中国海洋大学《高等数学Ⅱ》课程教学大纲
高等数学2课程教学大纲

《高等数学2》课程教学大纲课程编号:110010201-2课程类别:必修课适用专业:管理学院各专业参考理论学时:128学时参考学分:8学分先修课程:初等数学一、本课程性质与目的《高等数学》是一门重要的基础理论课。
通过教学,培养学生具有运算能力、抽象思维能力、逻辑推理能力、空间想象能力和自学能力。
为学习后继课程奠定数学基础。
二、本课程的基本要求(一)函数、极限、连续1.理解函数的概念2.了解函数的单调性、周期性、有界性和奇偶性及反函数的概念。
3.理解复合函数的概念。
4.熟练掌握基本初等函数的性质及其图形。
5.会建立简单实际问题中的函数关系。
6.了解极限的概念(对给的定ε求N、δ不作过高要求),并能在学习过程中逐步加深对极限思想的理解。
7.掌握极限四则运算法则。
8.了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
9.了解无穷小、无穷大,以及无穷小的阶的概念。
会用等价无穷小求极限。
10.理解函数在一点连续的概念。
11.了解间断点的概念,并会判别间断点的类型。
12.了解初等函数的连续性、知道闭区间上连续函数的性质(介值定理、最大值和最小值定理)。
(二) 一元函数微分学1.理解导数和微分的要领,理解导数的几何意义及函数的可导性与连续性之间的关系。
2.熟练掌握导数的四则运算法则和复合函数的求导法,熟练掌握基本初等函数的导数公式。
了解微分的四则运算法则和一阶微分形式不变性。
3.了解导数的要领及高阶导数的定义。
4.掌握初等函数一阶、二阶导数的求法。
5.会求由方程所确定的隐函数及参数方程所确定的函数的二阶导数,会求反函数的导数。
6.理解罗尔定理(Rolle)和拉格朗日中值定理。
(应用不作过高要求)7.了解柯西定理(Cauchy)、泰勒定理(Taylor)。
8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。
10.会用导数判断函数图形和凹凸性,会求拐点,会描述函数的图形(包括水平和铅直渐进线)。
《高等数学(I)和(II)》教学大纲

《高等数学(I )和(II )》教学大纲课程代号:/ 学时数:150~170 学分数: 适用专业:全院工科各专业一、本课程的地位,任务和作用高等数学是人们从事高新技术,知识创新中必不可少的工具,它的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。
21世纪是信息时代,它不仅给人类生活带来日新月异的变化,也给高等数学课程的教学增添了新的内函。
高等数学是高等工程院校的一门重要的基础课,通过学习使学生受到必要的高等数学教育,使其具有一定的数学素养,为后续课程学习及今后的应用打下良好的数学基础。
二.、本课程的相关课程后续课程:大学物理、概率论与数理统计等三、本课程的基本内容及要求 第一章 函数,极限,连续 教学内容函数的概念及表示法,函数的有界性、单调性、周期性、奇偶性,复合函数,反函数,隐函数,基本初等函数的性质及其图形,初等函数,应用问题的函数关系的建立,数列极限与函数极限的定义及性质,函数的左、右极限,无穷小与无穷大的概念,无穷小的性质及其比较,极限的四则运算,极限存在的两个准则,两个重要极限e x x x xx =+=∞→→)11( 1 sin lim limx 0函数连续的概念,间断点的类型, 初等函数的连续性,闭区间上连续函数的性质. 教学要求1.理解函数的概念,掌握表示法.2.了解函数的有界性,单调性,周期性,奇偶性.3.理解复合函数及分段函数的概念,了解反函数,隐函数概念. 4.掌握简单初等函数的性质及其图形. 5.会建立简单应用问题的函数关系式.《高等数学(Ⅰ) 和(Ⅱ)》教学大纲教学大纲系列·2·6.理解数列极限与函数极限的概念.理解函数的左、右极限概念及极限存在和左、右极限的关系.7.掌握极限的性质,极限的四则运算法则.8.掌握极限存在的两个准则,并会利用它们求极限, 基本掌握利用"两个重要极限"求极限方法.9.理解无穷小与无穷大的概念. 掌握无穷小比较方法,会用等价无穷小求极限.10.理解函数连续的概念,会判别函数间断点的类型.11.了解连续函数的性质,初等函数的连续性, 理解闭区间上连续函数的性质并会利用这些性质.第二章一元函数微分学教学内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数的概念,某些简单函数n阶导数,一阶微分形式的不变性,微分在近似计算中的应用,罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理,柯西(Cauchy)中值定理,泰勒(Taylor)展开定理,洛比达(L'Hospital)法则,函数的极值及其求法,函数单调性,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数最大值和最小值的及其简单应用,弧微分,曲率半径,方程近似解的二分法和切线法。
