第二章 各向异性弹性力学基础
第二章弹性力学基础

第二章弹性力学基础弹性力学又称弹性理论,它是固体力学的一个分支。
弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。
弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。
材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。
弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。
对杆状构件作较精确的分析,也需用弹性力学。
结构力学-----研究杆状构件所组成的结构。
例如桁架、刚架。
第一节弹性力学假设在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。
1. 假设物体是线弹性的假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。
即该比例关系不随应力、应变的大小和符号而变。
由材料力学已知:脆性材料的物体:在应力≤比例极限以前,可作为近似的完全弹性体;韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。
这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。
2. 假设物体是连续性的假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。
有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。
注:实际上,一切物体都是由微粒组成的,都不能符合该假定。
但是由于物体粒子的尺寸以及相邻粒子间的距离,都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。
3. 假设物体是均匀性、各向同性的整个物体是由同一材料组成的。
这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。
第2章 弹性力学基础

第2章弹性力学基础内容提要:本章主要介绍弹性力学的基本概念,主要包括应力、应变的定义和性质,应力平衡方程、几何方程和物理方程,并对弹性力学问题的基本求解方法进行简介。
为了便于对机械结构有限元计算结果能够很好地分析评价,本章还介绍了结构强度与失效的基本理论。
有关能量法的简单知识是后续有限元法的重要理论基础。
教学要求:学习掌握应力、应变基本概念和主要性质,掌握弹性力学基本方程、应力边界条件、协调方程等,了解弹性力学平面问题的应力函数法,掌握结构强度失效准则中的等效应力理论等内容,了解能量法的基本思想。
2.1 引言弹性力学(Elastic Theory)作为一门基础技术学科,是近代工程技术的必要基础之一。
在现代工程结构分析,特别是航空、航天、机械、土建和水利工程等大型结构的设计中,广泛应用着弹性力学的基本公式和结论。
弹性力学与材料力学(Foundamental Strengths of Materials)在研究内容和基本任务方面,是基本相同的,研究对象也是近似的,但是二者的研究方法却有较大的差别。
弹性力学和材料力学研究问题的方法都是从静力学、几何学、物理学三方面入手的。
但是材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件,分析这类构件在拉压、剪切、弯曲、扭转等几类典型外载荷作用下的应力和位移。
在材料力学中,除了从静力学、几何学、物理学三方面进行分析外,为了简化推导,还引用了一些关于构件的形变状态或应力分布的假定(如平面截面的假定、拉应力在截面上均匀分布的假定等等)。
杆件横截面的变形可以根据平面假设确定,因此综合分析的结果,即问题求解的基本方程,是常微分方程。
对于常微分方程,数学求解是没有困难的。
而在弹性力学里研究杆状构件一般都不必引用那些假定,所以其解答要比材料力学里得出的解答精确得多。
当然,弹性力学在研究板壳等一些复杂问题时,也引用了一些有关形变状态或应力分布的假定来简化其数学推导。
但是由于弹性力学除研究杆状构件之外,还研究板、壳、块,甚至是三维物体等,因此问题分析只能从微分单元体入手,以分析单元体的平衡、变形和应力应变关系,因此问题综合分析的结果是满足一定边界条件的偏微分方程。
Ch3各向异性弹性力学基础.

可以求解了吗?
定解还需边界条件!
给定力的边界条件(3)
xl xy m xz n X ,已知 yx l y m yz n Y ,已知 l m n Z ,已知 zy z zx
给定位移的边界条件(3)
u u ,已知 v v ,已知 w w,已知
之间的关系
各向异性弹性力学问题需满足的基 本方程
• 与各向同性弹性力学一样,各向异性弹性力 学有15个未知量
3个位移分量,u,v,w 6个应变分量, x , y , z , yz , xz , yx 6个应力分量, x , y , z , yz , xz , yx
• 15个场方程 静力平衡方程(3)+几何关系(6)+本构方程(6)
复合材料宏观力学分析的基本假设
• 1)所研究的各向异性弹性体为均质连续固体.
• 2)线弹性范围内,服从广义虎克定律. • 3)小变形
各向异性与各向同性弹性力学的基本方程的差别
• 差别在于:本构方程
• 其它平衡方程,几何方程,协调方程,和边界条件等 则完全相同. • 即用各向异性胡克定律代替各向同性胡克定律,这 一代换将使力学计算及反映的现象十分复杂.
柔度矩阵
刚度矩阵的性质一
1 C11 C 2 21 3 C31 4 C41 5 C51 C61 6 C12 C22 C32 C42 C52 C62 C13 C23 C33 C43 C53 C63 C14 C24 C34 C44 C54 C64 C15 C25 C35 C45 C55 C65 C16 1 C26 2 C36 3 C46 4 C56 5 C66 6
各向异性弹性力学(课堂PPT)

