有限元单元刚度矩阵单元方程推导
有限元分析基础(推荐完整)

图1-5 驾驶室受侧向力应力云图
图1-6 接触问题结构件应力云图
10
第一章 概述
图1-7 液压管路速度场分布云图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
11
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束 2.4 自由度计算公式
(1)结点: ① 铰结点;② 刚结点;③ 混合结点。 (2)支座: ① 活动铰支座;② 固定铰支座 ;
③ 固定支座 ;④ 定向支座
15
第二章 结构几何构造分析
2.2.2 结构的分类与基本特征
(1) 按结构在空间的位置分 结构可分为平面结构和空间结构两大类
(2) 按结构元件的几何特征分 ① 杆系结构: 梁、拱、桁架、刚架、桁构结构等 。 ② 板壳结构 ③ 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。 ④ 混合结构
d. 超静定结构中的多余约束破坏后,结构仍然保持 几何不变性,因而仍有一定的承载能力, 不致整个结构 遭受破坏。
e. 超静定结构由于具有多余的约束,因而比相应的 静定结构具有较大的刚度和稳定性, 在载荷作用下,内 力分布也较均匀,且内力峰值也较静定结构为小。
18
第二章 结构几何构造分析
2.2.3 结构对称性的利用
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
① 正对称载荷作用
(a) 对称刚架
(b) 变形状态分析
(c) 对称性利用
图2-22对称性利用示意图
19
有限元分析 第三讲

m1 l 2 2 EJ
θ =+
1
l
1 2
m1 l EJ
m1
2
l
1节点桡度 节点桡度 1节点转角 节点转角
Q1l 3 m1l 2 f1 = 1 = 3EJ 2 EJ m1l Q1l 2 θ1 = 0 = EJ 2 EJ
解得
Q1 =
12 EJ = k11 3 l 6 EJ m 1 = 2 = k 21 l
局部坐标下梁 单元刚度矩阵
[ ]
12 EJ k e = 3 6l l 12 6l
6l 4l 2 6l 2l 2
12 6l 12 6l
6l 2l 2 6l 4l 2
对称矩阵
上述由几何关系, 物理方程, 上述由几何关系 物理方程 受力和位移的关系求出单元刚度矩阵 的方法——直接刚度法 的方法 直接刚度法
整体座标下的单元刚度矩阵换算通式
[ K e ] = [T ]T [ K e ][T ]
思考: 整体刚度矩阵如何迭加? 思考 整体刚度矩阵如何迭加
§3.3 位移函数—虚功原理推导单元有限元格式 位移函数—
基本原理 将单元内任一点的位移表示成节点位移的某种函数——位 将单元内任一点的位移表示成节点位移的某种函数 位 移函数, 利用虚功原理, 推导单元的刚度矩阵. 移函数 利用虚功原理 推导单元的刚度矩阵.
对方程加" 项 扩展为: 对方程加"0"项,扩展为:
N1 EA 1 11 N = 2 l 1 1 2
N1 1 0 0 0 EA 0 N = 1 1 l 0 0 0 0
6l f1 2l 2 θ1 6l f 2 4l 2 θ 2
0 0 0 0 0 0
[工学]第4章 平面问题的有限元法-3刚度矩阵
![[工学]第4章 平面问题的有限元法-3刚度矩阵](https://img.taocdn.com/s3/m/25867d5d31b765ce050814be.png)
* T
F
T
* * * * * x x y * * y z z xy xy yz yz zx zx
({ } )
T
e T
R
e
(f)
而单元内的应力在虚应变上所做的功为
tdxdy
(g)
这里我们假定单元的厚度t为常量。把(d)式及(4-16) 式代入上式,并将提到积分号的前面,则有
({ } )
e T
B D B
T
e
tdxdy
根据虚位移原理,由(f)和(h)式可得到单元的虚功方程 即 e T e e T e T ({ } ) R ({ } ) B D B tdxdy 注意到虚位移是任意的,所以等式两边与相乘的项应该相等, 即得
R
e
B D Btdxdy
T
e
记
k B D B tdxdy
e T
(4-24) (4-25)
则有
R k
e e
e
上式就是表征单元的节点力和节点位移之间关系的刚 度方程,[k]e就是单元刚度矩阵。如果单元的材料是均质的 ,那么矩阵 [D] 中的元素就是常量,并且对于三角形常应 变单元,[B]矩阵中的元素也是常量。当单元的厚度也是常 量时,因 dxdy ,所以式(4-24)可简写为
1 2 4 7 11 3 5 8 6 9 10 15
12
13
14
图 4-6 a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 15
2
3
4
5
计算结构力学第四章 单元刚度矩阵