数学分析I,II,III

中国海洋大学本科生课程大纲课程属性:学科基础课程性质:必修一、课程介绍1.课程描述:数学分析是以极限为工具研究函数的学科,是数学专业的一门重要基础课,共分三个学期讲授。
数学分析针对数学类专业一、二年级学生开设,它一方面为后继课程提供所需的基础知识,同时又为培养学生利用数学工具进行独立工作的能力提供必需的训练。
学生学好这门课程的基本内容和方法,对后继课程的学习具有关键性的作用。
通过本课程的学习,要求学生掌握一元函数微积分学、多元函数微积分学与级数理论中的基本概念、基本理论和基本运算,并培养学生对数学问题的思维能力、论证能力、运算技能和独立分析、解决问题的能力。
本课程主要内容包括:数学分析I——函数、极限和连续、实数基本定理、导数与微分、微分学基本定理及应用、不定积分。
数学分析II——定积分、定积分的应用和近似计算、数项级数、广义积分、函数项级数、幂级数、Fourier级数和Fourier变换、多元函数的极限与连续。
数学分析III——多元函数的偏导数和全微分,极值和条件极值,隐函数存在定理,含参量的积分和含参量的反常积分,多元函数各种积分的定义、性质和运算,场论初步。
2.设计思路:本课程是专业基础课,为数学专业一二年级新生设置,教学历时3个学期,教学内- 9 -容为学生专业发展的后继学习奠定必要的理论基础。
课程内容的选取基于该课程作为分析类课程的基础性地位。
课程内容主要包括三大模块:单变量微积分学、多变量微积分学、级数理论;三大模块相互联系,体现了数学分析研究的基本内容和方法。
单变量微积分学是数学分析中最基础的部分,内容是研究函数的微分、积分及其应用,重用极限与连续的工具。
主要包括函数、极限和连续、实数基本定理、导数与微分、微分学基本定理及应用、不定积分、定积分、定积分的应用和近似计算、广义积分。
多变量微积分学是在单变量微积分学的基础上,将研究的一元函数推广为更为广泛的多元函数上去。
内容包括多元函数的极限与连续、多元函数的偏导数和全微分、极值和条件极值、隐函数存在定理、含参量的积分和含参量的反常积分、多元函数各种积分的定义、性质和运算、场论初步。
《高等数学C(Ⅱ)》课程教学大纲

《高等数学C(Ⅱ)》课程教学大纲课程编号:90902006学时:32学分:2适用专业:经济学、国际贸易、人力资源管理、旅游管理、物流管理、财务管理、财务管理(注册会计会师方向)、市场营销开课部门:商学院、管理学院一、课程的性质与任务高等数学C(Ⅱ)课程是应用型本科院校经管类专业的一门专业基础课。
本课程讲授多元函数微分学、重积分的基本内容,通过该课程的学习,使学生掌握多元函数微积分的基本概念、基本理论和基本方法,培养学生的抽象思维能力、逻辑推理能力、空间想象能力,为学生解决专业领域的实际问题奠定基础。
三、实践教学的基本要求无四、课程的基本教学内容及要求第七章多元函数微分学教学内容:(1)空间解析几何基本知识;(2)多元函数的基本概念;(3)二元函数的极限和连续;(4)偏导数;(5)全微分;(6)多元复合函数微分法;(7)多元函数的极值;(8)多元函数最值在经济领域的应用。
重点与难点重点:多元函数概念,偏导数与全微分的概念,多元复合函数求导法则,多元函数的极值及其求法,多元函数最值在经济领域的应用。
难点:偏导数的概念,全微分的概念,多元复合函数求导法则,多元函数的极值及其求法。
课程教学要求:了解空间曲线的一般方程、空间曲面的方程,空间曲线在坐标面的投影,二元函数的极限和连续性;理解偏导数的概念,全微分的概念,掌握多元函数偏导数、二元函数的极值和条件极值的计算方法;会用多元函数极值理论解决一些经济问题。
教师介绍多元函数微分学的有关概念,要注意与一元函数微分学的相关概念进行对比。
要突出多元函数最值问题的经济应用。
