二氧化碳气体保护焊.ppt

合集下载

《CO2气体保护焊》课件

《CO2气体保护焊》课件

三、焊接设备及材料
3-1、焊机
逆变式弧焊电源也成弧焊逆变器, 与弧焊变压器、弧焊整流器等传 统的弧焊电源相比,具有如下有 点: (1)高效节能 效率可达 80%~90%‘空载耗损小,比传统 弧焊电源节电1/3以上; (2)体积小、重量轻 整机体积只有 传统电源的1/3左右(30~40kg)
8.喷嘴、喷嘴接头、气筛必须完好、齐备,并保持良好的清洁、
绝缘状态。 9.焊接时一线制电缆的弯曲半径不得小于300mm。
10.使用防堵剂,喷嘴、气筛和导电咀的飞溅物要及时清理。
3-5、焊接材料
3-5.1焊丝
因CO2是一种氧化性气体,在电弧高温区分解为一氧化碳 和氧气,具有强烈的氧化作用,使合金元素烧损,所以 CO2焊时为了防止气孔,减少飞溅和保证焊缝较高的机械 性能,必须采用含有S i、M n等脱氧元素的焊丝。
用于传到电流,导送焊丝和CO2保护气体。主要零件有喷咀和导电咀。 按其形式分为鹅颈式与手枪式;按送丝方式分为推丝式与拉丝式;按冷 却方式分为空冷式与水冷式
3.3送丝软管
送丝软管担负着从送丝机向焊枪输送焊丝的任务,对焊接稳 定性有着极大的影响。因此送丝软管应满足如下要求: 1.使用性能:具有一定的抗拉强度,推送焊丝或受力时尽可能不拉长 具有较好的柔性,以便于焊工的灵活操作。 2.送丝性能:送丝阻力小,保证匀速送丝,要求内壁光滑、内径适宜。 3.密封性能:用于一线式电缆时,为防止保护气体往回泄露,热塑管 和密封圈应具有良好的密封效果。 4.足够弹性:应能承受较大的弯曲,而不产生永久的变形。 5.适应焊丝:内径应与焊丝直径匹配,过大过小均会影响稳定送丝。 6.软管易被污染或损坏,需定期清理和更换。
示意图如下:
二、特点

焊接工艺课件-二氧化碳气体保护焊角接仰焊

焊接工艺课件-二氧化碳气体保护焊角接仰焊
焊接电流是决定焊接熔深的主要因素,电流过小会导致熔深不足,影响焊接质 量。
详细描述
焊接电流的大小直接影响焊接熔深,电流越大,熔深越深。在角接仰焊过程中, 需要根据板厚、坡口形式、焊接位置等因素选择合适的电流值,以确保获得良 好的焊接效果。
焊接电压
总结词
焊接电压是决定电弧长度和焊接稳定性的关键因素,电压过低会导致电弧不稳定 ,过高则可能引起飞溅。
焊接接头强度和塑性应 满足要求,无过烧现象。
焊接变形小,残余应力 低。
焊接工艺参数稳定,焊 缝成形一致。
焊接检验方法
01
02
03
04
外观检验
观察焊缝表面是否有缺陷,如 裂纹、气孔、夹渣等。
无损检测
采用X射线、超声波等方法检 测焊缝内部是否存在缺陷。
力学性能试验
对焊接接头进行拉伸、弯曲、 冲击等试验,以检验其强度和
03
角接仰焊操作方法
焊接准备
工具准备
准备二氧化碳气体保护焊机、焊 丝、焊嘴、焊丝盘、焊接平台等
工具。
焊件准备
将需要焊接的角接仰焊件表面清理 干净,去除油污、锈迹等杂质,确 保焊件表面干燥。
焊接参数设定
根据角接仰焊件的材料和厚度,设 定合适的焊接电流、焊接速度、气 体流量等参数。
焊接过程
定位焊点
焊接完成后,及时清理焊件表面的焊渣、飞溅物等杂质,确保焊 缝表面的光洁度。
质量检测
对焊接完成的角接仰焊件进行质量检测,检查焊缝的外观、尺寸和 内部质量,确保符合设计要求和相关标准。
防腐处理
根据需要,对角接仰焊件进行防腐处理,如涂防锈漆、喷塑等,以 提高其耐久性和美观度。
04
焊接工艺参数
焊接电流

