山东大学工程数学2017样题及参考答案

合集下载

2017年考研数学三真题及答案解析

2017年考研数学三真题及答案解析

2017年考研数学三真题及解析一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A )2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32zy x y xy y xy y x∂=---=--∂,232z x x xy y ∂=--∂,解方程组22320320z y xy y x z x x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <-【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )4. 若级数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A )1 (B )2 (C )1- (D )2-【详解】iv n →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 显然当且仅当(1)0k +=,也就是1k=-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )T E αα-不可逆 (B )TE αα+不可逆 (C )2T E αα+不可逆 (D )2TE αα-不可逆【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2TTTTE E E E αααααααα-+-+的特征值分别为0,1,1,1;2,1,1,,1;1,1,1,,1-;3,1,1,,1.显然只有T E αα-存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似 【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ). 7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容 【详解】 显然,AB 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.设12,,,(2)n X X X n ≥为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i X μ=-∑服从2χ分布 (B )()212n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=且相互独立,所以21()ni i X μ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)XN X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.3(sinx dx ππ-=⎰ .解:由对称性知33(sin22x dx ππππ-==⎰⎰.10.差分方程122tt t y y +-=的通解为 . 【详解】齐次差分方程120t t y y +-=的通解为2xy C =; 设122tt t y y +-=的特解为2tt y at =,代入方程,得12a =; 所以差分方程122tt t y y +-=的通解为12 2.2t ty C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为 .【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e -=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y y df x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y x y eC =+,由(0,0)0f =,得0C =,所以(,)y f x y xye =.13.设矩阵101112011A ⎛⎫⎪=⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题15.(本题满分10分)求极限lim t x dt +→【详解】令x t u -=,则,t x u dt du =-=-,0xt x u dt du -=⎰⎰16.(本题满分10分)计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D是第一象限中以曲线y =与x 轴为边界的无界区域. 【详解】17.(本题满分10分) 求21limln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义 18.(本题满分10分) 已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x=-∈+,则令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<. 19.(本题满分10分)设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明nn n a x∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++ 也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+lim1!n n n n ρ→∞=≤++≤=,所以收敛半径1R ≥ (2)所以对于幂级数nn n a x∞=∑, 由和函数的性质,可得11()n nn S x na x∞-='=∑,所以也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x-=-,由于0(0)1S a ==,得1C =所以()1xe S x x-=-.20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+(1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解. 【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫ ⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Q y =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他. (1)求概率PY EY ≤();(2)求ZX Y =+的概率密度.【详解】(1)1202()2.3Y EYyf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)ZX Y =+的分布函数为故Z X Y =+的概率密度为23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=,利用12,,,n Z Z Z 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为 当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭;所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z iEZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量1ni i Z σ===.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >=时似然函数为221121()(,)ni i nnz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=。

工程数学试卷及答案汇总(完整版)

工程数学试卷及答案汇总(完整版)

