高数1函数

合集下载

大学高数第一章函数和极限ppt课件

大学高数第一章函数和极限ppt课件
16
幂函数图像(a 0时)
17
幂函数图像(a 0时)
18
指数函数基本性质
解析式: y ax (a>0,且a 1) 基本特征:定义域为实数集R,值域为(0,+∞),函数 图像必经过点(0,1)
19
对数函数基本性质
解析式: y loga x(a 0,且a 1)
基本特征:定义域为(0,+∞),值域为实数集R,图像
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
32
例 证明 lim | x | 0 x 0
证:因为 lim | x | lim (x) 0 ,
x0
x0
{x
|
x
2
k
,
k
Z } ,余
切函数定义域为 {x | x k , k Z} ,二者周期T均为
,值域均为(- ∞,+ ∞) ,互为倒数。
22
正切、余切函数基本图像
正切函数图像片段
23
余切函数有限次四则运算和有限 次函数复合所构成的只能用一个解析式表示的函数, 称为初等函数。 例如: y lg x 、y x tan x sin(1 ex )

高数1函数知识点总结大一

高数1函数知识点总结大一

高数1函数知识点总结大一高数1函数知识点总结高数1是大一学生必修的一门数学课程,其中的函数是重要的内容之一。

在学习函数的过程中,我们需要了解和掌握一些关键的知识点。

本文将对高数1中的函数知识点进行总结,以帮助同学们更好地理解和应用这些知识。

一、函数的概念及表示法函数是自变量和因变量之间的一种对应关系。

一般用字母f或g等表示函数名,自变量用x表示,函数表达式写作f(x),表示因变量与自变量的对应关系。

二、函数的定义域和值域函数的定义域是指自变量的取值范围,值域是指函数在定义域内所有可能的因变量值。

在求解函数的定义域时,需要注意不可除以零的情况,以及根式中不能出现负数的情况。

三、基本初等函数高数1中常见的基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数等。

这些函数具有特定的函数表达式和性质,需要熟记其定义和基本性质。

四、函数的图像与性质函数的图像是函数表达式在坐标系中的几何表示。

通过观察函数图像,我们可以推测函数的增减性、奇偶性、周期性等性质。

在绘制函数图像时,需要注意选择合适的坐标轴范围和绘制方法,以便准确反映函数的特点。

五、函数的运算函数可以进行加减乘除等基本运算,也可以进行复合和反函数运算。

在进行函数的复合运算时,需要注意确保复合函数的定义域和值域的合法性,同时注意求解反函数时的一一对应关系。

六、函数的极限函数的极限是数列极限的推广,用来研究函数在某一点的趋势。

函数的左极限和右极限可以让我们了解函数在某一点处的接近情况。

在求解极限时,可以运用极限的性质和极限运算法则来简化计算过程。

七、导数与微分导数是函数在某一点处的变化率,表示函数图像在该点的切线斜率。

导数的计算需要用到极限的概念,可以运用一些常见函数的求导法则简化计算。

微分则是导数的微小变化量,可以应用于函数的近似计算和优化问题。

八、函数的应用函数是数学在实际问题中的重要工具,具有广泛的应用价值。

在物理学、经济学、工程学等领域,函数被用于建立数学模型,描述和解决各种实际问题。

高数 第一章

高数 第一章
i )作图用 ii )单调性 ④奇,偶函数的作用 iii )凹凸性(后续) iV)可以讨论方式根的情况
⑤奇,偶函数的运算性质 i) 有限个奇函数或偶函的和仍为奇(偶)(差不 一定)
ii) “同性”相乘为偶,“异性”相乘为奇 iii) 任意一个对称区间的函数可表达 为一个奇函数和一个偶函数之和:
xaa
ln xyln xln y(x>0, y>0), O
x ln ln xln y(x>0, y>0)。 -1 y
5 .三角函数 ysin x与ycos x的定义域均为(, ),均以 2p为周期。ysin x为奇函数,ycos x为偶函数。 它们都是有界函数。
1
y=cosx y y=sinx
1
-2
-1
0
1
2
x
4 .对数函数y=logax 对数函数是指数函数y=ax的反函数, 定义域为 (0,),图形通过(1, 0)点。当 a>1 时, 函数单调增 加;当 0<a<1时, 函数单调减少。
常用公式: x ln eln x(x>0), ln x(x>0),
2 1
1 2 3 y y=log2x y=log10x 4 x y=log0.1x y=log0.5x
第一章
第一节函数
本节重点:
1、函数定义域与表达式求法
2、函数特性(4个)判别
3、区间与邻域的概念
一、 预备知识
1.绝对值:
①运算性质: ②绝对值不等式 :
2、区间与邻域
① 区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
开 (a, b) x | a x b 有限区间 闭 a, b x | a x b 区间 半开半闭 a, b x a x b 半无限 a, , (, b) 无限区间 全无限 (-, +)