第八章重积分教学内容:(1)二重积分的概念与性质;(2)二重积分的计算;(3)重积分的应用举例;(4)广义二重积分。
重点与难点重点:二重积分概念与性质,二重积分的计算,二重积分的经济应用。
难点:二重积分概念,二重积分的计算,二重积分的经济应用,广义二重积分。
课程教学要求:了解广义二重积分;理解二重积分的概念和性质;掌握二重积分的计算方法(直角坐标、极坐标);掌握用二重积分求面积、体积的方法;会建立一些经济问题的二重积分模型并求解。
《高等数学II》教学大纲

《高等数学II》课程教学大纲一、课程基本信息课程代码:课程名称:高等数学II英文名称:Higher mathematics II课程类别:公共课学时:64学分:4适用对象: 理工科专业考核方式:考试先修课程:高等数学I二、课程简介《高等数学II》是高等学校理工科专业学生的必修课。
通过本课程的学习,使学生掌握高等数学的基本概念、基本理论和基本运算技能,为学习后续课程和获得进一步的数学知识奠定必要的基础。
通过知识内容的传授,培养学生的运算能力、抽象思维能力、逻辑推理能力、空间想象能力及综合运用所学知识去分析问题和解决问题的能力。
其具体内容包括:空间解析几何与向量代数;多元函数微积分学(多元函数微分学、重积分、曲线积分和曲面积分);无穷级数。
Higher mathematics II is a compulsory course for students majoring in science and engineering in institutions of higher learning. Through learning of this course, make the students master the basic concepts of higher mathematics and the basic theory and basic computing skills, for learning the follow-up courses and further the mathematics knowledge to lay the necessary foundation. Through the knowledge content of teaching, cultivate students' operation ability, abstract thinking ability, logical reasoning ability, space imagination ability and the integrated use of knowledge to the ability to analyze and solve problems. The specific contents include: spatial analytic geometry and vector algebra; Multifunction calculus (multifunction differential calculus, reintegration, curvilinear integral and surface integral); Infinite series.三、课程性质与教学目的目前,《高等数学II》已成为理工科类及部分经济、管理类专业的主干学科基础课程,是教育部审定的核心课程和硕士研究生入学考试“数学1”和“数学2”的必考科目,对学好其它专业课程意义重大。
(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决应用问题。
三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。
难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。
高等数学C2(二) 教学大纲

