有限元 单元刚度矩阵单元方程推导

合集下载

各单元类型的单元刚度矩阵

各单元类型的单元刚度矩阵

各单元的单元刚度矩阵一)杆件单元刚度矩阵局部坐标系中:整体坐标系中:αμαλsin ;cos ==二、)梁单元刚度矩阵剪弯梁局部坐标系下:坐标转换矩阵为:⎥⎦⎤⎢⎣⎡--=1111][l EA ke ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=l EI l EI l EI l EI l EI l EI l EI l EI l EI l EI l EI l EI l EI l EI l EI l EI k z z z z z z z z z z z z z z z z e 46612266122661246612][223223223223[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=ααααααααcos sin 00sin cos 0000cos sin 00sin cos T轴剪弯梁局部坐标系下:坐标转化矩阵为:三、)平面三节点三角形单元刚度矩阵{}[]{}e N δδ=⎥⎥⎦⎤⎢⎢⎣⎡=m j i m j i N N N N N N N 000000][ )(21y c x b a AN i i i i ++=; ),,(m j i i = j m m j i y x y x a -=,m j i y y b -=,j m i x x c -=。

单元为等腰直角三角形,直角边长为1。

泊松比为0,弹性模量为1。

(单元节点编号为逆时针i ,j ,m ;直角顶点为m )[]⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------=l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA K e 460260612061200000260460612061200000222322222223[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--=1000000sin cos 0000sin cos 0000001000000cos sin 0000sin cos ααααααααT⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=23211212102302121110002*********][E k e 1)集中力:}{][}{P N R T e =⎭⎬⎫⎩⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧y x y x m m j j i i m m j j i i P P N N N N N N Y X Y X Y X p p ),(000000 2)体力:⎰⎰=tdxdy p N R T e }{][}{3)分布面力:⎰=s T e tds P N R }{][}{例题3:在均质、等厚的三角形单元ijm 的ij 边上作用有沿x 方向按三角形分布的载荷,求移置后的结点载荷。

[工学]第4章 平面问题的有限元法-3刚度矩阵

[工学]第4章 平面问题的有限元法-3刚度矩阵
* 1 1 * 2 * 3 3
* T
F
T
* * * * * x x y * * y z z xy xy yz yz zx zx
({ } )
T
e T
R
e
(f)
而单元内的应力在虚应变上所做的功为
tdxdy
(g)
这里我们假定单元的厚度t为常量。把(d)式及(4-16) 式代入上式,并将提到积分号的前面,则有
({ } )
e T
B D B
T
e
tdxdy
根据虚位移原理,由(f)和(h)式可得到单元的虚功方程 即 e T e e T e T ({ } ) R ({ } ) B D B tdxdy 注意到虚位移是任意的,所以等式两边与相乘的项应该相等, 即得
R
e
B D Btdxdy
T
e

k B D B tdxdy
e T
(4-24) (4-25)
则有
R k
e e
e
上式就是表征单元的节点力和节点位移之间关系的刚 度方程,[k]e就是单元刚度矩阵。如果单元的材料是均质的 ,那么矩阵 [D] 中的元素就是常量,并且对于三角形常应 变单元,[B]矩阵中的元素也是常量。当单元的厚度也是常 量时,因 dxdy ,所以式(4-24)可简写为
1 2 4 7 11 3 5 8 6 9 10 15
12
13
14
图 4-6 a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 15
2
3
4
5

计算结构力学第四章 单元刚度矩阵

计算结构力学第四章 单元刚度矩阵
首页 上页
(4)
2 l 1 2 l
(5)
下页
返回
由(4)式 {a} [G]1{ } 将(6)代入(1), 便得v( x)的结点位移插值式为
1 v( x) { X }T [ G ] } 14 44 {
(6) (7)
这里 [ N ( x)] [ N1 ( x)
2 3 x x 1 3 2 l l
计算结构力学
第四章 单元刚度矩阵
4-1


形成单元刚度矩阵是整个结构分析中的 一个重要环节。 静力法推导利用了结构力学中的转角位 移方程,也是采用了Euler梁理论的结果。 Euler梁:简单梁
有限元分析的计算精度在很大程度上取 决于单元刚度矩阵,也就是取决于 单元形状 函数(位移函数)的选择。
首页 上页 下页 返回
d 2 [ N ( x)] ( x) z ( x) v( x) 2 dx 4 6 x 6 12 x 2 6x 6 12 x 2 3 2 3 2 2 l l l l l l l l [ B] (9)
2.在单元内点, Ni ( x)按u ( x)形式变化, 如(8)式又 称为Lagrange型插值(线性, 仅函数本身的边界 作内插函数).
1
y
N1 ( x)
N2 ( x)
0 i
j
x
首页 上页 下页 返回
3.应变插值形式(用结点位移表示(x)) du (x) dx d (x) [ N ( X )]{ } dx 1 1 [ ]{ } [ B]{ } l l 上式中[ B]矩阵称为应变矩阵。
首页
上页
下页

第2章3-单元刚度方程和单元刚度矩阵

第2章3-单元刚度方程和单元刚度矩阵

i
u
j
6EI l2
v
j j
4EI
l
平面两端刚节点梁单元的单元刚度矩阵为:
EA
l
0
K
(e)
0
EA l
0
0
0
12EI
3
l
6EI
2
l
0
12E
3
I
l
6EI
2
l
0
6EI
2
l
4EI
l
0
6EI
2
l 2EI
l
EA l
0
0
EA l 0
0
0
12E
3
I
l
6EI
2
l
0
12EI
3
l 6EI
yy 33llEEII
33llEE22II
00ii 11 ll
vj=1
3EI 3llE22I
3EI 3llE33I
ll
xx
3EI 3llE33I
xx
33llEE22II
vvjj
1 1
3EI 3llE33I
ui=1
vi =1 θi=1
uj=1 vj=1
Ni
EA l
0
0
EA l
0
Qi 0 Mi 0
3EI l3
EA
端为铰结点, 则单元刚度 l
矩阵为:
0
K (e)
0
EA l
0
0
3EI l3 3EI l2 0
3EI l3
0
3EI l2
3EI l
0
3EI l2
EA l 0