(4)
2 l 1 2 l
(5)
下页
返回
由(4)式 {a} [G]1{ } 将(6)代入(1), 便得v( x)的结点位移插值式为
1 v( x) { X }T [ G ] } 14 44 {
(6) (7)
这里 [ N ( x)] [ N1 ( x)
2 3 x x 1 3 2 l l
计算结构力学
第四章 单元刚度矩阵
4-1
概
述
形成单元刚度矩阵是整个结构分析中的 一个重要环节。 静力法推导利用了结构力学中的转角位 移方程,也是采用了Euler梁理论的结果。 Euler梁:简单梁
有限元分析的计算精度在很大程度上取 决于单元刚度矩阵,也就是取决于 单元形状 函数(位移函数)的选择。
首页 上页 下页 返回
d 2 [ N ( x)] ( x) z ( x) v( x) 2 dx 4 6 x 6 12 x 2 6x 6 12 x 2 3 2 3 2 2 l l l l l l l l [ B] (9)
2.在单元内点, Ni ( x)按u ( x)形式变化, 如(8)式又 称为Lagrange型插值(线性, 仅函数本身的边界 作内插函数).
1
y
N1 ( x)
N2 ( x)
0 i
j
x
首页 上页 下页 返回
3.应变插值形式(用结点位移表示(x)) du (x) dx d (x) [ N ( X )]{ } dx 1 1 [ ]{ } [ B]{ } l l 上式中[ B]矩阵称为应变矩阵。
首页
上页
下页
有限元法的基本原理

第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。
经过半个过世纪的发展,它的数学基础已经比较完善。
从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。
它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。
通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。
在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。
尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。
通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。
2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。
3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。
4)有限元的收敛性和误差估计。
由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。
另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。
§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。
2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。
单元类型及单元刚度矩阵课件

面积单元的刚度矩阵可以通过解析方 法或数值方法计算得到。
它具有四个节点,每个节点具有三个 自由度:x、y和z方向的位移。
体积单元
体积单元是一种几何 形状,通常用于模拟 结构中的三维实体或 区域。
体积单元的刚度矩阵 可以通过解析方法或 数值方法计算得到。
它具有八个节点,每 个节点具有三个自由 度:x、y、z方向的 位移。
移。
线性单元的刚度矩阵可以通过解 析方法或数值方法计算得到。
角点单元
角点单元是一种特殊类型的线 性单元,通常用于模拟结构中 的角点或连接两个线性单元的 节点。
它具有三个自由度:x、y和z方 向的位移。
角点单元的刚度矩阵可以通过 解析方法或数值方法计算得到。
面积单元
面积单元是一种几何形状,通常用于 模拟结构中的平面区域或曲面上的小 区域。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文, 单击此处添加正文,文字是您思想的提炼,为了最终 呈现发布的良好效果单击此4*25}
通过稳定性分析,可以评估结构的承载安全性和预防 失稳的措施。
PART 04
单元类型选择与注意事项
选择依据
计算精度
根据模型精度要求选择合适的单 元类型,例如,对于复杂形状或 精细结构,应选择高阶单元以提
2023 WORK SUMMARY
单元类型及单元刚度 矩阵课件
REPORTING
CATALOGUE
• 单元类型介绍 • 单元刚度矩阵
PART 01
单元类型介绍
线性单元
线性单元是一种简单的几何形状, 通常用于模拟结构中的直线段或 平面区域。
它具有两个节点,每个节点具有 三个自由度:x、y和z方向的位
c3d8有限元单元方程推导过程