课件-6-2二氧化碳气体保护焊

课件-6-2二氧化碳气体保护焊

4、惰性气体保护焊机的组成
惰性气体保护焊机主要由焊机、送丝机构、保护气 瓶和各个附件组成。
图6-2-3 惰性气体保护焊机
1)惰性气体保护焊机调压器
显示气瓶内气体的压力、流量,同时,调节气体 保护的出气量。
如果是二氧化碳减压阀的后面还有加热器。因为 气瓶内二氧化碳是以液态的形式储存的,挥发成气态 时会吸热将管路冷却,严重的可能结冰。影响焊接质 量。在使用过程中。二氧化碳减压表的压力值是基本 不变的,当液态的二氧化碳用完,压力表的只是会变 小,需要马上充气。
5)随着加热的继续进行,焊丝开始熔化,变细 并产生收缩;
6)收缩部位电阻的增加将加速该处的受热;
7)熔化的收缩部位烧毁,在工件上形成一个熔 池并产生电弧;
8)电弧使熔池变平并回烧焊丝; 9)当电弧间隙达到最大值时,焊丝开始冷却并 重新送丝,更接近工作; 10)焊丝的端部又开始升温,其温度足以熔池 变平,但还不能够阻止焊丝重新接触工件。因此,电 弧熄灭,再次形成短路。上述过程中又重新开始; 11)这种自动循环产生的频率为50--200次/s。
图6-2-9 不同气体配比的焊接效果对比
8)控制面板 通过控制面板可进
行电压、电流、送丝 速度的调节,同时可 以进行点焊和脉冲点 焊功能的控制。
图6-2-10 控制面板
二、惰性气体保护焊机参数的调节
修理人员在焊接时,需要对下列参数进行调整: 焊机输入电压、焊接电流、电弧电压、导电嘴与板件 之间的距离、焊枪嘴、焊接方向、保护气体的流量、 焊接速度和送丝速度。大多数制造厂都提供一份表格, 列出了焊机各种参数的调整范围。
2)喷嘴溅出物的处理 如果溅出物粘附于喷嘴的端部,将使保护气体
不能顺利流出而影响焊接质量,应迅速清除焊接 溅出物; 3)喷嘴的检查

二氧化碳气体保护焊

二氧化碳气体保护焊
——气渣联合保护
• 药芯焊丝电弧焊优点
• 药芯焊丝电弧焊综合了手工电弧焊和 普通熔化极气体保护焊的优点。其主要优 点是:
• (1)采用气渣联合保护,焊缝成形美观 ,电弧稳定性好,飞溅少且颗粒细小。

• C2>焊丝熔敷速度快,熔敷效率(大约为 85%^-90%)和生产率都较高(生产率比 手工焊高3^}5倍)。
2) 在短路过渡焊接时,合理选择焊接电源特性,并匹配 合适的可调电感,以便当采用不同直径的焊丝时,能调 得合适的短路电流增长速度。
3) 采用直流反接进行焊接。
4) 当采用不同熔滴过渡形式焊接时,要合理选择焊接工 艺参数,以获得最小的飞溅。
二、CO2焊用的气体和焊丝
(一)保护气体(CO2) CO2气钢瓶外表涂铝白
极材料。
• (2)常用钨极材料的特点 钨极氩弧焊用的 非熔化极材料有纯钨极、钍钨极、铈钨极、 镧钨极、锆钨极、钇钨极等。其中前三种是 最常见的。
• ①纯钨极 是使用历史最长的一种非熔 化电极。但其有一些缺点:一是电子发射能 力较差,要求电源有较高的空载电压;二是 抗烧损性差,使用寿命较短,需要经常更换 重磨钨极端头。目前主要用于交流电焊接铝 、镁及其合金时,利用其破碎氧化膜的作用 好的特点。
三、药芯焊丝CO2气体保护焊
药芯焊丝CO2气体保护电弧焊的基本原理与普通 CO2焊一样,是以可熔化的药芯焊丝作为电极(通常接正 极),焊件作为另一极。
采用CO2或CO2+Ar混合气体作为保护气体。 与普通熔化极气体保护焊的主要区别,在与焊丝内 部装有焊剂混合物。焊接时,在电弧热的作用下,熔化状 态的焊剂材料、焊丝金属、焊件金属和保护气体相互之间 发生冶金反应,同时形成一层薄的液态熔渣包覆熔滴并覆 盖熔池,对熔化金属又形成了一层保护。