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。

A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。

7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。

8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。

9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。

2017年电大《工程数学》期末考试复习资料及答案

2017年电大《工程数学》期末考试复习资料及答案

1.设B A ,都是n 阶方阵,则下列命题正确的是(A )AB A B = 2.向量组的 秩是(B ).B. 33.n 元线性方程组AX b =有解的充分必要条件是(A ).A. )()(b A r A r =4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(D ).D. 9/255.设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则(C )是μ无偏估计. C.321535151x x x ++ 6.若A 是对称矩阵,则等式(B )成立. B.A A ='7.=⎥⎦⎤⎢⎣⎡-15473( D ).D. 7543-⎡⎤⎢⎥-⎣⎦8.若(A )成立,则n 元线性方程组AX O =有唯一解.A. r A n ()=9. 若条件(C )成立,则随机事件A ,B 互为对立事件. C.∅=AB 且A B U +=10.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,记∑==3131i i X X ,则下列各式中(C)不是统计量. C. ∑=-312)(31i i X μ11. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(B )矩阵时,乘积B C A ''有意义.B.42⨯12. 向量组[][][][]αααα1234000*********====,,,,,,,,,,, 的极大线性无关组是( A ).A .ααα234,,13. 若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=(D )时线性方程组有无穷多解. D .1/214. 掷两颗均匀的骰子,事件“点数之和为4”的概率是(C ). C.1/12 15. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是(B ).B. 未知方差,检验均值⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,00116. 若A B ,都是n 阶矩阵,则等式(BAB BA = 17. 向量组[][][][]3,2,1,3,0,0,0,2,1,0,0,14321====αααα的秩是(C ).C. 318. 设线性方程组b AX =有惟一解,则相应的齐次方程组O AX =(A ).A. 只有0解 19. 设A B ,为随机事件,下列等式成立的是(D ).D. )()()(AB P A P B A P -=-1.设B A ,为三阶可逆矩阵,且0>k ,则下式(B )成立.B A AB '=2.下列命题正确的是(C3.设⎥⎦⎤⎢⎣⎡=1551A ,那么A 的特征值是(D ) D .-4,64.矩阵A 适合条件( D )时,它的秩为r . D .A 中线性无关的列有且最多达r 列 5.下列命题中不正确的是( D ).D .A 的特征向量的线性组合仍为A 的特征向量 6. 掷两颗均匀的骰子,事件“点数之和为3”的概率是( B ). B .1/17.若事件A 与B 互斥,则下列等式中正确的是.A .P A B P A P B ()()()+=+8. 若事件A ,B 满足1)()(>+B P A P ,则A 与B 一定(A ). A .不互斥9.设A ,B 是两个相互独立的事件,已知则=+)(B A P (B )B .2/310.设n x x x ,,,21 是来自正态总体),(2σμN 的样本,则(B )是统计量. B .∑=ni i x n 11 1. 若0351021011=---x ,则=x (A).A.32. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是(B ).B 23. 设B A ,为n 阶矩阵,则下列等式成立的是(C ). C. B A B A '+'='+)(4. 若A B ,满足(B ),则A 与B 是相互独立. B. )()()(B P A P AB P =5. 若随机变量X的期望和方差分别为)(X E 和)(X D ,则等式(D )成立. D.22)]([)()(X E X E X D -=1.设BA ,均为n 阶可逆矩阵,则下列等式成立的是( ).)BAAB 11=-,31)(,21)(==B P A P2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是(),其中0≠i a ,)3,2,1(=i . B .0321=-+a a a 3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) . B .0,6 4. 设A ,B 是两事件,其中A ,B 互不相容,则下列等式中( )是不正确的. C. )()()(B P A P AB P = 5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ).D .)(9)(4Y D X D +6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是(B .n s ⨯ )矩阵. 7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X +8.设矩阵,则A 的对应于特征值2=λ的一个特征向量α=()C .1,1,0 列事件运算关系正确的是( ).A .A B BA B +=9. 下10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( N2.,3) ).D .11.设321,,x x x 是来自正态总体),(2σμN 的样本,则()是μ的无偏估计. C .32153511x x ++12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).B .t 分布 a a a b b b c c c 1231231232=,则a a a ab a b a bc c c 123112233123232323---=(D ).D. -6⒈设⒉若,则a =(A ). A. 1/2⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=C. 10⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B )AB BA --=11 ⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D =-kA k A n ()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为().C. 5321--⎡⎣⎢⎤⎦⎥⒏方阵A 可逆的充分必要条件是(B ).B.A ≠0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).D. ()B C A ---'111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A 10100200001000=aa⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是 A. ()A B A AB B +=++2222 ⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).C. [,,]--'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).B. 有唯一解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ).A. 3⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.B.ααα123,,⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ).D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).可能无解 ⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论()成立.D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-1 ⒈A B ,为两个事件,则( B )成立. B. ()A B B A +-⊂⒉如果( C )成立,则事件A 与B 互为对立事件. C. AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). D. 307032⨯⨯..4. 对于事件A B ,,命题(C )是正确的. C. 如果A B ,对立,则A B ,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6,0.87.设f x ()为连续型随机变量X 的密度函数,则对任意的a ba b ,()<,E X ()=(A).A.xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ). B.9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P (D ).D. f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. C. Y X =-μσ⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量. A. x 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计D.x x x 123--二、填空题(每小题3分,共15分) 1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-=-18 .2.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ= ,则称λ为A 的特征值. 3设随机变量12~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = 0.3.4.设X 为随机变量,已知3)(=X D ,此时D X ()32-= 27 . 5.设θˆ是未知参数θ的一个无偏估计量,则有 ˆ()E θθ=. 6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-=8.7.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ=,则称X 为A 相应于特征值λ的特征向量.8.若5.0)(,8.0)(==B A P A P ,则=)(AB P0.3 .9.如果随机变量X 的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20.10.不含未知参数的样本函数称为 统计量 . 11. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB -8 .12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=070040111A ,_________________)(=A r .213. 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为 )(C B A +.14. 设随机变量)15.0,100(~B X ,则=)(X E15.15. 设n x x x ,,,21 是来自正态总体N (,)μσ的一个样本,∑==ni i x n x 11,则=)(x D 16. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12.17. 当λ=1 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解..18. 若5.0)(,6.0)(,9.0)(===+B P A P B A P ,则=)(AB P 0.2.19. 若连续型随机变量X 的密度函数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则=)(X E 2/3.20. 若参数θ的估计量 θ满足E ( )θθ=,则称 θ为θ的无偏估计nσ. 1.行列式701215683的元素21a 的代数余子式21A 的值为= -56.2.已知矩阵n s ij c C B A ⨯=)(,,满足CB AC =,则A 与B 分别是n n s s ⨯⨯, 阶矩阵.3.设B A ,均为二阶可逆矩阵,则=⎥⎦⎤⎢⎣⎡---111O BA O⎥⎦⎤⎢⎣⎡O A B O .4.