2015年高考数学优题训练系列(17)

合集下载

2015年高考数学解答题突破:第17题

2015年高考数学解答题突破:第17题

第17题 概率计算与随机变量分布列问题的解题策略(理)【高考透视】1.主要类型:(1)概率计算时,根据限制条件,进行分类讨论求解.(2)含有“至少…‘至多”等问题的求解,一般要分类讨论.(3)根据随机变量的不同取值,进行分类讨论求其概率值.(3)主要考题类型:㈠超几何分布㈡事件的相互独立性㈢独立重复试验与二项分布㈣均值与方差的实际应用。

2.解题思路:一般结合限制条件或随机变量的可能取值,分类讨论求解.3.注意事项:(1)准确确定分类对象及分类标准,要不重不漏.(2)随机变量的各种取值情况要考虑全面,其对应的概率计算要准确.【典例1】 (12分)(2014·汕头模拟)某市日前提出,要提升市民素质和城市文明程度,促进经济发展有大的提速,努力实现“幸福全市”的共建共享.现随机抽取50位市民,对他们的(1)求这50(2)以这50人为样本的幸福指数来估计全市市民的总体幸福指数,若从全市市民(人数很多)任选3人,记ξ表示抽到幸福级别为“非常幸福或幸福”市民的人数.求ξ的分布列.(3)从这50位市民中,先随机选一个人,记他的幸福指数为m ,然后再随机选另一个人,记他的幸福指数为n ,求n<m +60的概率P .[审题] (1)切入点:根据计算公式代入数值,求解.关注点:幸福指数(分)的平均值.(2)切入点:确定ξ的可能值及其对应的概率值.关注点:准确求出ξ各取值对应的概率.(3)切入点:计算基本事件总数,待求事件包含基本事件数,用古典概型计算. 关注点:m ,n 的取值不定,需对m ,n 的取值分类讨论. [审题](1)记E(X)表示这50位市民幸福指数的数学期望,则E(X)=150(90×19+60×21+30×7+0×3)=63.6(分)2分 (2)ξ的可能取值为0,1,2,3P(ξ=0)=C 03⎝⎛⎭⎫450⎝⎛⎭⎫153=11253分 P(ξ=1)=C 13⎝⎛⎭⎫451⎝⎛⎭⎫152=121254分P(ξ=2)=C 23⎝⎛⎭⎫452⎝⎛⎭⎫151=481255分P(ξ=3)=C 33⎝⎛⎭⎫453⎝⎛⎭⎫150=641256分 所以ξ的分布列为7分(3)基本事件的总数为A 250=2 4508分满足条件n<m +60的有如下各种情况:①满足m =0时,n =0,30的事件数为:A 13A 19,②满足m =30时,n =0,30,60的事件数为:A 17A 1309分③满足m =60时,n =0,30,60,90的事件数为:A 121A 149④满足m =90时,n =0,30,60,90的事件数为:A 119A 14910分所以P =A 13A 19+A 17A 130+A 121A 149+A 119A 149A 250=3×9+7×30+21×49+19×4950×49=2 1972 45012分 [变题](2014·辽宁高考)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E(X)及方差D(X).【解】 (1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A 1)=(0.006+0.004+0.002)×50=0.6,P(A 2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率为P(X =0)=C 03·(1-0.6)3=0.064, P(X =1)=C 13·0.6(1-0.6)2=0.288, P(X =2)=C 23·0.62(1-0.6)=0.432, P(X =3)=C 33·0.63=0.216. 分布列为因为X ~B(3,0.6)0.6×(1-0.6)=0.72.【典例2】已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列;(2)求X 的数学期望E (X ).[自主解答] (1)由题意得X 取3,4,5,6,且P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021, P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121. 所以X 的分布列为(略)(2)由(1)知E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.【小结】在超几何分布中,随机变量X 取每一个值的概率是用古典概型计算的,明确每一个基本事件的性质是正确解答此类问题的关键.【典例3】某项选拔共有三轮考核,每轮设有一个问题,回答问题正确者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45、35、25,且各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)记该选手在考核中回答问题的个数为ξ,求随机变量ξ的分布列与数学期望.解:记“该选手能正确回答第i 轮的问题”为事件A i (i =1,2,3),则P (A 1)=45,P (A 2)=35,P (A 3)=25. ∴该选手被淘汰的概率P =1-P (A 1A 2A 3)=1-P (A 1)P (A 2)P (A 3)=1-45×35×25=101125. (2)ξ的所有可能取值为1,2,3.则P (ξ=1)=P (A 1)=15,P (ξ=2)=P (A 1A 2)=P (A 1)P (A 2)=45×25=825, P (ξ=3)=P (A 1A 2)=P (A 1)P (A 2)=45×35=1225, ∴ξ的分布列为∴E (ξ)=1×15+2×825+3×1225=5725.。

2015年全国各地高考数学试题及解答分类大全( 数列)

2015年全国各地高考数学试题及解答分类大全( 数列)