1.2二氧化碳气体保护焊(ppt文档)

1.2二氧化碳气体保护焊(ppt文档)
3. CO2气体保护焊接设备 汽车车身修理用的CO2气体保护焊接设备多是半自动的,在 其焊接过程中,设备自动运行,但焊枪需用手来控制。CO2气体 保护焊接设备参见图1-3和图1-5,其基本组成部分如下: (1) 存储CO2气体的钢瓶、减压装置以及输送管道系统,保 护熔池免受污染。 (2) 送丝控制装置,调节送丝速度。 (3) 配备指定规格的成卷的焊丝。 (4) 供焊接用的机内电源装置。 (5) 电缆及接线装置。 (6) 焊枪和电缆,供操作者牵引到不同工位上焊接。 (7) CO2气体保护焊设备供气系统。
图1-9 各种典型的焊接位置
(a)平焊 (b)横焊 (c)立焊 (d)仰焊
1.2 CO2气体保护焊
平焊一般容易进行,焊接速度较快,焊接质量易于保证, 只要不是在汽车上施焊,应尽量采用平焊。
水平焊缝进行横焊时,应使焊炬向上倾斜,以尽可能避免 重力对熔池的影响。
立焊时,可根据具体情况选用上焊法、下焊法或立角焊法。 对于气体保护焊应以上焊法为主,手工电焊则以下焊法为主。 仰焊是最难掌握的,为避免熔化金属脱落引起事故,一定要用 较低的电压、短电弧和小熔池相配合。施焊时,将喷嘴推向工 件,防止焊丝向熔池之外移动。
1.2 CO2气体保护焊
1. CO2气体保护焊的特点 (1)生产率高 CO2电弧焊的穿透力强,熔深大而且焊丝的熔化率高,所以, 熔敷速度、生产率比手工焊高1~3倍。 (2)焊接成本低 CO2气体是酿造厂和化工厂的副产品,来源广、价格低。因 而,CO2气体保护焊的成本只有埋弧焊和手工焊的40%~50%。 (3)能耗低 CO2电弧焊和药皮焊条手弧焊相比,3 mm厚低碳钢板对接焊 缝,每米焊缝消耗的电能,前者为后者的70%左右。25 mm厚低 碳钢板对接焊缝,每米焊缝消耗的电能,前者仅为后者的40%。 所以,CO2电弧焊也是较好的节能焊接方法。

第五章 二氧化碳气体保护焊

第五章 二氧化碳气体保护焊
a. Al是最强的脱氧剂之一。在2273K以下时,它对氧的亲和力比C大,能抑 制CO气体的产生。但是Al会降低焊缝金属的抗热裂纹的能力,因而焊 丝中加入的Al不宜过多。 b. Ti也是强脱氧剂之一。除脱氧外它还可以在钢中起到细化晶粒的作用。 但是Ti极易氧化,往往在熔滴过渡过程中就大部分被氧化。因此单独 用Ti作脱氧剂时,熔池中的FeO不会被全部还原。在CO2电弧焊中常将Ti 和其它脱氧剂结合起来使用。 c. Si也具有较强的脱氧能力,而且价廉易得。是CO2电弧焊中主要的脱 氧剂。但是单独用Si脱氧时,生成的SiO2凝固温度较高(1710℃),
1)对脱氧剂的要求
① 脱氧能力强; ② 反应不完留下:起合金化作用 ; ③ 生成物不 应引起其它不良的后果:如生成物不应是气体以免造成气孔;生成物 应不溶于液态金属而成为熔渣,且熔点要低;生成物密度要小,以利 于浮出熔池表面,不造成焊缝夹渣等。 2)CO2电弧焊用的脱氧剂,主要有Al、Ti、Si、Mn等合金元素。
• STT法与传统的短路过渡焊接技术相比,飞溅 率降低90%;焊接烟尘降低50%;作业环境更 舒适(低烟尘、低飞溅、低光辐射); • 焊接热输入低,具有良好的打底焊道及全位置 单面焊双面成型能力;操作容易,效率高等优 点。 • 目前,STT技术比较广泛应用于“西气东输”工 程的管道焊接中。
5.3
产生主要原因:是保护气层遭到破坏,使大量空气侵入焊接区。造成保护 气层破坏的因素有:使用的CO2保护气体纯度不合要求;CO2气体流量过 小;喷嘴被飞溅物部分堵塞;喷嘴与工件距离过大及焊接场地有侧向 风等。
防止措施:改善气保护效果:要选用纯度合格的CO2气体,焊接时采用适 当的气体流量参数;要检验从气瓶至焊枪的气路是否有漏气或阻塞; 要增加室外焊接的防风措施;采用合适的工艺参数。

