CO2气体保护焊焊接参数

合集下载

二氧化碳气体保护焊的焊接时需要注意的参数

二氧化碳气体保护焊的焊接时需要注意的参数

二氧化碳气体保护焊的焊接时需要注意的参数二氧化碳气体保护焊是目前广泛应用于金属焊接领域的一种焊接方法。

在进行二氧化碳气体保护焊时,有一些重要的参数需要注意,以确保焊接质量和效果。

本文将重点介绍这些参数及其注意事项。

一、焊接电流焊接电流是二氧化碳气体保护焊中最关键的参数之一。

焊接电流的大小直接影响焊接速度和焊缝形貌。

一般来说,焊接电流过大会导致焊接熔渣增多,焊缝过宽,焊接速度过快;焊接电流过小则会导致焊缝宽度不足,焊接速度过慢。

因此,在进行二氧化碳气体保护焊时,需要根据焊接材料的性质和焊接要求,选择适当的焊接电流。

二、焊接电压焊接电压是指在二氧化碳气体保护焊中,焊接电弧的电压大小。

焊接电压的高低直接影响焊接熔渣的形成和清除。

一般来说,焊接电压过高会导致焊接熔渣难以清除,焊接接头容易产生气孔;焊接电压过低则会导致焊接熔渣清除不彻底,焊缝容易产生夹渣缺陷。

因此,在进行二氧化碳气体保护焊时,需要根据焊接材料的性质和焊接要求,选择适当的焊接电压。

三、气体流量气体流量是指二氧化碳气体保护焊中保护气体的流量大小。

保护气体的流量直接影响焊接熔渣的清除和焊接接头的质量。

一般来说,气体流量过大会导致保护气体扩散范围过大,难以有效保护焊接区域;气体流量过小则会导致保护气体无法充分覆盖焊接区域,容易产生气孔和氧化皮。

因此,在进行二氧化碳气体保护焊时,需要根据焊接材料的性质和焊接要求,选择适当的气体流量。

四、焊丝直径焊丝直径是指在二氧化碳气体保护焊中使用的焊接电极的直径。

焊丝直径的大小直接影响焊接熔渣的形成和焊接接头的质量。

一般来说,焊丝直径过大会导致焊接熔渣增多,焊缝过宽;焊丝直径过小则会导致焊接熔渣清除不彻底,焊缝不足。

因此,在进行二氧化碳气体保护焊时,需要根据焊接材料的性质和焊接要求,选择适当的焊丝直径。

五、焊接速度焊接速度是指焊接过程中焊接电极移动的速度。

焊接速度的快慢直接影响焊缝的形成和焊接接头的质量。

一般来说,焊接速度过快会导致焊缝不够深,焊接接头强度不足;焊接速度过慢则会导致焊缝过宽,焊接熔渣增多。

二氧化碳气体保护焊焊接参数

二氧化碳气体保护焊焊接参数

二氧化碳气体保护焊焊接参数二氧化碳气体保护焊是一种常用的焊接方法,它可以用于多种类型的金属焊接,包括钢铁、铝和不锈钢等材料。

在进行二氧化碳气体保护焊时,需要注意一些关键的焊接参数,以确保焊接质量和效率。

焊接电流是二氧化碳气体保护焊的一个重要参数。

焊接电流的大小直接影响到焊接的热量和熔深。

一般来说,焊接电流过大会导致焊接熔深过大,焊缝凸起,影响焊接质量;而焊接电流过小则会使焊缝不透,焊接质量不达标。

因此,需要根据焊接材料的厚度和类型,选择适当的焊接电流。

焊接电压也是二氧化碳气体保护焊的一个重要参数。

焊接电压的大小直接关系到焊接电弧的稳定性和焊接速度。

过高的焊接电压会使电弧不稳定,焊接质量下降;而过低的焊接电压会使电弧熄灭,无法进行焊接。

因此,需要根据焊接电流和焊接材料的要求,选择合适的焊接电压。

焊接速度也是二氧化碳气体保护焊的一个重要参数。

焊接速度的快慢直接影响到焊接的效率和焊缝的质量。

过快的焊接速度会导致焊接熔深不足,焊缝不牢固;而过慢的焊接速度则会导致热量过多,焊接变形。

