
x=2,
∴原方程组的解为y=4, z=1.
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
15.已知x+5 y=y+6 z=z+7 x,且 xyz≠0,求 x∶y∶z 的值.
解:设x+5 y=y+6 z=z+7 x=k
七年级 数学 下册 人教版
*8.4 三元一次方程组的解法
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
1.三元一次方程组的解法 (1)解三元一次方程组的基本思想仍是消元.一般地,应利用代入法 或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方 程组,求出两个未知数,最后再求出另一个未知数.
8.4三元一次方程组的解法(第2课时)课件人教版数学七年级下册

列三元一次方程组解决实际问题的方法 列三元一次方程组解决实际问题的方法与列二元一 次方程组解决实际问题的方法类似,根据题意寻找 等量关系是解题的关键.列三元一次方程组解决实 际问题时,需设三个未知数并找出三个等量关系.
列三元一次方程组解应用题的一般步骤:
1.审:认真审题,分清题中的已知量、未知量,并明确它们 之间的等量关系; 2.设:恰当地设未知数; 3.列:依据题中的等量关系列出方程组; 4.解:解方程组,求出未知数的值; 5.验:检验所求得的未知数的值是否符合题意和实际意义; 6.答:写出答.
认真审题,明确等量关系
④与⑤组成二元一次方程组
④与⑤组成二元一次方程组
列三元一次方程组解应用题的一般步骤:
等量关系:种植水稻的面积+种植棉花的面积+种植蔬菜的面积=51(公顷);
8.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准
备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( C )
12.有一个三位数,它的十位上的数字等于个位上的数字与百位上的数字的 和,个位上的数字与十位上的数字之和等于8,百位上的数字与个位上的数字对 调后所得的三位数比原来的三位数大99,求原来的三位数.
解:设原来的百位上的数字为 x,十位上的数字为 y,个位上的数字
为 z,则yz+=yx=+8z,, 100z+10y+x=100x+10y+z+99, x=2,
3x-2y-z=-2,
A.消 x B.消 y C.消 z D.都一样
x+2y-z=-3, 4.三元一次方程组x+y+z=2, 的解是(
D
)
z-x+y=0
A.xy==21 B.xy==21 z=3 z=-1
x=-1 x=1 C.y=1 D.y=-1
人教版七年级初一数学下册 第八章 二元一次方程组 8.4 三元一次方程组的解法

2x+y+3z=5, (2)3x-2y-z=6,
4x-3y+2z=4.
B.y=-7 z=-3
C.xy==-3 2 D.xy==75 z=-7 z=-3
2019/9/12
3
知识点 2:三元一次方程组的解法
3.对于方程组22xx+ +3y+y=z=5 6 ,最优的解法是先( C ) 3x-2y-z=-2
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进 行维权,按照传播下载次数进行十倍的索取赔偿!
z-m=4
a=2 C.b=3
xy+z=2 D.x+yz=4
b-c=4 xz+y=6
2019/9/12
2
2.满足方程组xy--yx--zz==51
的解是( D )
-x+z-y=-15
A.xy==--27 z=4
x=-5 感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进 行维权,按照传播下载次数进行十倍的索取赔偿!
6
10.解方程组:
(1)23xx+ -yz==73 x-y+3z=0
解:xy= =2-1 z=-1
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进 行维权,按照传播下载次数进行十倍的索取赔偿!
二元一次方程组为__5_x_+__9_y_=__4_3___.
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进 行维权,按照传播下载次数进行十倍的索取赔偿!
人教版七年级数学下册第七章第八章二元一次方程组全章新课课件

你能根据题意列出方程吗?
依题意有: 用方程表示为:
胜负 场数 x y 积分 2x y
x y 10 2x y 16
合计
10 16
两个耶!
<<孙子算经>>是我国古代较为普及的算 书,许多问题浅显有趣.其中下卷第31题“鸡 兔同笼”问题流传尤为广泛,飘洋过海传到 了日本等国.
x 2,
所以原方程组的解是
y
3.