2015年全国各地高考数学试题及解答分类大全(数列)一、选择题:1.(2015北京理) 设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a --> 【答案】C考点:1.等差数列通项公式;2.作差比较法2.(2015福建理)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( )A .6B .7C .8D .9 【答案】D 【解析】 试题分析:由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .考点:等差中项和等比中项.3、(2015全国新课标Ⅰ卷文)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )124. (2015全国新课标Ⅱ卷文)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列5.(2015全国新课标Ⅱ卷理)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( ) A .21 B .42 C .63 D .84 【答案】B考点:等比数列通项公式和性质.6.(2015全国新课标Ⅱ卷文)已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.7. (2015浙江理)已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>8.(2015重庆理)在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、6【答案】B【考点定位】本题属于数列的问题,考查等差数列的通项公式与等差数列的性质.二、填空题:1.(2015安徽文)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .2.(2015安徽理)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .3.(2015福建文)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.4.(2015广东理)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += 【答案】10.【解析】因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,345675525a a a a a a ++++==即55a =,285210a a a +==,故应填入10.【考点定位】本题考查等差数列的性质及简单运算,属于容易题.5. (2015广东文)若三个正数a ,b ,c 成等比数列,其中526a =+56c =-则b = .【答案】1 【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以(25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1. 考点:等比中项.6. (2015浙江文)已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = . 【答案】2,13- 【解析】试题分析:由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 考点:1.等差数列的定义和通项公式;2.等比中项.7.(2015湖南理)设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a = .【答案】13-n .【考点定位】等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量q 的方程即可求解,考查学生等价转化的思想与方程思想.8. (2015江苏)数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【解析】试题分析:由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++ 考点:数列通项,裂项求和9、(2015全国新课标Ⅰ卷文)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .10.(2015全国新课标Ⅱ卷理)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【答案】1n-【解析】试题分析:由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n S n n =---=-,所以1nS n =-. 考点:等差数列和递推关系.11. (2015陕西文、理)中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 【答案】5 【解析】试题分析:设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5. 考点:等差中项.三、解答题:1. (2015安徽文)已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .2.(2015安徽理) 设*n N ∈,n x 是曲线221n y x+=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式; (Ⅱ)记2221321n n T x x x -=,证明14n T n≥.3、(2015北京文)已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(1)42(1)22n a n n =+-=+;(2)6b 与数列{}n a 的第63项相等.【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;第二问,先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数. 试题解析:(Ⅰ)设等差数列{}n a 的公差为d. 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.4. (2015北京理)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 【解析】 ①试题分析:(Ⅰ)由16a =,可知23412,24,12,a a a ===则{6,12,24}M =;(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.第二步集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,用数学归纳法证明对任意n k ≥,n a 是3的倍数;第三步由于M 中的元素都不超过36,M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,由定义可知,1n a +和2n a 除以9的余数一样,分n a 中有3的倍数和n a 中没有3的倍数两种情况,研究集合M 中的元素个数,最后得出结论集合M 的元素个数的最大值为8.试题解析:(Ⅰ)由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.(Ⅲ)由于M 中的元素都不超过36,由136a ≤,易得236a ≤,类似可得36n a ≤,其次M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,另外,M 中的数除以9的余数,由定义可知,1n a +和2n a 除以9的余数一样,考点:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.5.(2015福建文) 等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101.【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d . 由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法.6、(2015广东文)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值; ()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.7.(2015广东理)数列{}n a 满足1212242-+-=+⋅⋅⋅++n n n na a a , *N n ∈. (1) 求3a 的值;(2) 求数列{}n a 前n 项和n T ; (3) 令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足n S n ln 22+<【答案】(1)14;(2)1122n -⎛⎫- ⎪⎝⎭;(3)见解析.(3)依题由1211112n n n a a a b a n n -+++⎛⎫=++++ ⎪⎝⎭知11b a =,1221122a b a ⎛⎫=++ ⎪⎝⎭,【考点定位】本题考查递推数列求项值、通项公式、等比数列前n 项和、不等式放缩等知识,属于中高档题. 8.(2015湖北理)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n -+-.2345113579212222222n n n T -=++++++. ② ①-②可得221111212323222222n n n n n n T --+=++++-=-,故n T 12362n n -+=-.考点:1.等差数列、等比数列通项公式,2.错位相减法求数列的前n 项和. 9. (2015湖北文)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n n T -+=-.【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向.10. (2015湖南文)设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I )证明:23n n a a +=; (II )求n S 。

2015年高考数学优题训练系列(6)

2015年高考数学优题训练系列(6)