因此,需要根据焊接材料的要求和焊接电流的大小,选择合适的焊接速度。

气体流量也是二氧化碳气体保护焊的一个重要参数。

气体流量的大小直接关系到焊接电弧的稳定性和保护效果。

过高的气体流量会造成二氧化碳的浪费,增加焊接成本;而过低的气体流量会导致保护效果不好,焊接质量下降。

因此,需要根据焊接电流和焊接材料的要求,选择适当的气体流量。

焊接角度也是二氧化碳气体保护焊的一个重要参数。

焊接角度的选择直接影响到焊接质量和焊接速度。

一般来说,焊接角度过大会使焊接熔深不稳定,焊接质量下降;而焊接角度过小则会使焊接速度过慢,效率低下。

因此,需要根据焊接材料的要求和焊接电流的大小,选择合适的焊接角度。

二氧化碳气体保护焊的焊接参数包括焊接电流、焊接电压、焊接速度、气体流量和焊接角度等。

这些参数的选择需要根据焊接材料的要求和焊接工艺的特点,以确保焊接质量和效率。

二氧化碳气体保护焊各项参数

二氧化碳气体保护焊各项参数

二氧化碳气体保护焊各项参数二氧化碳(简称CO2)气体保护焊是一种常用的金属焊接方法。

在CO2气体保护焊过程中,需要控制和调节多个参数,以获得理想的焊接效果。

这些参数包括焊接电流、焊接电压、气流量、喷嘴直径等等。

本文将详细介绍CO2气体保护焊的各项参数。

首先,焊接电流是CO2气体保护焊中最重要的参数之一、电流的大小决定了焊缝的温度、焊接速度以及焊接的质量。

一般来说,焊接电流与焊接材料的导电性有关,对于高导电材料,需要较大的电流,而对于低导电材料,则需要较小的电流。

焊接电流的选择应根据焊接材料的种类和厚度进行调节。

其次,焊接电压也是CO2气体保护焊中需要调节的参数之一、焊接电压决定了焊接弧的长度和稳定性。

一般来说,焊接电压与焊接电流呈正相关关系,电压越高,焊接电流越大。

不同的焊接材料和工件的厚度需要不同的焊接电压,通常需要进行试验和实际操作来确定最佳的焊接电压。

气流量是控制CO2气体保护焊中气体输送的重要参数。

气流量的大小决定了气体的喷射速度和稳定性。

一般来说,气流量与焊接材料的种类和厚度、焊接电流和焊接速度有关。

较高的气流量可以更好地保护焊缝并提高焊缝质量,但过高的气流量会导致气体散失和焊接效果不佳。

因此,在实际焊接过程中,需要根据不同的焊接条件进行调节和控制。

喷嘴直径是CO2气体保护焊过程中另一个需要调节的参数。

喷嘴直径决定了气流的喷射速度和功率。

较大的喷嘴直径可以增加气流量和喷射速度,适用于较大的焊缝和厚度较大的工件。

而较小的喷嘴直径则适用于焊缝较细小的工件。

喷嘴的选择应根据焊接材料的种类和厚度进行调节。

此外,CO2气体保护焊的焊接速度也是需要注意的参数之一、焊接速度的选择应根据焊接材料的种类和厚度进行调节。

通常情况下,焊接速度应保持一定的稳定性和合理性,既不能过快导致焊缝不充实,也不能过慢导致熔渣积聚和气孔产生。

总之,CO2气体保护焊的各项参数包括焊接电流、焊接电压、气流量、喷嘴直径和焊接速度等。

二氧化碳气体保护焊的参数

二氧化碳气体保护焊的参数

二氧化碳气体保护焊的参数一、介绍二氧化碳气体保护焊是一种常用的焊接方法,广泛应用于金属结构的制造与维修领域。

在进行二氧化碳气体保护焊时,合理选择和控制焊接参数是至关重要的,它直接影响着焊接质量和效率。