线性方程组⎪⎩⎪⎨⎧=-+=+++=+++326423343143214321x x x x x x x x x x x 一般解的自由未知量的个数为 2.5.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量.6. 设A ,B 为两个事件,若P (AB )= P (A )P (B ),则称A 与B 相互独立 . 7.设随机变量X 的概率分布为则a = 0.3 .8.设随机变量⎪⎪⎭⎫ ⎝⎛3.03.04.0210~X,则E X ()=0.9. 9.设X 为随机变量,已知2)(=X D ,那么=-)72(X D 8.10.矿砂的5个样本中,经测得其铜含量为1x ,2x ,3x ,4x ,5x (百分数),设铜含量服从N (μ,2σ),2σ未知,在01.0=α下,检验0μμ=,则取统计量 x t =1. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-. 2. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则_____=k .1-3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 6.0 .4. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.05201~X ,那么=)(X E 4.2.5. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i i x )104,(μN . 1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 . 线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= )()(B P A P - 4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k =π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x nx 11,则~x )1,0(nN7.设三阶矩阵A 的行列式21=A ,则1-A =2 8.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量.10.设A B ,互不相容,且P A ()>0,则P B A ()=0 . 11.若随机变量X ~ ]2,0[U ,则=)(X D 1/3.12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的无偏估计. ⒈210140001---=7 .⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 .⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 . ⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a= 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 .⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A .⒈当λ=1时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 . ⒊向量组[][][][]123120100000,,,,,,,,,,,的秩3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ的根. 10.若矩阵A满足A A'=-1,则称A为正交矩阵.⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为2/5. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 .3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . 1.统计量就是不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和最大似然估 两种方法.3.比较估计量好坏的两个重要标准是无偏性,有效性 . 4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.三、(每小题16分,共64分) A1.设矩阵A B =---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎤⎦⎥112235324215011,,且有AX B =',求X .解:利用初等行变换得112100235010324001112100011210012301---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1201721511 由矩阵乘法和转置运算得X A B ='=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-12017215112011511111362 2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-52012515105158500500021461351341B A3.已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X.解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1211002550103640211121100013210001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A由矩阵乘法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X 4.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=031052,843722310B A ,I 是3阶单位矩阵,且有B X A I =-)(,求X .1. 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111即()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111由矩阵乘法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-=-6515924031052111103231)(1B A I X 5.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=21101211,1341102041121021B A ,求(1)A ;(2)B A I )(-. (1)13171020411*******41102041121021----=----=A =2513171200011317120121-=--=--(2)因为 )(A I-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------0341112041221020所以 B A I)(-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-------⋅0341112041221020=⎪⎪⎪⎪⎪⎭⎫⎝⎛--21101211⎪⎪⎪⎪⎪⎭⎫⎝⎛----09355245.6.设矩阵⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=653312,112411210B A ,解矩阵方程B AX '=.解:因为 ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-120730001210010411100112010411001210 ⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛---→123100247010235001123100001210011201,得 ⎪⎪⎪⎭⎫⎝⎛----=-1232472351A 所以='=-B A X 1⎪⎪⎪⎭⎫⎝⎛----123247235⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-13729161813635132. 7设矩阵⎥⎦⎢⎢⎢⎣⎡---=423532211A1)1111021121110211423532211=---=---=---=A(2)利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---103210012110001211100423010532001211 →-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511 即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥12017215118 .,3221,5231X B ,XA B A 求且=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=X..,B A B ,AX .BA X,A AI 求且己知例于是得出⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡---→⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡=--18305210738525312341112353221123513251001132510011021130110015321)(119.设矩阵⎥⎦⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A 解:(1)因为210110132-=--=A12111210211110210211321-=-===B所以 2==B A AB .(2)因为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-1011012/32/11A .10.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎦⎢⎢⎢⎣⎡--=350211B ,求X .解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→110100121010120001110100011110010101即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--11121120)(1A I所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X 11.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→11770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→00200011002341 所以,r (4321,,,αααα) = 3. 它的一个极大线性无关组是 431,,ααα(或432,,ααα).1⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎦⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC 13写出4阶行列式:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a14求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R15.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x xA2.求线性方程组 的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131方程组的一般解为x x x x x x14243415=+==-⎧⎨⎪⎩⎪ (其中x 4为自由未知量) 令x 4=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为⎪⎩⎪⎨⎧-===4342415xx x x x x (其中x 4为自由未知量)令x 4=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为 10kX X X +=(其中k 为任意常数)2.当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=+++=+++-=--+1479637222432143214321λx x x x x x x x x x x x有解,在有解的情况下求方程组的全部解. 解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---19102220105111021211114796371221211λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1000010511108490110000105111021211λλ 由此可知当1≠λ时,方程组无解。