2015年高考数学优题训练系列(6)(一)(理)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.(1)函数y =(A)[0,3] (B)[1,3] (C)[1,+∞) (D)[3,+∞)(2)某品牌空调在元旦期间举行促销活动,下面的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是(A) 13 (B) 14 (C) 15 (D) 16(3)"k<9’’是“方程221259x y k k +=--表示双曲线”的 (A)充分不必要条件(B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件(4)设变量x 、y 满足10,30,230,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数z=2x+3y 的最小值为(A)7 (B) 8 (C) 22 (D) 23(5)设S n 是等比数列{a n }的前n 项和,若423S S =,则64S S = (A)2 (B) 73 (C)310 (D)l 或2(6)己知(12)3,1,()1,1.a x a x f x nx x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是 (A)(一∞,一1] (B)(一l ,12) (C)[-1,12) (D)(0,12) (7)执行如图所示的算法,则输出的结果是 (A)1 (B)43 (C)54(D)2(8)右上图是某几何体的三视图,则该几何体的体积等于 (A)23 (B)43 (C)1 (D)13(9)己知函数()sin (0),()()062f x x x f f ππωωω=+>+=,且()f x 在区间(,)62ππ,上递减,则ω=(A)3 (B)2 (C)6 (D)5(10)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有(A) 24种 (B) 36种 (C) 48种 (D) 60种(11)椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 0y +=的对称点A 是椭圆C 上的点,则椭圆C 的离心率为(A)12 (B)12 (C)2,l 2(12)设函数3()1()f x ax x x R =-+∈,若对于任意x ∈[一1,1]都有()f x ≥0,则实数a 的取值范围为(A)(-∞, 2] (B)[0+∞) (C)[0,2] (D)[1,2](二)(文)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.(1)函数y =的定义域为(A)[一5,2] (B)(一∞,—5]U[2,+oo )(C)[一5,+ ∞)(D)[2,+ ∞) (2)函数2()12sin2x f x =-的最小正周期为 (A) 2π(B)π (C ) 2π (D)4π(3)"k<9’’是“方程221259x yk k+=--表示双曲线”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(4)设变量x、y满足10,30,230,x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数z=2x+3y的最小值为(A)7 (B) 8 (C) 22 (D) 23(5)在等比数列{a n}中,a2a3a7=8,则a4=(A)1 (B) 4 (C)2(D)(6)己知1()1,()2,f x x f ax=+-=则()f a-=(A)-4 (B-2 (C)-1 (D)-3(7)抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是(A)19(B)16(C)118(D)112(8)己知(12)3,1,()1, 1.a x a xf xnx x-+<⎧=⎨≥⎩的值域为R,那么a的取值范围是(A)(一∞,一1] (B)(一l,12) (C)[-1,12) (D)(0,12)(9)执行如图所示的算法,则输出的结果是(A)1 (B)43(C)54(D)2(10)右上图是某几何体的三视图,则该几何体的体积等于(A)13(B)23(C)1 (D)43(11)椭圆2222:1(0)x yC a ba b+=>>的左焦点为F,若Fy+=的对称点A是椭圆C上的点,则椭圆C 的离心率为(A)12(B)12 (C)2,l (12)设函数3()1()f x ax x x R =-+∈,若对于任意x ∈[一1,1]都有()f x ≥0,则实数a 的取值范围为(A)(-∞, 2](B)[0+∞) (C)[0,2](D)[1,2]参考答案 (一) BCAAB CAABDDC (二) DABAC ABCABDC。

2015年-2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

2015年-2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。

穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。

食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。

如果可能的话,每天吃一两个水果,补充维生素。

另外,进考场前一定要少喝水!住:考前休息很重要。

好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。

考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。

用:出门考试之前,一定要检查文具包。

看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。

行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。

2015年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A Y 中元素的个数为_______. 【答案】5 【解析】试题分析:{123}{245}{12345}5A B ==U U ,,,,,,,,,个元素考点:集合运算2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6考点:平均数3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______. 【答案】5 【解析】试题分析:22|||34|5||5||5z i z z =+=⇒=⇒= 考点:复数的模4.根据如图所示的伪代码,可知输出的结果S 为________.【答案】7 【解析】试题分析:第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =考点:循环结构流程图5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】5.6S ←1 I ←1 While I <10 S ←S +2 I ←I +3 End While Print S(第4题图)考点:古典概型概率6.已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), n m -的值为______. 【答案】3- 【解析】试题分析:由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 考点:向量相等 7.不等式224x x-<的解集为________.【答案】(1,2).- 【解析】试题分析:由题意得:2212x x x -<⇒-<<,解集为(1,2).- 考点:解指数不等式与一元二次不等式 8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