有限元法的基本原理

有限元法的基本原理

第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。

经过半个过世纪的发展,它的数学基础已经比较完善。

从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。

它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。

通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。

在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。

尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。

通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。

2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。

3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。

4)有限元的收敛性和误差估计。

由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。

另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。

§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。

2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。

第2章3_单元刚度方程和单元刚度矩阵

第2章3_单元刚度方程和单元刚度矩阵

y
EA l EA l
x
平面梁单元的单元刚度矩阵
ui=1 vi =1 θi=1 uj=1 vj=1 θj=1
ui=1
y vi
1 6EI l2
ui
1
l
6EI l2 12EI l3 12EI l3
Ni
x
EA l
0
12 EI l3
0
− 6 EI l2
− EA l
0
0
vi=1
l
4EI l
Qi
x
6EI l2
0 0
第三节 单元刚度方程和单元 刚度矩阵
单元的杆端力和杆端位移之间的关系是通过单元刚 度方程反映出来的, 度方程反映出来的,本节重点掌握单元刚度矩阵中 每个刚度系数的物理意义,由此求得不同杆单元的 每个刚度系数的物理意义, 刚度矩阵。 刚度矩阵。
(1)单元刚度方程
单元的刚度方程:
F ( e ) = K ( e )δ( e ) 单元的刚度方程给出了单元的杆端位移 单元的刚度方程给出了单元的杆端位移δ(e)与杆端力F(e) 之间的关系. 之间的关系 称为单元刚度矩阵 单元刚度矩阵。 其中矩阵K(e) 称为 单元刚度矩阵。 单元刚度矩阵是一 个方阵. 它的阶数和内容视单元而定。 个方阵 它的阶数和内容视单元而定 。如杆端位移 δ(e) 阶向量, 方阵。 阶向量 方阵 和杆端力F(e)为6阶向量,则K(e)为6X6方阵。
l
y
3EI l
0 0
− EA l
0 0
EA l
θi=1
3EI l2
0i
1 3EI l2
Mi
Nj
l
− 3EI l2
3EI l
3EI l2

c3d8有限元单元方程推导过程

c3d8有限元单元方程推导过程

有限元单元方程推导过程1.引言有限元分析是一种数值计算方法,用于求解结构力学、流体动力学等领域的物理问题。

在有限元分析中,有限元单元是构成整个有限元模型的基本单元,通过推导有限元单元的方程,可以实现对结构或系统的精确分析和计算。

本文将从有限元方法的基本原理出发,详细介绍有限元单元方程的推导过程。

2.有限元方法基本原理有限元方法是将连续的物理问题离散化,转化为有限个代表性元素的集合,通过对每个元素施加适当的边界条件和力学方程,最终得到整个系统的解。

有限元方法通过有限元单元之间的相互作用,从而模拟整个系统的行为。

3.有限元单元的概念有限元单元是有限元模型中最小的离散单元,它是对实际的结构或系统进行离散化的结果。

不同的物理问题和结构,可以采用不同类型的有限元单元进行离散化,如梁单元、壳单元、板单元等。

4.有限元单元方程的一般形式有限元单元方程的一般形式可以表示为:\[K_{e}U_{e}=F_{e}\]其中\(K_{e}\)为有限元单元的刚度矩阵,\(U_{e}\)为有限元单元的位移矢量,\(F_{e}\)为有限元单元的荷载矢量。

5.有限元单元方程推导的基本步骤有限元单元方程的推导主要包括以下几个基本步骤:5.1 单元刚度矩阵的推导首先需要根据有限元单元的几何形状和材料性质,推导出单元刚度矩阵。

单元刚度矩阵可以通过对单元内部的应变能量或者应力-应变关系进行积分得到。

5.2 单元位移矢量的表示在推导单元方程过程中,需要选择合适的位移矢量表示方式,可以采用基函数展开的方法,将位移矢量表示为一组未知系数乘以基函数的线性组合形式。

5.3 单元荷载矢量的求解单元荷载矢量是由外部施加的荷载和边界条件共同决定的,在推导单元方程的过程中需要将这些荷载转化为局部坐标系下的形式,并利用位移矢量的表示方式,将荷载矢量表达为位移矢量和未知系数的线性组合。

5.4 单元方程的组装需要将单元刚度矩阵、位移矢量和荷载矢量组装成完整的单元方程,可以通过坐标变换或者有限元单元之间的关系对单元方程进行组装。

有限元考试复习资料(华东交通大学)

有限元考试复习资料(华东交通大学)

有限元考试复习资料(含习题答案)1试说明用有限元法解题的主要步骤。

(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。

(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。

(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。

(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。

2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。

P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。

3.什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。

则在载荷作用下产生的应力、应变和位移也都对称此轴。

这种问题就称为轴对称问题。

可以用轴对称单元求解。

4.什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。

比例阻尼的特点为具有正交性。

其本质上反应了阻尼与结构物理特性的关系。

5.何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。

①优点:可以很方便地用来离散具有复杂形体的结构。

由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档