本文将从电流、电压、焊接速度、气体流量和焊丝直径等方面,对二氧化碳气体保护焊的参数进行详细介绍。

二、电流电流是二氧化碳气体保护焊中最关键的参数之一。

适当选择焊接电流可以控制焊缝的形成和熔深度。

通常情况下,焊接电流过小会导致焊缝质量差,焊缝不深,焊透性差;而焊接电流过大则容易出现焊缝熔穿等问题。

因此,根据焊接材料的类型和厚度,选择合适的焊接电流非常重要。

三、电压电压是控制焊接弧长的参数。

适当调整焊接电压可以影响焊缝的均匀性和质量。

一般来说,电压过低会导致焊缝凝固不良,焊缝不饱满;而电压过高则容易产生喷溅和气孔等问题。

因此,在进行二氧化碳气体保护焊时,需要根据焊接条件和要求,选择合适的焊接电压。

四、焊接速度焊接速度是指焊接焊枪在单位时间内移动的距离。

合理控制焊接速度可以保证焊缝的质量和焊接效率。

通常情况下,焊接速度过快会导致焊缝质量下降,焊缝形状不规则;而焊接速度过慢则容易产生过热现象,导致焊缝变脆。

因此,在进行二氧化碳气体保护焊时,需要根据焊接材料和要求,选择适当的焊接速度。

五、气体流量气体流量是控制焊接保护气体的参数。

二氧化碳气体被广泛应用于焊接中,它不仅可以保护焊缝免受氧气和水蒸气的污染,还可以稳定焊接电弧。

适当的气体流量可以提供足够的保护,并帮助排除焊接过程中产生的杂质和气体。

通常情况下,气体流量过大会导致焊缝凝固不良,气体流量过小则无法提供足够的保护。

因此,在进行二氧化碳气体保护焊时,需要根据焊接材料和焊接条件,选择合适的气体流量。

六、焊丝直径焊丝直径是指焊接时所使用的焊丝的直径。

合理选择焊丝直径可以影响焊缝的形状和质量。

一般来说,焊丝直径过大会导致焊缝宽度增加,焊透性降低;而焊丝直径过小则容易产生焊接喷溅和气孔等问题。

二氧化碳气体保护焊工艺

二氧化碳气体保护焊工艺

二氧化碳气体保护焊工艺CO2气体保护焊的主要焊接工艺参数有:焊丝直径、焊接电流、电弧电压、焊接速度、焊丝伸出长度、气体流量、电源极性、回路电感、装配间隙与坡口尺寸、喷嘴至焊件的距离等。

1.焊丝直径根据焊件厚度、焊接空间位置及生产率的要求选择。

薄板或中厚板的立、横、仰焊,1.6mm以下焊丝;平位置焊接中厚板时,1.2mm以上焊丝。

2.焊接电流根据焊件厚度、焊丝直径、焊接位置及熔滴过渡形式确定。

焊接电流越大,焊缝厚度、焊缝宽度及余高都相应增加。

通常直径在0.8~1.6mm的焊丝,在短路过渡时,焊接电流在50~230A之间选择。

细颗粒过渡时,焊接电流在250~500A之间选择。

焊丝直径与焊接电流的关系焊接电流/A焊丝直径/mm颗粒过渡短路过渡0.8 150~250 60~1601.2 200~300 100~1751.6 350~500 100~1802.4 500~750 150~2003.电弧电压电弧电压必须与焊接电流配合恰当,否则会影响焊缝成形及焊接过程的稳定性。

电弧电压随焊接电流的增加而增大。

在短路过渡时,电弧电压在16~24V之间选择。

细颗粒过渡时,对于直径在1.2~3.0mm的焊丝,电弧电压可在25~36V之间选择。

电弧电压的估算焊接电流在300A以下时:电弧电压(V)=0.04×焊接电流(A)+16± 1.5焊接电流在300A以上时:电弧电压(V)=0.04×焊接电流(A)+20± 2.04.焊接速度焊接速度与焊接电流适当配合才能得到良好焊缝成形。