第五讲:CO2气体保护焊

第五讲:CO2气体保护焊

采用左焊法时,电弧 对焊件有预热作用,能得 到较大的熔深,焊缝成型 得到改善。虽然左焊法观 察熔池有些困难,但能清 楚地看到待焊接头,易把 握焊接方向,不会焊偏。
所以CO2气体保护 焊一般都采用左焊法。
(4)运丝方式 运丝方式有直线移 动法和横向摆动法
直线移动法即焊丝只作 直线运动不作摆动,焊出的 焊道稍窄。 横向摆动运丝是在焊接 过程中,以焊缝中心线为基 准做两侧的横向交叉摆动。
二、焊接特点
(1)焊接成本低。 一般情况下,二氧化碳气 体保护焊的成本仅为手工电弧 焊的37%-42%
(2)生产效率高。 焊接电流密度大,焊丝熔 化率高,母材熔透深度大,对 于10毫米左右的钢板,可以不 开坡口直接焊接,焊后渣很少, 一般可不清渣,焊接质量稳定。
(3)电流密度大 电弧热量集中,焊接后工 件变形较小。
CO2焊机调电流 实际上是在调整送丝 速度。因此CO2焊机 的焊接电流必须与焊 接电压相匹配。
既一定要保证送丝 速度与焊接电压对焊丝 的熔化能力一致,以保 证电弧长度的稳定。
焊接电流和送丝速度的关系
A
1.6
500 400
1.2
300
1.0
0.8
200
100
0
3
4
Hale Waihona Puke 5678
9 10
11 12 13 14 m / min
1、 半自动CO2焊设备
2、 自动CO2焊设备
半自动CO2焊设备由 焊接电源、送丝机构、焊 枪、供气系统、控制系统 等几部分组成。
1、焊接电源 一般采用直流电源反 极性连接, CO2焊机电 流实际上是在调整送丝速 度


反极性特点:电弧稳定,焊接过程平稳,飞溅小。 正极性特点:熔深较浅,余高较大,飞溅很大,成形不 好,焊丝熔化速度快(约为反极性的1.6 倍),只在堆焊时才采用。 CO2焊、MAG焊和脉冲MAG焊一般都采用直流反极性。