高考数学优题训练系列(17)【含答案】

高考数学优题训练系列(17)【含答案】

2015年高考数学优题训练系列(17)(一)一、选择题(本大题共12小题,每小题5分,共60分,每小题只有一项是符合题目要求的) 1(文科)如果22{|0,},{|0,}A x x x x R B x x x x R =-=∈=+=∈,那么A B =( )A . 0B .∅C .{0}D .{1,0,1}-(理科)已知复数122z i =-,则复数z 的虚部为 ( )A .12 B C .D .12- 2.已知tan sin 0,θθ<且|sin cos |1θθ+<,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,下列四个命题中正确的序号是( ) ①,m n α⊥若//α,则m n ⊥; ②,,//αγβγαβ⊥⊥若则; ③//,//,//m n m n αα若则 ; ④,αββγαγ⊥⊥若//,//,m 则m .A .①和②B .②和③C .③和④D .①和④ 4.若0.52a =,22log 3,log sin5b c ππ==,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >> 5.(文科)函数()1()xf x e x R =+∈的反函数为( ) A .1()lg(1),(1)f x x x -=-> B .1()ln(1),(1)f x x x -=->C .1()ln(1),(0)f x x x -=->D .1()ln(1),(0)f x x x -=->(理科)函数是连续函数,则a b -=( )A 0B 3C -3D 76.(文科)4名毕业生到两所不同的学校实习,每名毕业生只能选择一所学校实习,且每所学校至少有一名毕业生实习,其中甲、乙两名毕业生不能在同一所学校实习,则不同安排方法有( ) A .12 B .10 C .8 D .6(理科)已知2lim 12n nnnn a a →∞-=+()a R ∈,那么a 的取值范围是 ( ) A .0a < B .2a <且2a ≠-C .22a -<<D .2a <-或2a >7.已知函数2()log f x x =的定义域为A ,{|||10,}B x x x N =≤∈,且AB A =,则满足条件的函数()y f x =的个数为( )A .1B .1023C .1024D .2128.已知点1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A 、B两点,若2ABF ∆为锐角三角形,则该双曲线的离心率e 的取值范围是 ( )A .(1,)+∞B .C .(1,2)D .(1,19如果数列{}()n n a a R ∈对任意,m n N *∈满足m n m n a a a +=⋅,且38a =,那么10a = ( )A .256B .510C .512D .102410.已知22221(0)x y a b a b+=>>,直线:(0)l y x t t =+≠交椭圆于A,B 两点,AOB ∆的面积为S (O 是坐标原点),则函数()S f t =的奇偶性( )A .偶函数B .奇函数C .不是奇函数也不是偶函数D .奇偶性与,a b 有关11.(文科)若实数,a b 满足||1a b -≥,则22a b +( )A .最小值为12 B .最大值为13 C .最大值为15 D .最小值为2(理科)设点(1,2),(2,1),A B 如果直线1ax by +=与线段AB 有一个公共点,那么22a b +( )A .最大值为15 B .最大值为29 C .最小值为15D .最小值为2912.设函数()f x 的定义域为A ,若存在非零实数l 使得对于任意()x I I A ∈⊆,有x l A +∈,且()()f x l f x +≥,则称()f x 为I 上的l 高调函数,如果定义域为R 的函数()f x 是奇函数,当0x ≥时,22()||,f x x a a =--且函数()f x 为R 上的1高调函数,那么实数a 的取值范围为( )A .01a <<B .1122a -≤≤ C .11a -≤≤ D .22a -≤≤ (二)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选择出符合题目要求的一项.1.已知M={a |a =(1,2)+λ(3,4),λ∈R},N={a |a =(-2,-2)+μ(4,5),μ∈R},则MN=( ) A .{(1,1)} B .{(1,1),(-2,-2)}C .{(-2,-2)}D .φ2.(理)2等于 ( )A iB .iC iD .i(文)函数y=(x+1)2(x-1)在x=1处的导数等于 ( )A .1B .2C .3D .43.已知f(x)=sin(x+2π),g(x)=cos(x-2π),则下列结论中正确的是 ( )A .函数y=f(x)·g(x)的最大值为1B .函数y=f(x)·g(x)的对称中心是(24k ππ+,0),k ∈Z C .当x∈[-2π,2π]时,函数y=f(x)·g(x)单调递增D .将f(x)的图象向右平移2π单位后得g(x)的图象4.已知当x∈R 时,函数y=f(x)满足f(2.1+x)=f(1.1+x) + 13,且f(1)=1,则f(100)的值为 ( )A .3433B .3334C .34D .1345.在三棱柱ABC —A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A.30OB. 45OC. 60OD. 90O6.已知球的表面积为20π,球面上有A 、B 、C 三点,如果AB=AC=2, 到平面ABC 的距离为( )A .1B C D .27.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其它10 个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.258.函数y=x 3-2ax+a 在(0,1)内有极小值,则实数a 的取值范围是 ( )A .(0,3)B .(-∞,3)C .(0,+∞)D .(0,32)9.(理)已知有相同两焦点F 1、F 2的椭圆x 2m + y 2=1(m>1)和双曲线x 2n - y 2=1(n>0),P 是它们的一个交点,则ΔF 1PF 2的形状是( )A .锐角三角形B .直角三角形C .钝有三角形D .随m 、n 变化而变化(文)已知有相同两焦点F 1、F 2的椭圆25x + y 2=1和双曲线23x - y 2=1,P 是它们的一个交点,则ΔF 1PF 2的形状是 ( )A .锐角三角形B .直角三角形C .钝有三角形D .等腰三角形10.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x)(如f(2)=3是指开始买卖后二个小时的即时价格为3元;g(2)=3 表示二个小时内的平均价格为3元),下图给出的四个图像,其中实线表示y=f(x), 虚线表示y=g(x),其中可能正确的是( )A B C D11.直线3y x =-与抛物线24y x =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,则梯形APQB 的面积为( )A .48B .56C .64D .7212.有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是 ( )A .(0, B .(1, C .(D .参考答案(一)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B D A B C B D D A C理A文 B(二)1.C2.理D 文D3.D4.C. 提示:{f(n)}是等差数列(n∈N*)5.C.6.A7.A8.D9.B. 提示:∵|PF1|+|PF2|=2m,|PF1|-|PF2|=±2n,又m-1=n+1,∴|PF1|2+|PF2|2=2(m+n)=4(m-1)=|F1F2|210.C11.A12.C。

2015年高考数学优题训练系列(21)

2015年高考数学优题训练系列(21)