加减消元法
3x 5y 21, ① x+y=10,① 2x 5y -11. ② 2x+y=16. ②
由①+②得: 5x=10
由 ②-①得:x=6
两个二元一次方程中同一未知数的系数相反
或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,得到一个一元一次方程, 这种方法叫做加减消元法,简称加减法.
x y 10 ①
2x y 16 ②
2x (10 x) 16 ③
比较一下上面的 方程组与方程有
什么关系?
由①我们可以得到: y 10 x
再将②中的y换为 10 x 就得到了③
③是一元一次方程,相信大家都会解.那么根 据上面的提示,你会解这个方程组吗?
二元一次方程组中有两个未知数,如果消去其中 一个未知数,将二元一次方程组转化为我们熟悉的一 元一次方程,我们就可以先求出一个未知数,然后再 求另一未知数.这种将未知数的个数由多化少、逐一解 决的思想,叫做消元思想.
1、用含x的代数式表示y: x + y = 22
2、用含y的代数式表示x: 2x - 7y = 8
篮球联赛中每场比赛都要分出胜负,每队胜 一场得2分,负一场得1分.如果某队为了争取较 好名次,想在全部10场比赛中得16分,那么这
人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第

第15讲三元一次方程组解法(1)代入消元法(2)加减消元法三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。
解三元一次方程组的关键也是“消元”:三元→二元→一元方程应用题:考点1、三元一次方程的解法例1、在解三元一次方程组中,比较简单的方法是消去()A.未知数B.未知数y C.未知数z D.常数例2、将三元一次方程组,经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是()A.B.C.D.例3、写一个三元一次方程,使它的解有一组为x=1,y=1,z=1,这个三元一次方程为.例4例5、解下列三元一次方程组:(1)(2)(3)(4).1、已知,则x+y+z的值是()A.80 B.40 C.30 D.不能确定2、下列方程组:①;②;③;④,是三元一次方程组的是(填序号)3、已知三元一次方程2a+3b-4c=6,用含b、c的式子表示a为.4、当x=0、1、-1时,二次三项式ax2+bx+c的值分别为5、6、10,则a= ,5、解方程组:考点2、三元一次方程应用求解例1、已知|x-z+4|+|z-2y+1|+|x+y-z+1|=0,则x+y+z=()A.9 B.10 C.5 D.3例2、已知方程组,x与y的值之和等于2,则k的值为.例3、如果方程组的解使代数式kx+2y-z的值为10,那么k= .例4、已知x、y、z都不为零,且.求x:y:z.例5、对于有理数x,y定义新运算x*y=ax+by+c.其中a,b,c是常数,等式右边是通常的加法与乘法运算.已知1*2=9,(-3)*3=6,0*1=2,求(-2)*5的值.1、若方程组的解x与y的和为O,则m等于()A.-2 B.-1 C.1 D.22、已知,则x:y:z=______.34、如果方程组,的解也是方程3x+my+2z=0的解,求m的值.5、已知3x-4y-z=0,2x+y-8z=0,求的值.考点3、三元一次方程应用题例1、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50 B.100 C.150 D.200例2、一件工作,甲乙合做8小时完成,甲丙合做6小时完成,乙丙合做4.8小时完成,若甲乙丙三人合做,小时完成.例3、已知,甲乙丙三个数的和为26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.例4、某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个.甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?例5、在第29届北京奥运会上,中国体育健儿共获得奖牌100枚,令国人振奋,世界瞩目,下面是两位同学的对话:小明:太厉害了,我们在金牌榜上居第一位,金牌比银牌的2倍还多9块!小华:是呀,我们的银牌也不少啊,只比铜牌少7块!你知道我们共获得金牌、银牌、铜牌各多少块吗?1、有甲、乙、丙三种货物,若购买甲3件,乙7件,丙1件,共需63元,若购甲4件,乙10件,丙1件共需84元.现在购买甲、乙、丙各一件,共需()元.A.21 B.23 C.25 D.272、甲乙丙三数之和为36,而甲乙二数之和与乙丙二数之和与甲丙二数的和之比为2:3:4,则甲乙丙三数分别为.3、已知△ABC的周长为25cm,三边a、b、c中,a=b,c:b=1:2,则边长a= .4、王明在超市用74元钱买了苹果、梨、香蕉三种水果共15.5/kg,苹果比梨多2kg,已知苹果5元/kg,梨5.5元/kg,香蕉4元/kg.