高数一考纲

高数一考纲

一、函数、极限和连续(一)函数1. 知识范围(1)函数的概念:函数的定义函数的表示法分段函数(2)函数的简单性质:单调性奇偶性有界性周期性(3)反函数:反函数的定义反函数的图象(4)函数的四则运算与复合运算(5)基本初等函数:幂函数指数函数对数函数三角函数反三角函数(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。

会求分段函数的定义域、函数值,并会作出简单的分段函数图像。

(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。

(3)了解函数y=ƒ(x)与其反函数y=ƒ-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限1. 知识范围(1)数列极限的概念:数列数列极限的定义(2)数列极限的性质:唯一性有界性四则运算定理夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x →-∞)时函数的极限函数极限的几何意义(4)函数极限的定理:唯一性定理夹逼定理四则运算定理(5)无穷小量和无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量与无穷大量的性质两个无穷小量阶的比较(6)两个重要极限sinx 1lim =1 lim(1+ )x = e x→0 x x→∞ x2. 要求(1)理解极限的概念(对极限定义中“ε- N”、“ε- δ”、“ε- M”的描述不作要求),能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

高数1大一上知识点总结

高数1大一上知识点总结

高数1大一上知识点总结高等数学是大学理科类专业中的一门重要的基础课程,它为我们后续学习更深入的数学知识打下了坚实的基础。

大一上学期的高等数学1主要包含了数列与极限、函数与极限、导数与微分等内容。

接下来,我将对这些知识点进行总结。

一、数列与极限数列是由一系列实数按一定顺序排列而成的集合。

数列的极限是指当数列中的元素无限接近某个常数时的结果。

对于数列的极限的求解,主要有极限的性质、夹逼定理、Stolz定理等方法。

通过掌握这些方法,我们可以判断数列是否收敛以及求解极限值。

二、函数与极限函数是用来描述数值之间的关系的,而函数的极限则是描述函数在某点附近的取值变化趋势。

我们可以通过函数的极限来判断函数在某一点是否连续,进而进行更深入的讨论。

同时,函数的极限也与其导数密切相关,是后续学习微积分的重要基础。

三、导数与微分导数是描述函数在某一点附近的变化率,它的几何意义是函数曲线在该点处的切线斜率。

通过对函数求导,我们可以研究函数的极值、拐点以及函数曲线的形态。

微分则是将函数的变化量表示为自变量的变化量与函数的导数的乘积,是微积分中的一项重要运算。

在导数与微分的学习中,我们需要掌握导数的基本运算法则,如乘法法则、除法法则、链式法则等,并能够应用导数来求解函数的最值、函数图像的特性等问题。

此外,对于隐函数和参数方程的导数求解也应加以注意。

四、常微分方程常微分方程是指含有未知函数及其导数的方程,它是数学与现实问题相结合的桥梁。

通过对常微分方程的理解和求解,我们可以解决许多实际问题,如物理、化学、生物等领域中的动力学问题。

在常微分方程的学习中,最常见的是一阶常微分方程的求解。

我们需要掌握分离变量法、齐次方程法、常数变易法等常见的解题方法,并能够应用这些方法解决具体问题。

以上就是大一上学期高等数学1的主要知识点总结。

通过对这些知识点的学习,我们可以建立起扎实的数学基础,为后续学习打下坚实的基础。

同时,我们还应注重理论联系实际,将所学知识应用于实际问题的解决中,以锻炼自己的综合思考和解决问题的能力。

高数第一章函数

高数第一章函数

A ( r )12
当x 在D内取定一个数值 x0 时,y f x 有确定的
值与之相对应, 则称此值为 y f x 在 x0 处的函数值
记为: f x0 或
f x
f x x x 0
x x0 f x0
y
x x0
当 x 取遍 D 内的各个数值时, 对应的函数值的全体 构成了函数 y 的值域 f ( D ). 注: 1、当自变量的值改变时, 函数值不一定改变。 即
弹簧秤能承担的总重量. 介于某两个定数(点)之间的一切实数(点) 定义1 称为区间。 而那两个定数(点)称为这个区间的端点。
以 a, b 为端点的区间:
开区间 ( a , b ) x
a x b
a a
b b
3
x x
闭区间 [ a , b ] x a x b
半开区间 无限区间
y f ( x) , x D 其中x为自变量;y 为因变量, D为定义域。
记为

当x取遍D内所有元素时,对应的y所组成的数集W 称为函数的值域,记作
W W [ f ( x)] { y y f ( x), x D}
9
1、函数的定义
设 x 与 y 是两个变量,当 x 在某个实数集D内任取定 一数值时, y 按照一定的法则总有确定的数值与它对应。 则称 y 是 x 的函数。 记为 • 定义域
例.
三、函数的表示法(如书自学) 公式法 、图象法 、列表法.
15
四. 反函数 1. 反函数的概念及性质 可以根据问题的需要 在研究两个变量间的函数关系, 任意选取其中一个为自变量, 则另一个就是因变量。
1 2 S gt 距离S是时间 t 的函数 2 2 S 若用S来确定所需要的时间 t t g 即 t 是S的函数