2015年高考数学优题训练系列(21)(理)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合)(},5,2{},3,2,1{},6,5,4,3,2,1{B C A B A U U 则====( )A .{1,3}B .{2}C .{2,3}D .{3}2. 设复数Z 满足i Z i 2)3(=⋅-,则|Z |=( )ABC .1D .23.设,αβ为两个不同平面,m 、 n 为两条不同的直线,且,,βα⊂⊂n m 有两个命题: P :若m ∥n ,则α∥β;q :若m ⊥β, 则α⊥β. 那么( )A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ”是假命题D .“非p 且q ”是真命题4. 在平面直角坐标系中,已知向量),3,(),1,3(21),2,1(x ==-=若c b a //)2(+,则x=( )A .-2B .-4C .-3D .-15.已知等差数列{a n }的前n 项和为S n ,S 9=-18,S 13=-52,{b n }为等比数列,且b 5 =a 5,b 7=a 7,则b 15的值为( )A .64B .128C .-64D .-1286.设偶函数f (x )满足f (x )=2x -4(x >0),则不等式f (x -2)>0的解集为( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}7.若将函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A .16 B .14 C .13 D .128.如图是一个几何体的三视图,正视图和侧视图 均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+3π+.2+2π+C .8+5π+ D .6+3π+9.已知命题p :函数2()21(0)f x ax x a =--≠在(0,1)内恰有一个零点;命题q :函数2a y x -=在(0,)+∞上是减函数,若p 且q ⌝为真命题,则实数a 的取值范围是(A .1a >B .a≤2 C.a>2 10.三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA 面积为( )A .5πBC .20πD .4π11.设方程lnx =-x 与方程e x =-x (其中e 是自然对数的底数)的所有根之和为m ,则( )A .m <0 B. m =0 C.0<m <1 D.m >1正视图 侧视图12. 函数()f x 对任意()()()()623,1x R f x f x f y f x ∈++==-都有的图象关于点()1,0对称,则()2013f =( )A.16-B.8-C.4-D.0(文)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A ={0,1},B ={-1,0,a +3},且A ⊆B ,则a =( )A .1B .0C .-2D .-3 2. 设复数Z)2i Z i ∙=,则|Z |=( )ABC .1D .23.设,αβ为两个不同平面,m 、 n 为两条不同的直线,且,,βα⊂⊂n m 有两个命题: P :若m ∥n ,则α∥β;q :若m ⊥β, 则α⊥β. 那么( )A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ”是假命题D .“非p 且q ”是真命题4. 在平面直角坐标系中,已知向量),3,(),1,3(21),2,1(x ==-=若c b a //)2(+,则x=( ) A .-2 B .-4 C .-3D .-1 5.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11=( ) A .24 B .48 C .66D .132 6.在⊿ABC 中,三边a ,b ,c 所对的角分别为A ,B ,C ,若a 2+b 2=2ab +c 2,则角C 为( )A .30°B .45°C .150°D .135°7.若将函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A .16 B .14 C .13 D .128.设偶函数f (x )满足f (x )=2x -4(x >0),则不等式f (x -2)>0的解集为( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}9.如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为()A.2+3π+.2+2π+C.8+5π+ D.6+3π+10. 若关于直线m,n与平面α,β,有下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m⊥α,n⊥β,且α⊥β,则m⊥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m∥α,n⊥β,且α⊥β,则m∥n;其中真命题的序号()A.①②B.③④C.②③D.①④11.三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA,则该三棱锥外接球的表面积为()A.5πB C.20πD.4π12.设方程lnx=-x与方程e x=-x(其中e是自然对数的底数)的所有根之和为m,则()A.m<0 B. m=0 C.0<m<1 D.m>1参考答案(理)1—5.ACDDC, 6—10.BDACA 11.B 12.D(文)1—DDD, 6—10.BDBAC 11.A 12.B。