王明买了苹果、梨、香蕉各多少/kg?5、某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树植树多少株?6、已知△ABC的周长为48cm,最长边与最短边之差为14cm,另一边与最短边之和为25cm,求△ABC各边的长.1、解方程组时,第一次消去未知数的最佳方法是()A.加减法消去x,将①-③×3与②-③×2B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个2、若2x+3y-z=0且x-2y+z=0,则x:z=()A.1:3 B.-1:1 C.1:2 D.-1:7 3、若2x+5y-3z=2,3x+8z=3,则x+y+z的值等于()A.0 B.1 C.2 D.无法求出4、关于关于x、y的方程组的解也是二元一次方程x+3y+7m=20的解,则m的值是()A.0 B.1 C.2 D.0.55、某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入乙队,则后来乙与丙的人数比为()A.3:4 B.4:5 C.5:6 D.6:76、买20枝铅笔、3块橡皮擦、2本日记本需32元;买39枝铅笔,5块橡皮擦、3本日记本需58元;则买5枝铅笔、5块橡皮擦、5本日记本需()A.20元B.25元C.30元D.35元7、若方程组中x和y值相等,则k= .8、已知单项式-8a3x+y-z b12c x+y+z与2a4b2x-y•3z c69、解下列方程组:(1)(2)10、已知方程组的解x、y的和为12,求n的值.11、若,求x,y,z的值.12、已知:△ABC的周长为18cm,且a+b=2c,,求三边a、b、c的长.13、一个三位数的三个数字的和是17,百位数字与十位数字的和比个位数字大3,如果把个位数字与百位数字的位置对调,那么所得的三位数比原数大495,求原来的三位数.1、已知3a-c=a+b+c=4a+2b-c,那么3a:2b:c等于()A.4:(-2):5 B.12:4:5C.12:(-4):5 D.不能确定2、若,且3x+2y+z=32,则(y-z)x= .3、已知=k,则k= .4、有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件、乙10件、丙1件共需420元.问购甲、乙、丙各5件共需多少元?5、根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?鸡+鸭+鱼+菜=35.4元鸡+鱼+菜=20.4元鸭+鱼+菜=21.4元鸭+菜=17元.1、解方程组,若要使运算简便,消元的方法应选取()A.先消去B.先消去yC.先消去z D.以上说法都不对2、已知是方程组的解,则a+b+c的值是()A.1 B.2 C.3 D.以上答案都不对3、甲、乙、丙三数之和为98,甲:乙=2:3,乙:丙=5:8,则乙=()A.50 B.45 C.40 D.304、三元一次方程组的解是()A.B.C.D.5、小华到学校超市买铅笔11支,作业本5个,笔芯2支,共花12.5元;小刚在这家超市买同样的铅笔10支,同样的作业本4个,同样的笔芯1支,共花10元钱.若买这样的铅笔1支、作业本1个,笔芯1支共需()元.A.3元B.2.5元C.2元D.无法求出6、若方程组的解是3a+nb=8的一个解,则n的值是()A.1 B.2 C.3 D.47、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支8、如果x-y=-5,z-y=11,则z-x= .9、当K= 时,关于x、y的方程的解的和为200.10、有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元钱.11、解方程组(1)(2)(3)12、在等式y=ax2+bx+c中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10.当x=4时y的值是多少?13、解方程组:.14、琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.15、a为何值时,方程组的解x、y的值互为相反数,求出a的值,并求出方程组的解.第15讲三元一次方程组解法考点1、三元一次方程的解法例1、C例2、A例3、例4、例5、1、B2、3、4、5、考点2、三元一次方程应用求解例1、A例2、例3、例4、例5、1、D2、3、4、5、考点3、三元一次方程应用题例1、C例2、例3、例4、例5、1、A2、3、4、5、6、1、C2、D3、B4、C5、A6、C7、8、9、10、11、12、13、1、2、3、4、5、1、B2、C3、D4、C6、B7、D 8、9、10、11、13、.14、15、人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第15讲(有答案)21 / 21。