山东专升本高数1第一章函数极限和连续

山东专升本高数1第一章函数极限和连续

第一章函数、极限和连续【考试要求】一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限.5.熟练掌握分段函数连续性的判定方法.【考试内容】一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()y f x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f 外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法(1)函数的显式表示法(显函数):()y f x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln x x e y x e x-=++等. (2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出y =就把隐函数化成了显函数.但并非所有的隐函数都能显化,隐函数的显化有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩ 是由两个解析式表示的定义域为(,)-∞+∞的一个函数.(4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来 ()()x t y t ϕφ=⎧⎨=⎩ (t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程2cos2sin x t y t=⎧⎨=⎩表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x的定义域为D,数集X D⊂,如果存在正数M,使得()f x M≤对任一x X∈都成立,则称函数()f x在X上有界.如果这样的M不存在,就称函数()f x在X上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M 大的数都是函数()f x 的界.2.单调性设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当.12x x <.时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数.3.奇偶性设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()c o s f x x =、2()f x x =都是偶函数,()s i n f x x =、()a r c t a n f x x =是奇函数,而()s i nc o s f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证.4.周期性设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数s i nx 、c o s x 都是以2π为周期的周期函数,函数tan x 是以π为周期的周期函数.(三)函数的运算1.和差积商运算设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠ ,则我们可以定义这两个函数的下列运算:(1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈;(3)商f g :()()()f f x x g g x ⎛⎫= ⎪⎝⎭,\{()0,}x D x g x x D ∈=∈.2.反函数(函数的逆运算) 对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()y f x =的定义域为D ,值域为M ,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算) 设函数()y f u =的定义域为f D ,函数()u g x =的定义域为g D ,且其值域g f R D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f 能构成复合函数的条件是函数g 的值域g R 必须含在函数f 的定义域f D 内,即g f R D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数幂函数:y x μ=(R μ∈是常数); 指数函数:x y a =(0a >且1a ≠); 对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =); 三角函数:2222sin 22sin cos cos2cos sin 12sin 2cos 1x x x x x xx x ==-=-=-,cos y x =,tan y x =,cot y x =,221sec cos sec 1tan sin cos 09098990y x xx xxlokiujkLKO ppp ===+,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记.(1)反正弦函数arcsin y x =:是由正弦函数sin y x =在区间[,]22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,]22ππ-.(2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π.(3)反正切函数arctan y x =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-. (4)反余切函数cot y arc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π.2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,()(),[()]x f x g x xe g f x -===,ln(y x =+,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当n N >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim n n x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在. 说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n →+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一. 性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界.说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的.性质(3):(收敛数列的保号性)如果lim n n x A →∞=,且0A >(或者0A <),那么存在正整数N ,当n N >时,都有0n x >(或0n x <).(二)函数的极限1.函数极限的定义(1)0x x →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当0x x →时的极限,记作lim ()x x f x A →=或()f x A →(当0x x →). 说明:函数的左极限0lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x当x 大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞). 说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0x x →为例)性质(1):(函数极限的唯一性)如果0lim ()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M ≤. 性质(3):(函数极限的局部保号性)如果0lim ()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <).(三)极限运算法则1.