2017年数三考研真题_附答案解析

2017年数三考研真题_附答案解析

2017年全国硕士研究生入学统一考试数学三试题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.若函数1cos ,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则()(A)12ab =(B)12ab =-(C)0ab =(D)2ab =2.二元函数(3)z xy x y =--的极值点()(A)(0,0)(B)(0,3)(C)(3,0)(D)(1,1)3.设函数()f x 可导,且()()0f x f x '>则()(A)()()11f f >-(B)()()11f f <-(C)()()11f f >-(D)()()11f f <-4.若级数2111n sin kln n n ∞=⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦∑收敛,则k =()(A)1(B)2(C)-1(D)-25.设α为n 维单位列向量,E 为n 阶单位矩阵,则()(A)T E αα-不可逆(B)T E αα+不可逆(C)2T E αα+不可逆(D)2T E αα-不可逆6.已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦100020002C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则()(A)A 与C 相似,B 与C 相似(B)A 与C 相似,B 与C 不相似(C)A 与C 不相似,B 与C 相似(D)A 与C 不相似,B 与C 不相似7.设A B 、、C 为三个随机事件,且A 与C 相互独立,与C 相互独立,则A B ⋃与C 相互独立的充要条件是()(A)A 与B 相互独立(B)A 与B 互不相容(C)AB 与C 相互独立(D)AB 与C 互不相容8.设12,......(2)n X X X n ≥来自总体(,1)N μ的简单随机样本,记11nii X X n ==∑则下列结论中不正确的是()(A)21()ni i X μ=-∑服从2χ分布(B)212()n X X -服从2χ分布(C)21()n ii XX =-∑服从2χ分布(D)2()n X μ-服从2χ分布二、填空题:9~14小题,每小题4分,共24分。

2017年考研数学(三)真题及答案解析完整版

2017年考研数学(三)真题及答案解析完整版
【解析】由 E A 0 可知 A 的特征值为 2,2,1
1 0 0
因为
3
r(2E
A)
1,∴A
可相似对角化,且
A
~
0 0
2 0
0 2
由 E B 0 可知 B 特征值为 2,2,1.
因为 3 r(2E B) 2 ,∴B 不可相似对角化,显然 C 可相似对角化, ∴ A ~ C ,且 B 不相似于 C
1) n
1 n
1 6n 3
o(
1 n3
)
k
1 n
k 2n 2
o(
1 n2

)
(1
k)
1 n
k 2n2
1 6n3
o(
1 n2
)
因为原级数收敛,所以1 k 0 k 1 .选 C.
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则( )
( A ) E T 不可逆 ( B ) E T 不可逆 ( C ) E 2 T 不可逆 ( D ) E 2 T 不可逆
【答案】B 【解析】
(D) n( X )2 服从 2分布
X N (,1), X i N (0,1)
n
( Xi )2 2(n), A正确 i 1 n
(n 1)S 2 ( X i X )2 2(n 1),C 正确, i 1
X ~N (, 1), n (X ) N (0,1), n(X ) 2 ~ 2(1), D 正确, n
(A) f (1) f (1) (B) f (1) f (1) (C) f (1) f (1) (D) f (1) f (1)
【答案】C 【解析】
方法
1:
f
(x)
f
'(x)