有限元单元方程推导过程1.引言有限元分析是一种数值计算方法,用于求解结构力学、流体动力学等领域的物理问题。
在有限元分析中,有限元单元是构成整个有限元模型的基本单元,通过推导有限元单元的方程,可以实现对结构或系统的精确分析和计算。
本文将从有限元方法的基本原理出发,详细介绍有限元单元方程的推导过程。
2.有限元方法基本原理有限元方法是将连续的物理问题离散化,转化为有限个代表性元素的集合,通过对每个元素施加适当的边界条件和力学方程,最终得到整个系统的解。
有限元方法通过有限元单元之间的相互作用,从而模拟整个系统的行为。
3.有限元单元的概念有限元单元是有限元模型中最小的离散单元,它是对实际的结构或系统进行离散化的结果。
不同的物理问题和结构,可以采用不同类型的有限元单元进行离散化,如梁单元、壳单元、板单元等。
4.有限元单元方程的一般形式有限元单元方程的一般形式可以表示为:\[K_{e}U_{e}=F_{e}\]其中\(K_{e}\)为有限元单元的刚度矩阵,\(U_{e}\)为有限元单元的位移矢量,\(F_{e}\)为有限元单元的荷载矢量。
5.有限元单元方程推导的基本步骤有限元单元方程的推导主要包括以下几个基本步骤:5.1 单元刚度矩阵的推导首先需要根据有限元单元的几何形状和材料性质,推导出单元刚度矩阵。
单元刚度矩阵可以通过对单元内部的应变能量或者应力-应变关系进行积分得到。
5.2 单元位移矢量的表示在推导单元方程过程中,需要选择合适的位移矢量表示方式,可以采用基函数展开的方法,将位移矢量表示为一组未知系数乘以基函数的线性组合形式。
5.3 单元荷载矢量的求解单元荷载矢量是由外部施加的荷载和边界条件共同决定的,在推导单元方程的过程中需要将这些荷载转化为局部坐标系下的形式,并利用位移矢量的表示方式,将荷载矢量表达为位移矢量和未知系数的线性组合。
5.4 单元方程的组装需要将单元刚度矩阵、位移矢量和荷载矢量组装成完整的单元方程,可以通过坐标变换或者有限元单元之间的关系对单元方程进行组装。
《有限元分析基础教程》(曾攀)笔记二-梁单元有限元方程推导

《有限元分析基础教程》(曾攀)笔记⼆-梁单元有限元⽅程推导不得不说,Mathematica 真是个好东西,以前学习有限元的时候,对于书中的⽅程推导,看到了就看过去了,从没有想过要⾃⼰推导⼀遍,原因是⼿⼯推导太复杂。
有了MM ,原来很复杂的东西突然变得简单了。
1.单元⼏何描述上图是纯弯梁单元,长度l ,弹模E ,⾯积A ,惯性矩I 。
两个节点1和2的位移列阵为q e =[v 1,θ1,v 2,θ2]Tv 是挠度(defection),或者叫位移;θ是转⾓(slope)。
需注意的是v 和θ的⽅向,⼀个是向上,⼀个是逆时针。
两个节点的节点⼒矩阵为P e =[P v 1,M 1,P v 2,M 2]T当然实际情况往往是在梁的长度⽅向上作⽤有荷载,⽽不是只在节点处有,这时就要进⾏荷载等效,后⾯会有说明。
注意这两个矩阵都是列矩阵。
需要注意的是,节点⼒矩阵表⽰的的是节点上的所有的⼒,不仅包括荷载引起的等效节点⼒,还包括节点的反⼒,反⼒矩等。
2.单元位移场表达由于有4个位移节点的已知条件,那么假设纯弯曲梁单元的位移挠度函数具有四个待定系数,如下形式v (x )=a 0+a 1x +a 2x 2+a 3x 3对于两端节点,位移和转⾓分别为v 1,θ1,v 2,θ2,注意挠曲线⽅程在⼀点出的导数值即为改点的转⾓,所以四个边界条件为v (0)=v 1v ′(0)=θ1v (L )=v 2v ′(L )=θ2使⽤MM 求解⽅程组将求得的待定系数带⼊原⽅程,可得将四个位移合并同类项,可以得到即最终的挠曲线⽅程vfea 为 vfea =θ1x 3L 2−2x 2L +x +θ2x 3L 2−x 2L +v12x 3L 3−3x 2L 2+1+v23x 2L 2−2x 3L 3如果令ζ=x L ,上式中位移前的系数组成的矩阵称之为形函数矩阵,也就是常说的形函数。
即v (x )=N (x )q e 3.单元应变场,应⼒场的表达应变的表达式为ε=−yv ″其中B(x)=-yN''(x),B(x)叫做单元的⼏何矩阵,表⽰应变与位移的⼏何关系。