第八章 二元一次方程组知识点总结 2023-2024 学年人教版数学七年级下册

第8章二元一次方程组8.1二元一次方程组【知识点】1.含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.判断一个方程是二元一次方程必须同时满足3个条件:(1)必须含有两个未知数;(2)含未知数的项的次数都是1;(3)方程中的分母不含未知数,即方程必须是整式方程.3.一个方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程租.4.一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.5.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.6.二元一次方程有无数个解,但对于一些特殊解(如正整数解),它的解的个数往往是有限的. 确定二元一次方程的整数解一般用列举法求. 方法是:先用含一个未知数x(或y)的代数式表示另一个未知数y(或x),然后给x(或y)一个符合要求的值,求出y(或x)的值,就得到二元一次方程的一个解.8.2消元——解二元一次方程组【知识点】1.解二元一次方程组的基本思路是消元,这种思想初步体现了数学研究中的化未知为已知的化归思想.(一)代入法1.把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.2.用代入法解二元一次方程组的步骤是:(1)变:选定一个系数比较简单的方程进行变形,用x表示y,即y=ax+b(或用y表示x,即x=ay+b)的形式;(2)代:将y=ax+b代入另一个方程,消去y,得到一个关于x的一元一次方程(或代入x=ay+b,消去x);(3)解:解这个一元一次方程,求出x(或y)的值;(4)再代:把x的值代入y=ax+b,求出y的值(或将y的值代入x=ay+b);(5)联:把求得的x,y的值用“{”联立,即是方程组的解.(二)加减法1.当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.2.用加减法解二元一次方程组的步骤:(1)用一个适当的数去乘方程两边每一项,使两个方程中准备消去的未知数的系数相等或相反数;(2)把变形后的两个方程对应相加或相减,消去一个未知数,转化成一元一次方程;(3)求出一个未知数的解,再用代入法或加减法求另一个解.(三)解二元一次方程组总结1.当方程组中某一个未知数的系数绝对值是1或一个方程的常数项为0时,用代入法较方便;到两个方程中同一个未知数的系数绝对值相等或成整倍数时,用加减法较方便.2.当方程组中任一个未知数的系数绝对值不是1,且不成倍数关系时,一般经过变形利用加减法会使解法更简单.3.任何一个二元一次方程组经过变形以后,都可以化为以下标准形式:当a2,b2,c2全不为0时,它的解的情况是:(1)当a1a2≠b1b2时,方程组有唯一的一个解;(2)当a1a2=b1b2=c1c2时,方程组有无数多个解;(3)当a1a2=b1b2≠c1c2时,方程组无解.8.3实际问题与二元一次方程组【知识点】1.列方程组解应用题的一般步骤是:(1)审题:弄清题意和题目中的数量关系;(等量关系)(2)设元:用字母表示题目中的未知数,通常有直接设和间接设两种; (3)列方程组; (4)解方程组; (5)检验作答.2.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足: (1)方程两边表示的是同类量; (2)同类量的单位要统一; (3)方程两边的数值要相符.3.列方程组解应用题要注意检验和作答,检验不仅要求所求的的解是否符合方程组中的每一个方程,更重要的是要检验所求得的结果是否符合客观实际要求.4.在行程问题中,若速度为v ,时间为t ,路程为s ,则有s=vt ,v= st,t= sv.5.在商品经济中,利润=售价-成本价,利润率=利润÷成本价;一件商品原价是a ,打x 折后价格是110ax.6.列方程组解应用题和列一元一次方程解应用题类似.要想正确列出方程组,必须正确掌握以下几种类型的问题:①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数;②行程问题,即路程=速度×时间;③工程问题,即工作量=工作效率 × 工作时间; ④浓度问题,即溶质质量=溶液质量× 浓度;⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系; ⑥等积问题,即变形前后的质量(或体积)不变;⑦数字问题,即若个位上数字为 a ,十位上的数字为b ,百位上的数字 c ,则这个三位数可表示为100c+10b+ a ;8.4三元一次方程组的解法【知识点】1.