在一定的焊丝直径、焊接电流和电弧电压条件下,焊速增加,焊缝宽度和焊缝厚度减小。

焊速过快时:气体保护效果差,可能出现气孔,甚至产生咬边、未熔合、未焊透等缺陷。

焊速过慢时:降低生产率,可能导致烧穿、焊接变形过大等缺陷。

一般CO2半自动焊的焊接速度在15~40m/h。

5.焊丝伸出长度取决于焊丝直径,一般约等于焊丝直径的10倍,且不超过15mm。

二氧化碳气体保护焊焊接参数

二氧化碳气体保护焊焊接参数

分享]二氧化碳气体保护焊的焊接参数分析二氧化碳气体保护焊的焊接参数分析二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。

本文是笔者站在巨人的肩膀上结合自身实践心得而成的一家之言,文中以自己观点、经验为主。

本文已经发表。

这次上传论坛,旨在抛砖引玉。

一、焊丝直径,焊丝直径影响焊缝熔深。

本文就最常用的焊丝直径1.2mm实心焊丝展开论述。

牌号:H08MnSiA。

焊接电流在150~300时,焊缝熔深在6~7mm。

二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。

短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡(射滴/我习惯称为喷射)的焊接电流在250~300A之间(我习惯280A)。

焊接电流决定送丝速度。

焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。

三、电弧电压,电弧电压不是焊接电压。

电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。

焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。

通常情况下,电弧电压在17~24V之间。

电压决定熔宽。

四、焊接速度,焊接速度决定焊缝成形。

焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。

通常情况下,焊接速度在80mm/min比较合适。

五、气体流量,CO2气体具有冷却特点。

因此,气体流量的多少决定保护效果。

通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。

六、干伸长度,干伸长度是指从导电嘴到焊件的距离。

保证干伸长度不变是保证焊接过程稳定的重要因素。

干伸长度决定焊丝的预热效果,直接影响焊接质量。

当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。

CO2 保护焊的焊接参数

CO2 保护焊的焊接参数

CO2 保护焊的焊接参数一、焊丝直径焊丝直径越粗,允许使用的焊接电流越大焊接直径/mm 焊件厚度/mm施焊位置熔滴过渡形式0.8 1-3 各种位置短路过程1.0 1.5-6 各种位置短路过程1.2 2-12 各种位置短路过程中厚平焊、平角焊细颗粒过程1.6 6-25 各种位置短路过程中厚平焊、平角焊细颗粒过程2.0 中厚平焊、平角焊细颗粒过程焊接电流相同时,熔深将随着焊丝直径的减小而增加。

焊接电流相同时,焊丝越细则熔敷速度越快。

二、焊接电流应根据焊件厚度、材料、焊丝直径、施焊位置及要求的熔滴过渡形式来选择焊接电流的大小。

每种直径的焊丝都有一个合适的焊接电流范围,只有在这个范围内焊接过程才稳定进行。

通常直径0.8-1.6mm的焊丝,短路过渡的焊接电流在40-230A范围内;细颗粒过程过渡的焊接电流在250-500A范围内当电源外特性不变时,改变送丝速度,此时电弧电压不变,焊接电流则发生变化。