2015届高考数学第二轮高效精练17

2015届高考数学第二轮高效精练17

第23讲 高考题中的应用题解法1. 某射击选手连续射击5枪命中的环数分别为9.7,9.9,10.1,10.2,10.1,则这组数据的方差为__________.答案:0.032解析:这组数据的平均数为10,s 2=15[(9.7-10)2+(9.9-10)2+(10.1-10)2+(10.2-10)2+(10.1-10)2]=0.032.2. 一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).当帐篷的顶点O 到底面中心O 1的距离为________m 时,帐篷的体积最大.答案:23. 一栋n(n ≥3,n ∈N *)层大楼,各层均可召集n 个人开会,现每层指定一人到第k 层开会,为使n 位开会人员上下楼梯所走路程总和最短,则k =________.答案:k =⎩⎪⎨⎪⎧1+n2(n 为奇数),n 2或n2+1(n 为偶数)4. 某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行30 km 后看见灯塔在正西方向,则这时船与灯塔的距离是________km.答案:10 35. 某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7 000万元,则x 的最小值为______________.答案:20解析:3 860+500+[500(1+x%)+500(1+x%)2]×2≥7 000,x%≥20%,x ≥20,则x 的最小值为20.6. 根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率p 与日产量x(件)之间近似地满足关系式p =⎩⎨⎧215-x ,1≤x ≤9,x ∈N *,x 2+60540,10≤x ≤20,x ∈N *(日产品废品率=日废品量日产量×100%).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润y =日正品赢利额-日废品亏损额)(1) 将该车间日利润y(千元)表示为日产量x(件)的函数;(2) 当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?解:(1) 由题意可知,y =2x(1-p)-px =⎩⎪⎨⎪⎧24x -2x 215-x ,1≤x ≤9,x ∈N *,53x -x 3180,10≤x ≤20,x ∈N *.(2) 考虑函数f(x)=⎩⎪⎨⎪⎧24x -2x 215-x,1≤x ≤9,x ∈N *,53x -x 3180,10≤x ≤20,x ∈N *.当1≤x ≤9时,f ′(x)=2-90(15-x )2,令f′(x)=0,得x =15-3 5.当1≤x <15-35时,f ′(x)>0,函数f(x)在[1,15-35)上单调递增; 当15-35<x ≤9时,f ′(x)<0,函数f(x)在(15-35,9]上单调递减. 所以当x =15-35时,f(x)取得极大值,也是最大值,又x 是整数,f(8)=647,f(9)=9,所以当x =8时,f(x)有最大值647.当10≤x ≤20时,f ′(x)=53-x 260=100-x260≤0,所以函数f(x)在[10,20]上单调递减,所以当x =10时,f(x)取得极大值1009,也是最大值.由于1009>647,所以当该车间的日产量为10件时,日利润最大.答:当该车间的日产量为10件时,日利润最大,最大日利润是1009千元.7. 图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y.(1) 写出y 关于x 的函数表达式,并指出x 的取值范围; (2) 求当x 取何值时,凹槽的强度T 最大.解:(1) 易知半圆CmD 的半径为x ,故半圆CmD 的弧长为πx. 所以,4=2x +2y +πx ,得y =4-(2+π)x2.依题意,知:0<x<y ,得0<x<44+π.所以,y =4-(2+π)x 2⎝ ⎛⎭⎪⎫0<x<44+π. (2) 依题意,T =AB·S =2x ⎝⎛⎭⎫2xy -12πx 2=8x 2-(4+3π)x 3. 令T′=16x -3(4+3π)x 2=0,得x =169π+12∈⎝ ⎛⎭⎪⎫0,44+π,另一解舍去.Z ]所以当x =169π+12,凹槽的强度最大.8. 某学校需要一批一个锐角为θ的直角三角形硬纸板作为教学用具⎝⎛⎭⎫5π24≤θ≤π3,现准备定制长与宽分别为a 、b(a>b)的硬纸板截成三个符合要求的△AED 、△BAE 、△EBC.(如图所示)(1) 当θ=π6时,求定制的硬纸板的长与宽的比值;(2) 现有三种规格的硬纸板可供选择,A 规格长80 cm 、宽30 cm ,B 规格长60 cm 、宽40 cm ,C 规格长72 cm 、宽32 cm ,问可以选择哪种规格的硬纸板使用.解:(1) 由题意∠AED =∠CBE =θ. ∵ b =BE·cos30°=AB·sin30°·cos30°=34a , ∴ ab =433. (2) ∵ b =BE·cos θ=AB·sin θ·cos θ=12AB ·sin2θ,∴ b a =12sin2θ.∵ 5π24≤θ≤π3,∴ 5π12≤2θ≤2π3,∴ b a ∈⎣⎡⎦⎤34,12. A 规格:3080=38<34, 不符合条件.B 规格:4060=23>12 , 不符合条件.C 规格:3272=49∈⎣⎡⎦⎤34,12,符合条件.∴ 选择买进C 规格的硬纸板.9. 一化工厂因排污趋向严重,2014年1月决定着手整治.经调研,该厂第一个月的污染度为60,整治后前四个月的污染度如下表:污染度为0后,后第一个月开始工厂的污染模式:f(x)=20|x -4|(x ≥1),g(x)=203(x -4)2(x ≥1),h(x)=30|log 2x-2|(x ≥1),其中x 表示月数,f(x)、g(x)、h(x)分别表示污染度.(1) 问选用哪个函数模拟比较合理,并说明理由;(2) 如果环保部门要求该厂每月的排污度均不能超过60,若以比较合理的模拟函数预测,该厂最晚在何时开始进行再次整治?(参考数据:lg2=0.301 0,lg3=0.477 1)解:(1) 因为f(2)=40,g(2)≈26.7,h(2)=30,f(3)=20,g(3)≈6.7,h(3)≈12.5,则h(x)更接近实际值,所以用h(x)模拟比较合理. (2) 因为h(x)=30|log 2x -2|在x ≥4上是增函数,又h(16)=60.这说明第一次整治后有16个月的污染度不超过60,故应在2015年5月起开始再次整治.10. 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB =20 km ,BC =10 km ,为了处理这三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A 、B 等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为y km.(1) 按下列要求写出函数关系式:① 设∠BAO =θ(rad),将y 表示成θ的函数关系式; ② 设OP =x(km),将y 表示成x 的函数关系式;(2) 请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.解:本小题主要考查函数最值的应用.(1) ① 由条件知PQ 垂直平分AB ,若∠BAO =θ(rad),则OA =AQ cos θ=10cos θ,故OB =10cos θ.又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ,即所求函数关系式为y =20-10sin θcos θ+10⎝⎛⎭⎪⎫0<θ<π4.② 若OP =x(km),则OQ =10-x ,所以OA =OB =(10-x )2+102=x 2-20x +200,故所求函数关系式为y =x +2x 2-20x +200(0<x<10).(2) 选择函数模型①, y ′=-10cos θ·cos θ-(20-10sin θ)(-sin θ)cos 2θ=10(2sin θ-1)cos 2θ.令y′=0得sin θ=12,因为0<θ<π4,所以θ=π6.当θ∈⎝ ⎛⎭⎪⎫0,π6时,y ′<0 ,y 是θ的减函数;当θ∈⎝ ⎛⎭⎪⎫π6,π4时,y ′>0 ,y 是θ的增函数,所以当θ=π6时,y min =10+10 3.这时点O 位于线段AB 的中垂线上,且距离AB 边1033 km处。