方程组含有3个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.(三元一次方程组——二元一次方程组——一元一次方程)具体步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出这两个未知数的值;(3)再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程中,求出第三个未知数的值;(4)最后将求得的三个未知数的值用“{”写在一起.3.在三元一次方程组中,适合每一个方程的一组未知数的值,叫做这个方程组的一个解.4.在三元一次方程组中,每一个方程可以是一元一次方程,也可以是二元一次方程,但三个方程中总的未知数的个数是3.练习题一、填空题1. 已知x|a |-1+(a -2)y=2是关于x ,y 的二元一次方程,则a 的值为_________.2. 若关于x ,y 的方程x m+2-y n -1=5是二元一次方程,则m=______,n=________.3. 写出一个以{x =1,y =−3为解的二元一次方程_________. 4. 若x 2m+1+5y 3n -2=7是二元一次方程,则m=______,n=________. 5. 写出满足方程x+2y=9的两个整数解为_______. 6. 已知{x =2y =1是方程2x+ay=5的解,则a=________. 7. 已知{x =3y =−1是方程组{3x +ky =0mx +y =8的解,则k+m=_______.8.写出一个以{x =3y =−5为解的二元一次方程组________.二、选择题1. 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )2. 关于x ,y 的方程组{3x −y =m,x +my =n 的解是{x =1,y =1,则|m -n |的值是( ) A.5 B.3 C.2 D.13. 下列选项中,是二元一次方程的是 ( )A.xy=7B.x+π=6C.x -y=1D.3x -34=5y+3x4. 方程(1)3x -z=2;(2)y+x 2=0;(3)2x+3y=z ;(4)xy=1;(5)5x - 13y =4; ( ) (6)x=-y 中是二元一次方程的有A.1个B.2个C.3个D.4个5. 下列各组数值中,是二元一次方程组{x +y =52x −y =4的解的是( )A.{x =3y =2B.{x =3 y =−2C.{x =−3y =2D.{x =−3y =−26. 下列四个方程组中,是二元一次方程组的是 ( )A.{3x −y =6xy =10B.{x3−y 2=343x +2y =10C.{x +y =10y +z =20D.{5x −7y =6x +4y =5【答案解析】 一、填空题1. 答案:-22. 答案:-1 23. 答案:不唯一,如x+2y=-54. 答案:0 15. 答案:答案不唯一,如:{x =1y =4 ,{x =3y =36. 答案:17. 答案:128.答案:答案不唯一,如{x +y =−2x −y =8二、选择题1. 答案:B2. 答案:D3. 答案:C4. 答案:B5. 答案:A6. 答案:B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请观察上面方程组的特点,归纳三元一次方程组的定义.
定义:含有三个相同的未知数,每个方程中含有未知数的项的次数都是1,像这样的方程组叫做三元一次方程组。
仿照前面学过的代入法,可以把"③"分别代入"①②"得到两个含有y z的方程
二元一次方程组可以用代入消元法和加减消元法来求解。
例1、解方程组
4、已知方程组 的解满足x+y=3,则k的值为( )
A.10 B.8 C.2 D.-8
答案:B
5.由方程组 可以得到x+y+z的值等于( )
A.8 B.9 C.10 D.11
答案:A
6.解下列三元一次方程组:
答案:原方程组的解为
7、2016里约奥运会,中国运动员获得金、银、铜牌共70枚,位列奖牌榜第三.其中金牌比银牌多8枚,铜牌比银牌的总数的2倍少10枚.问金、银、铜牌各多少枚?
类型二:缺某元,消某元。
类型三:相同未知数系数相同或相反,用加减消元法。
学生通过思考,口述
等量关系:
1元纸币张数+2元纸币张数+5元纸币张数=12张
1元纸币张数=2元纸币张数的4倍
1元的金额+2元的金额+5元的金额=22元
师生共同归纳
三元一次方程组的解法
学生观察方程组,发现问题,然后试着解答问题
学生通过解答例题,可以得出答案。
课堂小结
1.三元一次方程组:含有三个不相同的未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程,这样的方程组叫做三元一次方程组.