如果0lim ()x x f x A →=,0lim ()x x g x B →=,则有(1)000lim[()()]lim ()lim (x x x x x x f x g x f x g →→→±=±;(2)000lim[()()]lim ()lim (x x x x x x f x g x f x g x →→→⋅=⋅;(3)000lim ()()lim ()lim ()x x x x x x f x f x A g x g x B →→→==,其中0B ≠;(4)00lim[()]lim ()x x x x cf x c f x →→=,其中c 为常数;(5)00lim[()][lim ()]n n x x x x f x f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim n n x A →∞=,lim n n y B →∞=,则有 (1)lim()n n n x y A B →∞±=±; (2)lim()n n n x y A B →∞⋅=⋅; (3)lim n n nx A y B →∞=,其中0n y ≠(1,2,n = )且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,0lim ()u u f u A →=,且存在00δ>,当00(,)x U x δ∈ 时,有0()g x u ≠,则00lim [()]lim ()x x u u f g x f u A →→==. 说明:本法则以0x x →为例,其他趋向下亦成立.(四)极限存在准则1.准则I 如果数列{}n x 、{}n y 及{}n z 满足下列条件:(1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)lim n n y A →∞=,lim n n z A →∞=, 那么数列{}n x 的极限存在,且lim n n x A →∞=. 准则I ' 如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈ (或x M >)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=, 那么0()lim ()x x x f x →→∞存在,且等于A . 说明:准则I 及准则I '称为夹逼准则.2.准则II 单调有界数列必有极限.准则II ' 单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.00sin sin 2lim 1,lim 12x x x x x x→→==,可引申为()0002sin ()lim 1()sin ()lim 1,()0()sin 222lim lim ,5tan353150:sin ,,,tan ,arcsin 1,ln(1)x x x x xx x x x x x x x x x x x x x x x x x xe x ϕϕϕϕϕϕ→→→→==→⋅==⋅→-+ ,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立).2.10lim(1)1lim(1)xx x x x ee x →→∞+=+= 或 1lim(1)x x e x →∞+=,可引申为1()()021122lim [1()]2lim (1)1x x xx x x x ee x ϕϕϕ→-++--→∞+=⎡⎤-+=⎢⎥+⎣⎦(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x e x ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立).说明:数列亦有第二种极限形式,即1lim(1)n n e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n →∞时的无穷小. 说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义.(2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大).说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大. 2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim 0βα=,则称β是比α高阶的无穷小,记作()o βα=;(2)如果lim βα=∞,则称β是比α低阶的无穷小;(3)如果lim 0c βα=≠,则称β与α是同阶无穷小;(4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ; .3.无穷小的性质(1)有限个无穷小的和是无穷小.(2)常数与无穷小的乘积是无穷小.(3)有限个无穷小的乘积是无穷小.(4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',lim βα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释). 说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ; 0x →时tan ~x x ,可引申为0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ;0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕϕ-; 0x →时11~x n-,可引申为()0x ϕ→时,11~()x nϕ-; 0x →时1~x e x -,可引申为0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[(x x y f x ∆→∆→∆=+∆,则称函数..在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零).连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()y f x =在点0x 连续.2.左连续、右连续及区间连续(1)左连续:0lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::0lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0x x =处没有定义;(2)虽在0x x =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值.2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=.3310,(0,1)()1,[0,1],(0)1,(1)1,(0,1),()0x x f x x x x f f f ξξ+-==+-∈=-=∈= 3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数.1.设()12x f x x=-,求[()]f f x . 解:求[()]f f x 就是用()f x 代替x然后化简,得12[()]1221212xx x f f x x x x x-==---⋅-.2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩,()x g x e =,求[()]f g x .解:当01x e ≤≤即0x ≤时,22[()]()x x f g x e e ==,当12x e <≤即0ln 2x <≤时,[()]3x f g x e =,故2,0[()]3,0ln 2x x e x f g x e x ⎧≤=⎨<≤⎩. 【例1-2】求函数的定义域. 1.()ln(1)f x x =+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤;由可得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由ln(1)x -可得10x ->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2. 2.2()arccos(2)2f x x x x =+---.10x -≥,即..;由220x x --≠即(1)(2)0x x +-≠可得1x ≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3] .【例1-3】判断函数的奇偶性.1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性.(1)()()()()f x f x g x g x +-++- 解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数.(2)()()()()f x f x g x g x --++- 解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数.2.判定函数()ln(f x x =+的奇偶性.解:因()ln(f x x -=-+ln(x =-+1ln x=+)()x f x =-+=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n n n n n→∞+++ . 解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:。