送丝速度越快,焊接电流越大。

在相同的送丝速度下,随着焊丝直径的增加,焊接电流也增加。

焊接电流的增大,熔深也会增加。

焊接电流的增加熔敷速度和熔深都会增加。

二、电弧电压电弧电压是指导电嘴与焊件间测得的电压。

焊接电压是焊机上电压表所显示的电压。

焊接电压比电弧电压高。

焊缝成形好,电弧电压与焊接电流配合适当。

通常焊接电流小时,电弧电压较低,焊接电流大时电弧电压较高。

三、焊接的速度在焊丝直径、焊接电流、电弧电压不变的条件下,焊接速度增加时,熔宽与熔深都减小。

焊接速度过快,产生咬边、未熔合出现气孔;速度过低变形增大。

四、CO2气体的流量流量过大过小都影响保护效果。

通常细丝焊接时,流量为止5-15L/min。

五、焊丝伸出长度焊丝伸出长度是指从导电嘴端部到焊件的距离。

保持伸长不变是保证焊接过程稳定的基本条件。

采用的电流密度较高,伸出长度越大,焊接的预热作用越强。

当送丝速度不变时,若焊丝伸出长度增加,因预热作用强,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,将造成热量不足,容量引起未焊透、未熔合。

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定

精心整理二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。

一、焊丝直径,焊丝直径影响焊缝熔深。

本文就最常用的焊丝直径1.2mm 实心焊丝展开论述。

牌号:H08MnSiA 。

焊接电流在150~300时,焊缝熔深在6~7mm 。

二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。

短路过渡的焊接电流在110~230A 之间(焊工手册为40~230A );细颗粒过渡的焊接电流在250~300A 之间。

焊接电流决定送丝速度。

焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深三、在六、八、;焊接电流制在以达到焊接电流是根据焊接结构母材厚度及焊缝位置来确定,如平焊时焊接电流一般在160-320A 、立焊、仰焊、横焊时一般在100-130A 。

电弧电压是根据焊接电流而定公式如下:(1) 实芯焊丝:当电流≥300A 时×0.04+20±2=电压当电流≤300A 时×0.05+16±2=电压(2) 药芯焊丝:当电流≥200A 时×0.06+20±2=电压当电流≤200A 时×0.07+16±2=电压CO2气体保护焊机操作规程CO2气体保护焊机操作规程1、操作者必须持电焊操作证上岗。

2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置。

3、打开气瓶盖,将流量调节旋钮慢慢向“OPEN”方向旋转,直到流量表上的指示数为需要值。

供气开关置于“焊接”位置。

4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压。

5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接。

6、焊枪开关“ON”,焊接电弧的产生,焊枪开关“OFF”,切换为正常焊接条件的焊接电弧,焊枪开关再次“ON”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“OFF”焊接电弧停止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二氧化碳焊接工艺--焊接工艺指导书(CO2焊)
一、基本原理
CO2气体保护焊是以可熔化的金属焊丝作电极,并有CO2气体作保护的电弧焊。

是焊接黑色金属的重要焊接方法之一。

二、工艺特点
1. CO2焊穿透能力强,焊接电流密度大(100-300A/m2),变形小,生产效率比焊条电弧焊高1-3倍
2. CO2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊的40%-50%
3. 焊缝抗锈能力强,含氢量低,冷裂纹倾向小。

4. 焊接过程中金属飞溅较多,特别是当工艺参数调节不匹配时,尤为严重。

5. 不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时,需要有防风措施。

6. 焊接弧光强,注意弧光辐射。

三、冶金特点
CO2焊焊接过程在冶金方面主要表现在:
1. CO2气体是一种氧化性气体,在高温下分解,具有强烈的氧化作用,把合金元素烧损或造成气孔和飞溅等。

解决CO2氧化性的措施是脱氧,具体做法是在焊丝中加入一定量脱氧剂。

实践表明采用Si-Mn脱氧效果最好,所以目前广泛采用H08Mn2SiA/H10Mn2Si等焊丝。

四、焊接材料
1. 保护气体CO2
用于焊接的CO2气体,其纯度要求≥99.5%,通常CO2是以液态装入钢瓶中,容量为40L的标准钢瓶可灌入25Kg的液态CO2,25Kg的液态CO2约占钢瓶容积的80%,其余20%左右的空间充满气化的CO2。