高等数学C2(二)一、课程说明课程编号:130708X20课程名称(中/英文):高等数学C2(二)/Advanced Mathematics C2(Ⅱ) 课程类别:选修学时/学分:64/4先修课程:高等数学C2(一)适用专业:医学类(药学、临床医学八年制除外)教材、教学参考书:《医用高等数学》李飞宇、张佃中主编南科学技术出版社2012.9二、课程设置的目的意义本课程主要介绍二重积分、无穷级数、概率论与数理统计的基本知识.二重积分和无穷级数作为基础知识和工具出现在概率论与数理统计中.概率论与数理统计是研究随机现象统计规律性的数学学科,它的理论和方法在生物医学中已经取得了广泛而又深入的应用.设置本课程的目的意义是使学生掌握概率论与数理统计的基本概念、基本理论,学会处理随机现象的基本思想与方法,培养学生应用概率统计方法分析和解决实际问题的能力,为学习后继课程、从事生物医学科学研究和临床医疗奠定必要的统计学理论基础.三、课程的基本要求本课程基本要求的高低用不同词汇加以区分,对概念、理论,高要求用“理解”一词表述,低要求用“了解”一词表述;对方法、运算,高要求用“掌握”一词表述,低要求用“会”或“了解”表述.学生对高要求部分必须深入理解、牢固掌握、熟练应用.具体要求如下:第1章二重积分1.理解二重积分的概念,了解二重积分的性质.2.掌握二重积分的计算方法(直角坐标、极坐标).3.会用二重积分求一些几何量(如面积、体积等).第2章无穷级数1.理解无穷级数收敛、发散及和的概念,了解无穷级数的基本性质及收敛的必要条件.2.掌握几何级数和p-级数的收敛性.3.了解正项级数的比较审敛法,掌握正项级数的比值审敛法.4.了解交错级数的莱布尼兹定理,会估计交错级数的截断误差.5.了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与条件收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求).8.了解幂级数在其收敛区间内的一些基本性质, 会求一些幂级数在收敛区间内的和函数, 并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.会利用e x、sin x、cos x、ln(1+x)的麦克劳林展开式将一些简单的函数间接展开成幂级数.第3章随机事件与概率1.了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算规律.2.理解概率的古典定义与几何定义,会计算简单的古典概率和几何概率.3.了解事件频率的概念,理解概率的统计定义.4.了解概率的公理化定义,掌握概率的基本性质(包括加法公式).5.理解条件概率的概念和基本性质,掌握概率的乘法公式、全概率公式和贝叶斯公式.6.理解事件的独立性概念,掌握伯努利概型及其计算方法.第4章随机变量及其分布1.理解随机变量的概念.2.理解离散型随机变量及其概率函数的概念和性质,掌握超几何分布、二项分布、几何分布与泊松分布,了解二项分布的泊松逼近.3.掌握连续型随机变量及其密度函数的概念和性质,掌握均匀分布、指数分布和正态分布.4.理解分布函数的概念,了解其性质.掌握利用概率分布计算有关事件的概率.5.理解二维随机变量的联合分布和边缘分布的概念,了解二维随机变量的分布函数、概率函数、密度函数的基本性质,会用联合分布求边缘分布.了解二维均匀分布和二维正态分布.6.理解随机变量相互独立的概念和充要条件, 会运用随机变量的独立性进行概率计算.7.会求简单一、二维随机变量的函数的概率分布,了解离散卷积公式与泊松分布、二项分布的再生性,掌握卷积公式和独立正态变量的线性函数的分布.第5章随机变量的数字特征、极限定理1.理解随机变量数学期望的定义及其基本性质,掌握用定义求随机变量的数学期望,会计算简单一、二元随机变量函数的数学期望.2.了解随机变量方差、协方差和相关系数的概念和基本性质,会求随机变量方差、协方差和相关系数.3.掌握二项分布、泊松分布、均匀分布与正态分布的数学期望和方差,了解几何分布、指数分布的数学期望和方差,了解二维正态分布各参数的意义.4.了解变异系数以及随机变量的距的概念.5.掌握切比雪夫不等式,了解切比雪夫大数定律和伯努利大数定律.6.了解独立同分布场合中心极限定理和棣莫弗-拉普拉斯极限定理,会用它们近似计算关于独立同分布随机变量之和的概率.第6章样本及抽样分布1.理解总体与样本的概念.2.理解简单随机抽样和简单随机样本的概念,会用总体的分布函数、概率函数和密度函数分别表示简单随机样本的(联合)分布函数、概率函数和密度函数.3.理解统计量、样本矩的概念,了解顺序统计量.理解样本均值的数学期望和方差;掌握样本方差的计算方法,了解样本方差的数学期望.4.了解χ2分布、t分布和F分布的定义与基本性质.5.了解分位数的概念,理解标准正态分布、χ2分布、t分布和F分布的上侧分位数的性质.6.掌握常见的抽样分布,会求一些简单的抽样分布.第7章参数估计1.理解点估计的概念.2.掌握矩估计法与极大似然估计法.3.理解估计量的无偏性(含渐近无偏性)和有效性,了解估计量的相合(一致)性.会一些估计量无偏性和有效性的简单证明.4.理解区间估计的概念.掌握单个正态总体均值与方差的置信区间的求法,了解两个正态总体均值差与方差比的区间估计.四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求无.六、考核方式及成绩评定七、大纲撰写:大纲审核:。