高数第一章函数与极限总结

高数第一章函数与极限总结

高数第一章函数与极限总结高数作为数学的第四门学科,函数与极限是其中重要的知识点。

本文就高数第一章函数与极限做一个总结。

1、函数函数是一种特殊的数学关系,它将某种输入关系映射到另一种输出关系。

函数可以分为偶函数和奇函数,偶函数是输入与输出之间保持对称关系的函数,而奇函数是输入与输出之间不保持对称关系的函数。

二次函数是函数中的重要概念,其中y=ax2+bx+c将等号两边的关系形式分解为三个特殊情况,其中一种情况是二次函数,即y=ax2+b,另一种情况为一次函数,即y=bx+c。

2、极限极限是高数中的重要概念,它是指在某种情况下,当某个表达式中的变量x趋近某一特定值时,表达式中变量y的值趋近某一特定值。

极限有三种情况:零点极限、无穷大极限和无穷小极限。

零点极限指的是当某个表达式中的变量x趋近某一特定值时,表达式中变量y的值接近零。

无穷大极限指的是当某个表达式中的变量x趋近某一特定值时,表达式中变量y的值接近正无穷大。

无穷小极限指的是当某个表达式中的变量x趋近某一特定值时,表达式中变量y的值接近负无穷小。

极限的计算方法有三种:简单极限法、分步极限法和法则极限法。

简单极限法指的是当某个表达式中的变量x趋近某一特定值时,直接求解出极限值。

分步极限法指的是先进行一些简单的运算,然后再求解极限值。

法则极限法指的是利用数学法则和函数定义求解极限值。

总结本文针对高数第一章的函数与极限概念进行了总结,函数可以分为偶函数与奇函数,其中二次函数是常见的特殊情况。

极限分为零点极限、无穷大极限和无穷小极限,计算极限则有简单极限法、分步极限法和法则极限法。

这些概念在后续学习中均会发挥重要作用,需要我们深入理解并掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有–xD(f ).
(1) 若xD(f ). 有f (–x)= f (x). 则称f (x)为偶函
数. 其图形关于y 轴对称.
(2) 若xD(f ). 有f (–x)= –f (x). 则称f (x)为奇
函数. 其图形关于原点对称.
3. 周期性. 设f (x)的定义域为D(f ). 若存在常数
2. 称由基本初等函数经有限次加, 减, 乘, 除运算 和有限次复合运算而构成的函数为初等函数.
如 y ln cos x
2
,y
sin
2
( x 1 )都是初等函数
.
但也有很多不是初等函数的函数.
例3. 符号函数
1 y sgn x 0 1
| x | x 0 x 0 x 0
应规则相同.
2. 复合函数 设y=f (u). 即, y是u的函数, 而u是x的函数 u=(x). 一般说来, 这时, y通过中间变量u而 成为x的函数.
x u y

f
而函数式则可通过代入运算而得到: 将u=(x)代入到y =f (u)中. 得到y=f [(x)].
称它为由f (u)和(x)构成的复合函数.
有界.否则, 称f (x)在(a, b)内无界. 几何意义:由于| f (x)| M M f (x) M.因此, f
y M b o a x
(x)在(a, b)内有界. 就表示了
f (x)的图形夹在两平行直线
y = M 之间.
M
§1-2 函数
一、函数的概念
定义1.设实数集X, Y 均非空. 若存在对应规则f ,
使得xX, 按照f, 都有唯一确定的yY, 与之对
应. 则称f是定义在X上的一元实值函数. 记作
f : XY, xy
二、函数的运算
设函数f (x), g(x). 定义域分别为A=D(f ), B=D(g). 1. 两函数相等它们的定义域相同, 并且, 对
二、集合的概念及运算
1. 集合的概念 (略) 2. 区间 (略) 3. 邻域 x0R, >0. (1) 记U(x0, ) = (x0 , x0+ )={xR||xx0|< } 称为x0的 邻域. 其中x0称为这个邻域的中 心, 称为这个邻域的半径. 如图