焊接工艺课件-二氧化碳气体保护焊角接仰焊

焊接工艺课件-二氧化碳气体保护焊角接仰焊

二氧化碳气体保护焊的特点
焊接质量稳定
由于二氧化碳气体的保护作用 ,焊接过程中避免了空气的干 扰,从而得到质量稳定的焊缝

焊接效率高
由于采用熔化极焊接方式,焊 接速度快,提高了焊接效率。
成本较低
二氧化碳气体来源广泛,价格 相对较低,降低了焊接成本。
对环境友好
焊接过程中产生的烟尘较少, 对环境影响较小。
角接仰焊操作技巧
03
角接仰焊的焊接准备
01
焊接设备检查
确保焊接机具、气体保护装置、送丝机构等设备完好, 并处于正常工作状态。
02
Байду номын сангаас焊接材料准备
选用合适的焊丝、焊条和保护气体,确保质量合格且符 合工艺要求。
03
清理工作
清除待焊工件表面的油污、锈迹等杂质,确保焊接质量 。
角接仰焊的焊接过程
引弧
采用合适的引弧方式,如划擦法 或敲击法,确保引弧成功且稳定
谢谢聆听
硬度检测
通过硬度计对焊接接头 进行硬度检测,确保其 硬度值在规定范围内。
角接仰焊的质量控制措施
01
控制焊接参数
选择合适的焊接电流、电压、焊 接速度等参数,确保焊接质量稳
定。
03
控制焊丝伸出长度
焊丝伸出长度过长会导致送丝不 均匀,影响焊接质量,因此需要 控制伸出长度在合适范围内。
02
控制气体流量
保持稳定的二氧化碳气体流量, 确保保护效果良好。
焊接工艺课件-二氧 化碳气体保护焊角接
仰焊
目录
• 焊接工艺概述 • 二氧化碳气体保护焊原理及特点 • 角接仰焊操作技巧 • 角接仰焊质量检测与控制 • 角接仰焊安全操作规程
01 焊接工艺概述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CO2焊接时可大幅度地降低熔着金属量 即焊丝使用量减少、可降低成本。
溶深大 减少必要熔着金属量
CO2焊接
手弧焊
溶深大 可减少开坡口加工量
溶深浅 需要开大坡口
CO2焊接在双面焊接时能更加显著地节省材料 从成本上更有利
CO2过渡形式
回忆:手工电弧焊熔滴的过渡形式有 那些?
短路过渡
滴状过渡
喷射过渡
CO2保焊熔滴过渡形式
4、焊工的劳动条件较差 CO2焊接会产生CO2和C0等有害气体和烟尘,而且焊接电流较大,会产
生较强的紫外线辐射等。
但与缺点相比,CO2气体保护焊的优点更加显著。
C02气保焊的特点
焊接速度快 单位时间内熔化焊丝比手工电弧
焊快一倍
引弧性能好 能量集中,引弧容易,连强度 钢普通铸钢全方位焊
3.射流过渡
当粗丝CO2气体保护焊或采用混合气体保护细丝焊,焊接电流 大到超过临界电流值,焊接时,焊丝端部呈针状,在电磁收缩力、 电弧吹力等作用下,熔滴呈雾状喷入熔池,焊接过程中飞溅很小, 焊缝熔深大,成形美观。射流过渡主要用于中厚板,带衬板或带衬 垫的水平位置焊接。
气孔问题
回忆:手工电弧焊产生气孔的原因有哪些?
二氧化碳气体保护焊
气体保护电弧焊
气体保护焊的定义:
用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称 为气体保护电弧焊,简称气体保护焊。
常用的保护气体:
二氧化碳气( CO2)、氩气( A r ) 、氦气(He) 及它们的 混合气体: CO2+ A r 、 CO2+ A r + He 、…… 。
C02气体保护电弧焊的工作原理
焊接特点
溶深大 熔深是手弧焊的三倍
,坡口加工小。
焊接质量好 对铁锈不敏感,焊缝含氢量低 ,抗裂性能好,受热变形小,
溶敷效率高 手弧焊焊条熔敷效率是60% CO2焊焊丝熔敷效率是90%
CO2焊的高效率
熔化速度和熔化系数高,比焊条大 1-3倍 坡口截面比焊条减小50%,熔敷金属 量减少1/2 辅助时间是焊条电弧焊的50% 三项合计:CO2焊的工效与焊条电弧焊 相比提高倍数2.02-3.88倍
二氧化碳气体保护焊是采用CO2气体作为保护 介质,焊接时CO2 气体通过焊枪的喷嘴,沿焊丝 周围喷射出来,在电弧周围形成气体保护层,机 械地将焊接电弧及熔池与空气隔离开来,从而避 免了有害气体的侵入,保证焊接过程稳定,以获 得优质的焊缝。
CO2焊工 作原理
CO2气体保护焊优点