2015年高考数学优题训练系列(9)

2015年高考数学优题训练系列(9)

2015年高考数学优题训练系列(9)(一)(理)一、选择题(共10小题,每小题5分,共50分)1.复数11z i =-的模是 ( ) A. 12 B. 22 C. 2 D. 2 2.已知集合{}2,x A y y x R ==∈,22log 2x B x y x -⎧⎫==⎨⎬+⎩⎭,则A B =I ( ) A.[0,2) B.[1,2) C.(,2)-∞D.(0,2) 3.设0x 是方程ln 4x x +=的解,则0x 属于区间A. (0,1)B. (1,2)C. (2,3)D. (3,4)4.若函数()2sin()(0)f x x ωϕω=+≠的图像关于直线6x π=对称,则()6f π的值为( ) A .0 B .3 C .2- D .2或2-5.已知0,0a b >>,如果不等式212m a b a b+≥+恒成立,那么m 的最大值等于( ) A .10 B .7 C .8 D .96.某几何体的三视图如图所示,则该几何体的表面积为( )A .(55)π+ B. (2025)π+C. (1010)π+D. (525)π+7.已知12,F F 为双曲线22:2C x y -=的左右焦点,点P 在C 上,122PF PF =,则12cos FPF ∠=( )A. 14B. 35C. 34D. 458.已知函数2log y x =的定义域为1[,]n m(,m n 为正整数),值域为[0,2],则满足条件的整数对(,)m n 共有( )A. 1个B. 7个C. 8个D.16个9.已知{}n a 是等比数列,2512,4a a ==,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .16(14)n -- B .16(12)n -- C .32(14)3n -- D .32(12)3n -- 10.设函数()f x x ax bx c 3211=++2+32的两个极值点分别为12,x x ,若1(2,1)x ∈--,2(1,0)x ∈-,则2a b +的取值范围为( ) A .(2,7) B .(1,7) C .(1,5) D .(2,5)(二)(文)一、选择题(本大题共10小题,每小题5分,共50分. 每小题只有一个选项符合题目要求)1.设命题 0lg ,0:00<>∃x x p ,则p ⌝为( )A. 0lg ,0>>∀x xB. 0lg ,0≥>∀x xC. 0lg ,000>>∃x xD. 0lg ,000≥>∃x x2.已知a 是实数,且52121i i a +++也是实数,则a 等于( ) A. 2 B.23 C.1 D. 21 3.如右图是某几何体的三视图(正视图与侧视图一样,上面是半径为1的半圆,下面是边长为2的正方形),则该几何体的体积是( )A .π328+ B. π348+ C. π+24 D. π220+4. “2015<a ”是“函数2)()(a x x f -=在区间[2015,+∞)上为增函数”的( )A .充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 5. 已知函数)0()sin(2)(πϕϕ<<+=x x f 是偶函数,则)32cos(2πϕ+等于( ) A. 3- B. 1- C. 3 D. 1 6. 已知等比数列{n a }的前n 项和为n S ,且r q S n n +=(10,≠>∈*q q N n 且),则实数r 的值为( )A .2 B.1 C.0 D.1-7.已知正方体1111ABCD A B C D -的棱长为2,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被该正方体的外接球所截得的线段长为( ) A. 32 B. 3 C. 22 D. 28.已知关于x 的不等式0722≥--+ax x 在),(∞+a 上恒成立,则实数a 的最小值为( )(正、侧视图)(俯视图)A. 1B. 2C.21 D. 23 9.已知直线l :a x y +-=与圆C:222=+y x 相交于相异两点M 、N ,点O 是坐标原点,且满足->+,则实数a 的取值范围是( ) A.)2,2()2,2Y --( B. )2,2-( C. )2,1()12Y --,( D. )1,1-(10.已知函数ax x e y x ---=2ln 有3个不同的零点(其中e 为自然对数的底数),则实数a 的取值范围是( )A. )1[∞+,B. )1∞+,(C. ]1,0(D. )1,0(参考答案 (一) BDCDDACBCA(二) BCAABDCDAD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考数学优题训练系列(17)(一)一、选择题(本大题共12小题,每小题5分,共60分,每小题只有一项是符合题目要求的) 1(文科)如果22{|0,},{|0,}A x x x x R B x x x x R =-=∈=+=∈,那么A B = ( )A . 0B .∅C .{0}D .{1,0,1}-(理科)已知复数122z i =-,则复数z 的虚部为 ( )A .12 B C .D .12- 2.已知tan sin 0,θθ<且|sin cos |1θθ+<,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,下列四个命题中正确的序号是( ) ①,m n α⊥若//α,则m n ⊥; ②,,//αγβγαβ⊥⊥若则; ③//,//,//m n m n αα若则 ; ④,αββγαγ⊥⊥若//,//,m 则m .A .①和②B .②和③C .③和④D .①和④ 4.若0.52a =,22log 3,log sin5b c ππ==,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >> 5.(文科)函数()1()xf x e x R =+∈的反函数为( ) A .1()lg(1),(1)f x x x -=-> B .1()ln(1),(1)f x x x -=->C .1()ln(1),(0)f x x x -=->D .1()ln(1),(0)f x x x -=->(理科)函数是连续函数,则a b -=( )A 0B 3C -3D 76.