【山东省】2017学年高考数学年(理科)算法初步、复数、推理与证明专题练习答案

【山东省】2017学年高考数学年(理科)算法初步、复数、推理与证明专题练习答案

山东省2017年高考数学(理科)专题练习算法初步、复数、推理与证明[A 组高考题、模拟题重组练] 一、程序框图(流程图)1.(2016·全国甲卷)中国古代有计算多项式值的秦九韶算法,如图21-1是实现该算法的程序框图.执行该程序框图,若输入的22x n =,=,依次输入的a 为2,2,5,则输出的s = ( )图21-1 A .7 B .12 C .17D .342.(2016·全国乙卷)执行如图21-2所示的程序框图,如果输入的0,1,1x y n ===,则输出x ,y 的值满足( )图21-2 A .2y x = B .3y x = C .4y x =D .5y x =3.(2016·全国丙卷)执行如图21-3所示的程序框图,如果输入的46a b =,=,那么输出的n = ( )图21-3 .4 .6所示的程序框图,若输入的a图21-4 在复平面内对应的点在第四象限,B .(13)-, D .()3∞-,-图21-5B.2 015D.2 017所示,则输出的S的值为(图21-6B.3 2D.32 -所示的程序框图,若输出的S=图21-7B.7k>?D.8k<?56789},,,,,,,,,在集合Aa,现将组成a的三个数字按从小到大排成的三位数记为219129I A D=,则()=,(图21-8B.693D.495的所有正约数之和可按如下方法得到:因为22+=++⨯23122)(图21-92013B.图21-10丙、丁四名学生去西安参加自主招生考试,学生了解考试情况.四名学生回答如下:”结果,四名学生中有两人说对了,则这四名学生中的________两人说对了.观察下列等式:图21-11从第2行起,每一行中的数字均等于其“肩上”两数之和,。

2017年工科数分(A)答案

2017年工科数分(A)答案

b f 2 (x)dx+2t
b
f (x)g(x)dx
b g 2 (x)dx
a
a
a
a
------------------------------------------------------------------------------------------------------------------3 分
(2) f (x) dx f (x) C ;
(3)
d dx
x2 a
f (t)dt
f (x2 );
A. (1)(3);
B.(2)(4);
(4) d
b
f (x)dx
0.
dx a
C.(1)(4);
D.(2)(3) .
4. 下列广义积分中,发散的是( C )
A.
1
x x2
2
dx

C.
42
2
4
2
建议:分部 2 分,积分计算各 4 分。
3. 3 (x2017 arctan2 x 2018) 9 x2 dx 3
解 由对称性: 3 x2017 arctan2 x dx 0 3
原 式 2018 3 9 x2 dx= 2018 9 =9081 .
3
2
(其中 3 9 x2 dx= 9 可以看做圆心在原点,半径为 3 的上半圆的面积)
使得 f ( ) f ( ).
证明: 构造辅助函数 F (x) xf (x) ,则 F (x) 在[0,1] 上可微。且
F (1) f (1) 2
1 2
xf
(x) d
x
f
()
F (),
[0,

2017年普通高等学校招生全国统一考试理科数学试卷与答案

2017年普通高等学校招生全国统一考试理科数学试卷与答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共 小题,每小题 分,共 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

已知集合 31x< 则 {|0}AB x x =< A B =R {|1}A B x x => A B =∅如图,正方形 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 在正方形内随机取一点,则此点取自黑色部分的概率是14 π8 12 π4设有下面四个命题1:p 若复数z 满足1z ∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ;3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R其中的真命题为13,p p 14,p p 23,p p 24,p p.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,48S =,则{}n a 的公差为 .....函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是.[2,2]-. [1,1]-. [0,4]. [1,3]621(1)(1)x x++展开式中2x 的系数为某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 ,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为右面程序框图是为了求出满足 的最小偶数 ,那么在和两个空白框中,可以分别填入和 和 ≤ 和 ≤ 和已知曲线 : , :2π3,则下面结正确的是 把 上各点的横坐标伸长到原来的 倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线把 上各点的横坐标伸长到原来的 倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线把 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线把 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π12个单位长度,得到曲线已知 为抛物线 : 的焦点,过 作两条互相垂直的直线 , ,直线 与 交于 、两点,直线 与 交于 、 两点,则 的最小值为. . . . 设 为正数,且235xyz==,则. . . .几位大学生响应国家的创业号召,开发了一款应用软件 为激发大家学习数学的兴趣,他们退出了 解数学题获取软件激活码 的活动 这款软件的激活码为下面数学问题的答案:已知数列 , , , , , , , , , , , , , , , ,其中第一项是 ,接下来的两项是 , ,再接下来的三项是 , , ,依此类推 求满足如下条件的最小整数 :且该数列的前 项和为 的整数幂 那么该款软件的激活码是二、填空题:本题共 小题,每小题 分,共 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.(10
分)(1).用
2