气瓶压力表上所指的压力就是这部分饱和压力。

该压力大小与环境温度有关,所以正确估算瓶内CO2气体储量是采用称钢瓶质量的方法。

(备注:1Kg的液态CO2可汽化509LCO2气体)
2. CO2气瓶外表漆黑色并写有黄色字样
3. 市售CO2气体含水量较高,焊接时候容易产生气孔等缺陷,在现场减少水分的措施为:
1) 将气瓶倒立静置1-2小时,然后开启阀门,把沉积在瓶口部的水排出,可放2-3次,每次间隔30分钟,放后将气瓶放正。

2) 倒置放水后的气瓶,使用前先打开阀门放掉瓶上面纯度较低的气体,然后在套上输气管。

3) 在气路中设置高压干燥器和低压干燥器,另外在气路中设置气体预热装置,防止CO2气中水分在减压器内结冰而堵塞气路。

2. 焊接材料(焊丝)
1.)焊丝要有足够的脱氧元素
2.)含碳量Wc≤0.11%,可减少飞溅和气孔。

3.)要有足够的力学性能和抗裂性能。

焊丝直径及其允差(GB/T8110-1995):
焊丝直径mm 允许偏差
φ0.5;φ0.6 +0.01,-0.03
φ0.8,φ1.0
φ1.2,φ1.6,+0.01,-0.04
φ3.0;φ3.2 +0.01,-0.07
五.焊接设备(略)
六.焊接工艺
序号型号牌号规格适用范围
1 ER49-1 H08Mn2SiA φ1.
2 Q235.20#.20g.2OR、16MnR间焊接
2 ER50-6 / φ1.2 Q345.16MnR等间焊接
3 ER49-1 H08Mn2SiA φ1.2 Q235.20#.20g.2ORQ345.16MnR间焊接对接平焊(I型坡口)
板厚mm 焊丝直径焊接电流A 焊接电压V 焊接速度Cm/min 焊丝干伸长mm 气流量L/min 层数
6 φ1.2 120-140 20-22 50-60 10-12 10-15 2
8 φ1.2 130-150 21-23 45-50 10-12 10-15 2
10 φ1.2 200-250 24-26 45-50 10-12 10-15 3
14 φ1.2 280-320 28-34 35-45 10-12 12-18 5
20 φ1.2 360-400 34-38 35-40 10-12 15-20 7
角焊( (I型坡口)
板厚mm 焊丝直径焊接电流A 焊接电压V 焊接速度Cm/min 焊丝干伸长mm 气流量L/min 层数
6 φ1.2 150-180 22-25 50-60 10-12 10-15 1
10 φ1.2 200-250 24-26 45-50 10-12 10-15 2
14 φ1.2 280-320 28-32 35-45 10-12 12-18 2
20 φ1.2 360-400 34-38 35-40 10-12 15-20 3
备注:对接间隙为1-1.5毫米
缺陷名称及产生原因:
①气孔
1.CO2气体不纯或供气不足
2.焊接时候卷入空气
3.预热器不起作用
4.焊接区域风大,气体保护不好
5.喷嘴被飞溅物堵塞,不通畅。

喷嘴与工件距离过大
6.焊件表面油污、锈蚀处理不彻底
7.电弧过长,电弧电压过高
8.焊丝中Si-Mn含量不足
②咬边
1. 电弧过长,电弧电压过高
2.焊接速度过快、焊接电流过大
3.焊工摆动不当
③焊缝成型不良
1..工艺参数不合适
2.焊丝矫正机构调节不当
3.送丝轮中心偏移
4.导电嘴松动。

④电弧不稳
1.外界网络电压影响
2.焊接参数调节不当
3.导电嘴松动。

4.送丝机构、导电嘴堵塞等。

⑤飞溅
1..焊接电参数调节不匹配
2. 气流量过大
3.工件表面过于粗糙
4.焊丝伸出长度过长
⑥未焊透
1.焊接电流太小,送丝不当
2.焊接速度过快或过慢
3.坡口角度太小,间隙过小
4.焊丝位置不当,对中性差
5.焊工技能水平
注:以上内容仅供参考。

相关文档
最新文档