(文科)4名毕业生到两所不同的学校实习,每名毕业生只能选择一所学校实习,且每所学校至少有一名毕业生实习,其中甲、乙两名毕业生不能在同一所学校实习,则不同安排方法有( ) A .12 B .10 C .8 D .6(理科)已知2lim 12n nnnn a a →∞-=+()a R ∈,那么a 的取值范围是 ( ) A .0a < B .2a <且2a ≠-C .22a -<<D .2a <-或2a >7.已知函数2()log f x x =的定义域为A ,{|||10,}B x x x N =≤∈,且A B A = ,则满足条件的函数()y f x =的个数为( )A .1B .1023C .1024D .2128.已知点1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A 、B两点,若2ABF ∆为锐角三角形,则该双曲线的离心率e 的取值范围是 ( )A .(1,)+∞B .C .(1,2)D .(1,19如果数列{}()n n a a R ∈对任意,m n N *∈满足m n m n a a a +=⋅,且38a =,那么10a = ( )A .256B .510C .512D .102410.已知22221(0)x y a b a b+=>>,直线:(0)l y x t t =+≠交椭圆于A,B 两点,AOB ∆的面积为S (O 是坐标原点),则函数()S f t =的奇偶性( )A .偶函数B .奇函数C .不是奇函数也不是偶函数D .奇偶性与,a b 有关11.(文科)若实数,a b 满足||1a b -≥,则22a b +( )A .最小值为12 B .最大值为13 C .最大值为15 D .最小值为2(理科)设点(1,2),(2,1),A B 如果直线1ax by +=与线段AB 有一个公共点,那么22a b +( )A .最大值为15 B .最大值为29 C .最小值为15D .最小值为2912.设函数()f x 的定义域为A ,若存在非零实数l 使得对于任意()x I I A ∈⊆,有x l A +∈,且()()f x l f x +≥,则称()f x 为I 上的l 高调函数,如果定义域为R 的函数()f x 是奇函数,当0x ≥时,22()||,f x x a a =--且函数()f x 为R 上的1高调函数,那么实数a 的取值范围为( )A .01a <<B .1122a -≤≤ C .11a -≤≤ D .22a -≤≤ (二)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选择出符合题目要求的一项.1.已知M={a |a =(1,2)+λ(3,4),λ∈R},N={a |a=(-2,-2)+μ(4,5),μ∈R},则M N= ( ) A .{(1,1)} B .{(1,1),(-2,-2)}C .{(-2,-2)}D .φ2.(理)2等于 ( )A iB .iC iD .i(文)函数y=(x+1)2(x-1)在x=1处的导数等于 ( )A .1B .2C .3D .43.已知f(x)=sin(x+2π),g(x)=cos(x-2π),则下列结论中正确的是 ( )A .函数y=f(x)·g(x)的最大值为1B .函数y=f(x)·g(x)的对称中心是(24k ππ+,0),k ∈Z C .当x∈[-2π,2π]时,函数y=f(x)·g(x)单调递增D .将f(x)的图象向右平移2π单位后得g(x)的图象4.已知当x∈R 时,函数y=f(x)满足f(2.1+x)=f(1.1+x) + 13,且f(1)=1,则f(100)的值为 ( )A .3433B .3334C .34D .1345.在三棱柱ABC —A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A.30OB. 45OC. 60OD. 90O6.已知球的表面积为20π,球面上有A 、B 、C 三点,如果AB=AC=2, 到平面ABC 的距离为( )A .1B C D .27.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其它10 个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.258.函数y=x 3-2ax+a 在(0,1)内有极小值,则实数a 的取值范围是 ( )A .(0,3)B .(-∞,3)C .(0,+∞)D .(0,32)9.(理)已知有相同两焦点F 1、F 2的椭圆x 2m + y 2=1(m>1)和双曲线x 2n - y 2=1(n>0),P 是它们的一个交点,则ΔF 1PF 2的形状是( )A .锐角三角形B .直角三角形C .钝有三角形D .随m 、n 变化而变化(文)已知有相同两焦点F 1、F 2的椭圆25x + y 2=1和双曲线23x - y 2=1,P 是它们的一个交点,则ΔF 1PF 2的形状是 ( )A .锐角三角形B .直角三角形C .钝有三角形D .等腰三角形10.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x)(如f(2)=3是指开始买卖后二个小时的即时价格为3元;g(2)=3 表示二个小时内的平均价格为3元),下图给出的四个图像,其中实线表示y=f(x), 虚线表示y=g(x),其中可能正确的是( )A B C D11.直线3y x =-与抛物线24y x =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,则梯形APQB 的面积为( )A .48B .56C .64D .7212.有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是 ( )A .(0, B .(1, C .(D .参考答案(一)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B D A B C B D D A C理A文 B(二)1.C2.理D 文D3.D4.C. 提示:{f(n)}是等差数列(n∈N*)5.C.6.A7.A8.D9.B. 提示:∵|PF1|+|PF2|=2m,|PF1|-|PF2|=±2n,又m-1=n+1,∴|PF1|2+|PF2|2=2(m+n)=4(m-1)=|F1F2|210.C11.A12.C。

相关文档
最新文档