x0 x0 x 0 + x
T0, 使xD(f ). 有xTD(f ). 且 f (xT)=f (x).则称f (x)为周期函数. T为 f (x)的周期. 由于周期函数的函数值是呈周期变化. 因此, 周期函数的图形也是呈周期性变化. 会周而复始 的重复出现. 如y=sinx, y=cosx.
4. 有界性
定义4. 设f (x)在(a, b)有定义,若存在常数M>0, 使 x(a, b), 有| f (x) |M.则称f (x)在(a, b)内
例1.设y=f (u)=lgu, 而u=(x)=sinx. 则它们构成的复合函数为 y=f [(x)] = lgsinx.
例2.设y=f (u)=lg(u–2), 而u=(x)=sinx. 代入后
y=lg(sinx –2). 因定义域为空集, 所以它们 不能构成复合函数.
三、反函数
定义3: 设函数y=f (x)的定义域为X, 值域为Y.
且f 是从X到Y的一一对应(即, f 是从X
到Y的单射和满射), 则yY. 都有唯一 确定的x与之对应. 因此, x是y的函数, 称
它为y=f (x)的反函数. 记作 x= f –1 (y). 由于习惯上用x表自变量, y表因变量. 所
以, 反函数也记为y =f –1 (x).
四、初等函数
1. 基本初等函数 幂函数y = x, 指数函数y = ax (a>0, a1), 对数函数y =logax (a>0, a1), 三角函数y=sinx, y=cosx, y=tanx , y=cotx, y=secx, y=cscx, 反三角函数 y=arcsinx, y=arccosx,y=arctanx, y=arccotx 以及常数函数y=c(c为常数), 这6种函数统称为 基本初等函数.
1 2 3 4
如, 若取 x = 1,2, 则[x]=1;
若取 x = –1, 2, 则[x]= –2;
若取 x = 2, 则[x]= 2; 其图象为
y=[x]
取整函数也不是初等函数.
例6. 将下列函数分解成基本初等函数的复合. (1) y = cos2x, 是由y = u2, u= cosx复合而成.
x 0
x 0 x0
其图象为
y 1 0

–1
x
符号函数是一个分段函数, 它不是初等函数, 且有
| f ( x ) | f ( x ) sgn f ( x )
例4. 取整函数
y = [x], 其中[x]表示不超过x的最大整数.
y
3 2 1 0 -4 -3 -2 -1 -1 -ቤተ መጻሕፍቲ ባይዱ -3 x
1
(2) y a , 是由 y a ,
x
u
u
1 x
复合而成 .
x
(3) y =
1 –x, arctane 是由y=arctanu, u 复合而成 e
.
五、函数的基本特性
1. 单调性. 设f (x)在(a, b)有定义. 若x1, x2(a, b).
x1< x2, 有f (x1)f (x2) (f (x1)f (x2)), 则称f
(x)在(a, b)上单调递增 (单调递减).
区间(a, b)称为f (x)的单调区间.
单调递增函数和单调递减函数统称为单调函数.
y f (x)单调递增 x y o x
o
f (x)单调递减
如, y = x2, 图
y y=x2
0
x
在(, 0]上单调递减, 而在[0, +)上单调递增.
2. 奇偶性. 设f (x)的定义域为D(f ). 满足xD(f ).
函 数
Future Learning
§1-1 集合,符号
一、 1. 我们用符号“” 表示“任取”
或“对于任意的” 或“对于所有的” , 符号“” 称为全称量词.
2. 我们用符号“”表示“存 符号“”称 在”. 为存在量词. 例:命题“对任意的实数x, 都存在实数y, 使得x+y=1”可表示为“xR, yR, 使x+y=1”
相关文档
最新文档