Simpson
公式(5
节点)计算
5
∫1
1 x
dx
的近似值(取五位有效数字);
(2).若使误差不超过10−6 ,用复化梯形公式计算上述积分至少应取多少个节点?
4.(10 分)(1).用 Newton 迭代法(取 x0 = 1.5 )求方程 x3 − 3x − 2 =0 在[1.5, 2.5]内的根使 |xk +1 − xk |< 10−2 ;(2).证明简单迭代格式= xk+1 3 3xk + 2 对于任意的初始值 x0 ∈[1.5, 2.5] 都是收敛的。
a(a + b −1)! = a (a + b)! a + b
解法 2:只考虑前 k 个位置:
aPk −1 a + b −1
=
a
Pk a+b
a+b
7.
(10 分) (1).
x
方向边缘分布函数:
FX (x)=F (x, + ∞) =
lim F (x, y) =
y→∞
1 − e−0.5x
,
同理:
FY
(
−∞

0 2π
2 t +∞ −t2
2
2
∫ = = e 2 d ( )
π0

V (Z ) =E(Z 2 ) − [E(Z )]2 =E(T 2 ) − 2 =1− 2 . 其中:E(T 2 )=V (T ) + E2 (T ), 而 E(T ) = 0, V (T ) = 1. ππ
方法 2:
X,Y
摸得黑球的概率.
7. (10 分) 设某仪器由两个部件构成,X,Y分别表示两部件的寿命(单位:千小时), 已
知(X
,
Y ) 的联合分布函数为:F (x,
y)
=
1 −
e −0.5 x

e−0.5 y
+
e , −0.5( x+ y)
x ≥ 0, y ≥ 0,
0,
其它
求:(1).边缘分布函数和边缘密度函数;(2).两个部件寿命都超过 100 小时的概率.
x4 − = x3 0.0019 < 10−2 ,所以方程在[1.5, 2.5]内的近似根为 x ≈ 2.0000
(2)简单迭代格式= xk +1
3 3xk + 2 的迭代函数为ϕ= (x)
3 3x + 2 ,ϕ′(x) = 1 , 3 (3x + 2)2
明显的ϕ(x) 在[1.5, 2.5]上具有连续的一阶导数,当 x ∈[1.5, 2.5] 时,ϕ(x) ∈[1.5, 2.5] ,
2(n −1)
所以:
V (S 2 ) = 2σ 4 . n −1
本题 n = 16 , 所以最后得到: V (S 2 ) = 2 σ 4. 15
(2). 设在总体 N (µ, σ 2 ) 中抽取一容量为 16 的样本,其中 µ, σ 2 均为已知,求方差V (S 2 ) .
《工程数学》试题答案
1. (10 分)解:
2 0 0
1 −1/ 2 1/ 2
(1). L= 1 3 / 2
0

,
U= 0
1
1/ 3
1 3 / 2 − 3
y
)
=
1 − 0,
e−0.5
y
,
y ≥ 0, 其它
所以,FX
(
x)
=
1 − 0,
e−0.5
x
,
x ≥ 0, 其它
联合密度函数f
(x,
y)
=
∂2F ∂x∂y
=
0.25e−0.5( x + 0,
y)
,
x ≥ 0, y ≥ 0, 其它.
边缘密度函数:f
X
(x)
=
FX′
(
拟合曲线为 y =13.5 −16.7x + 3.5x2
3. (10 分)解:
1.
S
2=
1 3
[1+4×(1/2
+1/4)+2×1/3
+1/5]=1.6222;
2.