《高等数学A(下)》课程教学大纲

高等数学A(下)课程教学大纲(Advanced Mathematics A(II))一、课程概况课程代码:0801002学分:5学时:80(其中:讲授学时80 ,实验学时0 ,上机学时0 )先修课程:初等数学适用专业:全校各专业(普通本科生源)建议教材:《高等数学》,同济大学,高等教育出版社,2014.7课程归口:理学院课程的性质与任务:本课程是理工科及经管类专业的通识必修课。
通过本课程的学习,使学生系统地获得高等数学的基本知识、必要的基础理论和常用的运算方法;提高学生的运算能力、抽象思维能力、逻辑推理能力、几何直观和空间想象能力;并能运用数学知识、理论、方法解决相关的实际应用问题;提高学生的数学素养,为学生学习后续相关课程及终身学习奠定必要的数学基础。
二、课程目标目标1.能够获得课程基本概念与性质。
目标2. 能够掌握本课程要求的计算方法。
目标3. 能够具有一定的抽象概括、逻辑推理等能力。
目标4. 能够具有一定的运算能力。
目标5. 能够具有一定的数学思维与分析能力。
本课程支撑专业人才培养方案中毕业要求1-1,对应关系如表所示。
三、课程内容及要求(一)空间解析几何与向量代数1.教学内容(1)能够理解空间直角坐标系(2)能够理解向量及其运算(3)能够了解曲面及其方程(4)能够掌握空间曲线及其方程(5)能够掌握平面及其方程(6)能够掌握空间直线及其方程(7)能够了解二次曲面2.基本要求(1)重点与难点:向量的坐标表达式,数量积,向量积,平面的点法式方程,直线的点向式方程,曲面方程,空间曲线的参数方程和一般方程;向量积,空间曲线与曲面方程,空间曲线在坐标平面上的投影。
(2)教学方法:启发式互动讲授结合多媒体辅助;适当课堂练习;及时了解学生的作业状况并对共同的问题作及时解答;安排好课后答疑。
3.思政内容注重理论联系实际,尊重客观规律,树立社会主义核心价值观,增强专业素养,强调理论对实践的指导意义。
(二)多元函数微分及应用1.教学内容(1)能够了解多元函数的基本概念(2)能够理解多元函数的极限与连续(3)能够理解偏导数(4)能够理解全微分及其应用(5)能够掌握多元复合函数的求导法则(6)能够掌握隐函数的求导公式(7)能够理解微分法在几何上的应用(8)能够了解方向导数与梯度(9)能够掌握多元函数的极值及其求法2.基本要求(1)重点与难点:多元函数的概念,偏导数和全微分的概念,多元复合函数的微分法;多元复合函数的高阶偏导、多元隐函数的偏导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学Ⅱ》课程教学大纲
撰写人:姚增善
撰写时间:2011 年7月
一、课程基本信息
开课院系:数学科学学院
课程英文名称:Advanced Mathematics Ⅱ
课程类别:通识课
适用专业:理、工科各专业
是否独立开课:独立
先修课程:无
课程总学时:96+80=176学时
总学分:6+5
二、课程性质、目的与任务:
《高等数学Ⅱ》是理、工科专业的一门重要基础课,通过本课程的教学,使学生获得函数、极限及连续、一元及多元函数微积分、向量代数和空间解析几何、无穷级数、常微分方程等方面的基本理论和基本运算技能。
为学习其它课程及今后工作奠定必要的数学基础。
在教学过程中,要通过各个教学环节逐步培养学生具有抽象概括能力,逻辑推理能力,空间想象能力和自学能力,要特别注意培养学生运用所学知识去分析、解决实际问题的能力。
三、教学安排:
四、考核方式:
考试形式:笔试(闭卷或开卷)、口试、写小论文等形式。
五、推荐教材及参考书资料(注明编者,出版社,出版时间及版次):
教材:
刘新国主编,高等数学(上、下册),石油大学出版社,2011年8第二版
参考书:
[1] 赵树嫄主编,微积分,中国人民大学出版社,1990年第二版
[2]同济大学编,高等数学(上、下册),同济大学编,高等教育出版社。
2002年7月第五版。