1、生产效率高和节省能量。 2、焊接成本低。 3、焊接变形小。 4、对油、锈的敏感度较低。 5、焊缝中含氢量少,提高了低合金高强度钢抗冷裂纹 的能力。
6、电弧可见性好,短路过渡可用于全位置焊接。
CO2气体保护焊缺点
1、金属飞溅大 2、不能在有风之处施焊
风可以使CO2保护气罩发生紊流,形成气罩倾斜和变形,从而破坏保护作用。
3、不能焊接易氧化的有色金属。 在电弧的高温下,CO2气体被分解成CO和O。原子状态下的氧呈现很
强的氧化性,所以这种方法不能焊接易氧化的铝、铜、钛等有色金属。
气孔问题
解决方法
(1)合理的使用焊接参数。在不违反焊接工艺的情况下,实际操作中焊接 电流的大小应根据个人的使用习惯而调整,不要别人用多大的规范你也 用同样的规范。 (2)使用合格的焊接材料及保护气体。 (3)彻底清除焊丝和被焊金属表面上的水、锈、油污和其它杂质。 (4)使用二氧化碳气体保护焊、富氩气体保护焊时,要调整好焊枪与焊件 的距离和角度使得焊接熔池得到充分的保护。一定确保气体加热器的完 好率。 (5)气保焊焊枪的导流罩必须够长,太短以后保护气体在流动过程中不能 形成很好的保护罩。
1.短路过渡
细丝CO2气体保护焊(Φ小于1.6mm)焊接过程中,因焊丝端 部熔滴个非常大,与熔池接触发生短路,从而使熔滴过渡到熔池形 成焊缝。短路过渡是一个燃弧、短路(息弧)、燃弧的连续循环过 程,焊接热源主要由电弧热和电阻热两部分组成。短路过渡的频率 由焊接电流、焊接电压控制,其特征是小电流、低电压、焊缝熔深 大,焊接过程中飞溅较大。短路过渡主要用于细丝CO2气体保护焊, 薄板、中厚板的全位置焊接。
减少焊缝连接点和夹渣缺陷
手工 电弧焊
CO2焊接
•焊渣多,焊渣覆盖 焊缝
•焊条短,焊缝接头 多,弧坑缺陷多
•溶深浅
•焊渣少 •焊丝长,可连续
焊接 •溶深大
容易发生 融合不良及 夹渣等缺陷
不易发生 焊接缺陷
熔深大、可节约焊接材料
手弧焊熔深浅,所以需要开大坡口(60°) CO2焊接熔深大, 可减小坡口角度(45-50°)
CO2保焊熔滴过渡形式
2.颗粒状过渡
粗丝CO2气体保护焊(Φ大于1.6mm)焊接过程中,焊丝端部熔滴 个较小,一滴一滴,过渡到熔池不发生短路现象,电弧连续燃烧,焊 接热源主要是电弧热。其特征是大电流、高电压、焊接速度快。颗粒 状过渡,主要用于粗CO2气体保护焊,中厚板的水平位置焊 接。
CO2保焊熔滴过渡形式
CO2焊的质量
CO2焊缝热影响区小,焊接变形小 CO2焊缝成形好,表面及内部缺陷少, 探伤合格率高于焊条电弧焊 球罐全位置药芯焊丝CO2焊,合格率 99.04%
角焊缝焊接也能增加焊接强度
实际焊脚 厚度a大
a
实际焊脚 厚度a小
a
CO2焊接
手弧焊
•CO2焊接溶深大,因而焊脚厚度大,结合部强度高 •溶着金属的强度高,所以更为有利
1、焊条没有烘干,特别是碱性焊条。 2、焊接速度过快。 3、焊接区域有油污,铁锈,水分等。 4、焊接电流过大。等
气孔问题
1、CO气孔
CO2气保焊时,由于熔池受到CO2气流的冷却,使熔池金属凝 固较快,若冶金反应生成的CO气体是发生在熔池快凝固的时候,则 很容易生成CO气孔,但是只要焊丝选择合理,产生CO气孔的可能 性很小。
气孔问题
2、N2气孔
当气体保护效果不好时,如气体流量太小;保护气不纯; 喷嘴被堵塞;或室外焊接时遇风;使气体保护受到破坏,大量 空气侵入熔池,将引起N2气孔。
气孔问题
3、H2气孔
在CO2气保焊时产生H2气孔的机率不大,因为CO2气体本身具有一家的 氧化性,可以制止氢的有害作用,所以CO2气保焊时对铁锈和水分没有埋弧 焊和氩弧焊那样敏感,但是如果焊件表面的油污以及水分太多,则在电弧的 高温作用下,将会分解出H2,当其量超不定期CO2气保焊时氧化性对氢的抑 制作用时,将仍然产生H2气孔。
为了防止H2气孔的产生,焊丝和焊件表面必须去除油污、水分、铁锈, CO2气体要经过干燥,以减少氢的来源。
气孔问题
总之焊道产生气孔的原因如下:
(1)焊丝和被焊金属坡口表面上的铁锈、油污或其它杂质。 (2)人为的拉长电弧,焊接区域没有得到充分的保护。 (3)焊接参数或焊接材料选择不当。 (4)保护气体纯度不够。 (5)气体加热器不能正常工作。
相关文档
最新文档