RTn
∣≤∣ 43 12n 2
× 2 ∣≤10−6
,n≥3266,需 3267 个节点。
4.
(10 分)解:
(1)牛顿迭代格式为: xk+1
0 0 1


,
(要有分解求的过程)

0
1
y
=

2 / 3
,解为
x
=

0


− 2
− 2
(2).

x (k +1) 1
x (k +1) 2
= (x2(k ) − x3(k ) ) / 2
=
− x1(k +1)

x(k) 3
−1

x3( k
8. (10 分) 设 X , Y 是两个相互独立且服从正态分布N (0 , 1) 的随机变量,
2
求:E( X − Y ),V ( X − Y )
9. (20 分)
(1).设
X1,
X
2
,
,
Xn
为来自泊松分布P(λ) 的一个样本,X
,
S2
为其样本均值和样本方差,
求 E( X ), V ( X ), E(S 2 )
x)=
0.5e −0.5 x 0,
,
x ≥ 0, 其它
fY
(
y)
=
FY′(
y)=
0.5e−0.5 0,
y
,
y ≥ 0, 其它
(2).
∫∫ ∫ ∫ 方法 1: P ((X= ,Y ) ∈G)
f (= x, y)dxdy
+∞
(
+∞ 0.25e−0.5(x+ y)dy)dx
0.1 0.1
且|= ϕ′(x) |
1 3 (3x + 2)2
< 0.3 < 1,所以该迭代格式对于任意的初始值 x0 ∈[1.5, 2.5] 都是收
敛的。
5. (10 分) 由于被积函数含有 (x − a) ,令 f (x) =1, x − a, (x − a)2, (x − a)3 , 分别代入所给的
近似积分公式, 使公式精确成立, 得:
G
= e−0.1 ≈ 0.9048.
方法 2: 利用分布函数 P(0.1 < X , 0.1 < Y ) = 1− FX (0.1) − FY (0.1) + F (0.1, 0.1) = 1− (1− e−0.05 ) − (1− e−0.05 ) + (1− e−0.05 − e−0.05 + e−0.1)
1 (b − a)6 ; 右端等于 − 3 (b − a)6 , 左右端不再相等,所以公式具有 3 次代数精确度。
6
20
6. (10 分) 解法 1:把球编号,按摸的次序把球排成一列,样本点总数就是 a +b 个球的 全排列数 (a +b)! . 所考察的事件相当于在第 k 位放黑球,共有 a 种放法,每种放法又 对应其它 a+b-1 个球的(a+b-1)! 种放法, 故该事件包含的样本点数为 a(a+b-1)!。
+∞ 1 ρ 2e−ρ2 d ρ
= 2
0

π
V (Z ) =E(Z 2 ) −[E(Z )]2 =E(T 2 ) − 2 =1− 2 . ππ
9. (20 分)每个 5 分 (1) 因为 Xi P(λ), 所以E( X=i ) V ( X=i ) λ= , i 1, 2,n.
∑ ∑ ∑ E(X )
5. (10 分)确定求积公式
∫ b (x − a) f (x) dx ≈ (b − a)2 [ Af (a) + Bf (b)] + (b − a)3[Cf ′(a) + Df ′(b) ] a
的待定系数 A, B, C, D 使其代数精确度尽量地高,并求其代数精确度.
6. (10 分)口袋中 a 只黑球, b 只白球. 随机地一只一只摸,摸后不放回.求第 k 次
= xk −
f (xk ) f ′(xk )
= xk −
xk3 − 3xk − 2 3xk2 − 3
= 2(xk2 − xk +1) , 3(xk −1)
取 x0 = 1.5 代 入 迭 代 公 式 = 得 : x1 2= .3333, x2 2= .0555, x3 2= .0019, x4 2.0000 ,
x(0) = (0, 0, 0)T ,求 x(3) ;并判定 Gauss-Seidel 迭代的收敛性.
2.(10 分)已知函数 y = f (x) 的观测数据为:
x
1
2
3
4
f (x)
0
−5
−6
3
(1).构造差商表,并写出牛顿插值多项式;
(2).用最小二乘法求形如 y =a + bx + cx2 的经验公式使与题目数据拟合;
= e−0.1 ≈ 0.9048
8. (10 分)
方法 1: T = X − Y N (0,1), Z = | T |,
+∞
+∞
∫ ∫ = E(Z ) = g(t) f (t)dt | t | f (t)dt
−∞
−∞
相关文档
最新文档