2.解三元一次方程组的思想方法:
学生归纳本节所学知识
培养学生总结,归纳的能力。
板书
定义:含有三个相同的未知数,每个方程中含有未知数的项的次数都是1,像这样的方程组叫做三元一次方程组。
巩固提升
1.下列是三元一次方程组的是( )
A. B.
C. D.
答案:D
2.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为()
A.2 B.3 C.4 D.5
答案:D
3.将三元一次方程组 经过步骤①-③和
③×4+②消去未知数z后,得到的二元一次方程组是( )
A. B.
C. D.
答案:A
学生在教师的引导下,能很快回忆相关问题,引发对新问题的思考
讲授新课
出示问题
小明手头有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元纸币各多少张.
提出问题:此题怎么解呢?你能找出等量关系吗?
解:设1元、2元、5元的纸币分别为x张、y张、z张,
类型三:相同未知数系数相同或相反,用加减消元法。
例2:在等式y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60.求a,b,c的值.
例3、
注意:在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.
练习:1、
2、
怎样解答简便
归纳:三元一次方程组的三种情况:
类型一:有表达式,用代入法。
例1、解方程组
分析:方程①只含x、z,因此,可以由②③消去y,得到一个只含x、z的方程,与方程①组成一个二元一次方程组。
解:②×3+③,得11x﹢10z=35
①与④组成方程组
解这个方程组,得
把x=5,z=-2代入②,得y=
∴方程组的解是:
总结:三元一次方程组的三种方法:
类型一:有表达式,用代入法。
类型二:缺某元,消某元。
分析:方程①只含x、z,因此,可以由②③消去y,得到一个只含x、z的方程,与方程①组成一个二元一次方程组。
解:②×3+③,得11x﹢10z=35
①与④组成方程组
解这个方程组,得
把x=5,z=-2代入②,得y=
∴方程组的解是:
接着提问:解三元一次方程组注意什么?
注:如果三个方程中有一个方程是二元一次方程,则可以先通过对另外两个方程组进行消元,消元时就消去三个元中这个二元一次方程中缺少的那个元。缺某元,消某元。
答案:解:设金牌x枚,银牌y枚,铜牌z枚,则
解得
答:金牌26枚,银牌18枚,铜牌26枚.
学生自主解答,教师讲解答案。
鼓励学生认真思考;发现解决问题的方法,把实际问题转化为二元一次方程组解决;引导学生主动地参与教学活动,发扬数学民主,让学生在独立思考、合作交流等数学活动中,培养学生合作互助意识,提高数学交流与数学表达能力。
8.4三元一次方程组教学设计
课题
单元
8
学科
年级
七
学习
目标
情感态度和价值观目标
让学生学会“举一反三”的学习方法,体会数学的魅力.
能力目标
先பைடு நூலகம்用实际问题引入三元一次方程组的概念,再类比解二元一次方程组的思想方法,学习三元一次方程组的解法,最后学习三元一次方程组应用题。
知识目标
1.理解三元一次方程组的定义;
根据问题,学生交流,思考,列出三元一次方程组
学生自主解答,老师巡视指导
学生分组解答,师提问
引导学生独立思考,培养自主学习的能力
让学生自己动手解答问题,检验知识的掌握情况。
培养学生解决问题的能力和归纳的能力
通过例题的解答,让学生真正掌握三元一次方程组的应用,同时培养学生变相思考问题的能力。
师生共同归纳,培养学生发现问题,解决问题的能力
2.掌握三元一次方程组的解法;
3.会解简单的三元一次方程组应用题
重点
1.三元一次方程组的解法;
2.三元一次方程组的应用
难点
三元一次方程组的应用.
学法
自主探究,合作交流
教法
多媒体,问题引领
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
问题:
1、什么叫二元一次方程组?
2、怎样解二元一次方程组?
学生解答问题