17
有的文献中定义应力“列矢量”为
1 11
2 22
3 33
4 23
5 31
6 12
应变“列矢量”为
1 11
4 223
2 22
5 231
3 33
6 212
注意: 4 , 5 , 6 就是剪切角 2 3 , 3 1 , 1 2 。 18
于是可以把弹性本构关系写成:
i Cij j
量,L理解为弹性刚度张量;也可以理解为矩阵等式, ,
理解为应力列矢量和应变列矢量,[L]理解为弹性刚度矩
阵。L与M具有Voigt对称性,因此矩阵L与M为9列9行的
对称矩阵。
15
由于应力张量与应变张量都是对称张量。(2-2)式
中的列矢量 与 的第4行与第5行相同,第6行与第7行 相同,第8行与第9行相同。弹性刚度矩阵 L 与柔度矩阵 M
L1133 L2233 L3333 L2333 L3133 L1233
L1123 L2223 L3323 L2323 L3123 L1223
L1131 L2231 L3331 L2331 L3131 L1231
L1112
L2212
L3312 L2312
L3112
L1212
M1111
M2211
图2-1 25
斜面BCD的外法线为N,令N的方向余弦为:
则有
cos(N , x) 1
c
o
s
(
N
,
y)
m
c o s ( N , z ) n
(dF)x ldF (dF)y mdF (dF)z ndF
式中,( d F ) 、( d F ) x 、( d F ) y 、( d F ) z 依次为三角形BCD、ACD、 ABD、ABC的面积。令四面体微元的体积为dV,斜面 BCD上应力向量在坐标方向上的分量为P N x 、P N y 、P N z ,则
复合材料力学-各向异性弹性力学基础

复合材料的弹性模量取决于增强相和基体相的弹性模量以及它们之 间的界面结合强度。
强度和韧性
复合材料的强度和韧性取决于增强相的分布、数量和尺寸,以及它 们与基体相之间的界面结合强度。
04
复合材料的各向异性弹性力学分析
复合材料的弹性常数
弹性常数是复合材料在受到外力作用时表现出的刚 度特性,描述了复合材料的应力与应变之间的关系 。
与单一材料的应力-应变关系不 同,复合材料的应力-应变关系 通常是非线性的,因为它们由 多种材料组成,且各组分材料 的性质和排列方式可能不同。
复合材料的应力-应变关系需要 通过实验测定,因为它们的数 值取决于复合材料的微观结构 和组成。
复合材料的本构方程
本构方程是描述复合材料在受到外力作用时如何响应的数学模型,即描述 了复合材料在不同外力作用下的应力和应变的变化关系。
各向异性材料的分类
按来源分类
天然各向异性材料(如木材、 骨骼等)、人造各向异性材料 (如复合材料、玻璃纤维增强 塑料等)。
按结构分类
晶体各向异性材料、纤维增强 各向异性材料、织物增强各向 异性材料等。
按对称性分类
单轴各向异性材料、正交各向 异性材料、各项同性材料等。
各向异性弹性力学的基本方程
01
汽车零部件
复合材料还用于制造汽车中的各种 零部件,如刹车片、气瓶和油箱等, 以提高其耐久性和安全性。
汽车轻量化
复合材料的轻质特性使其成为汽车 轻量化的理想选择,有助于提高车 辆的燃油效率和动力性能。
建筑领域的应用
建筑结构加固
复合材料可以用于加固建 筑结构,提高其承载能力 和耐久性,如桥梁、大坝 和高层建筑等。
未来研究方向
进一步深入研究复合材料的各向异性性质,探索 其在不同环境和载荷条件下的行为和性能。
第2章 各向异性材料弹性力学基础_2017_19990

The basic questions of lamina macromechanics are: (1) what are the characteristics of a lamina? and (2) how does a lamina respond to applied stresses as in Figure 2-1?
• 平衡方程 σ ij , j + fi = 0 i, j = 1,2,3
展开一个方程:
∂σ x ∂x
+
∂τ xy ∂y
+
∂τ xz ∂z
+
f
= 0x
• 运动方程:
σ ij , j +
fi = ρ
∂ 2u ∂t 2
惯性力
指标重复服从加法约定
平衡方程
⎧ ⎪ ⎪
∂σ x ∂x
+
∂τ xy ∂y
+
∂τ xz ∂z
线性弹性力学中的六个应变分量εij之 间必须满足的微分方程。 六个应变分 量εij是由三个位移分量导出的,它们 彼此之间存在一定的内在联系,这些 联系就是应变协调方程。
• (i, j 交换)共有六个方程,六个应变分量应该 满足的一个关系,即:
ε ε ε ε + = + ij,kl
kl,ij
ik, jl
几何关系方程
εx
=
∂u ∂x
,
εy
=
∂v ∂y
,
εz
=
∂w ∂z ,
γ yz
=
∂w ∂y
+
∂v ∂z
;
γ zx
=
复合材料及其结构的工程力学-课后习题

G12 GPa
98.07 38.60
8.83 8.27
5.20 4.14
试分别求应力分量为 1 =400Mpa, 2 =30Mpa, 12 =15Mpa 时的应变分量。
6. 一单层板受力情况, x = -3.5Mpa, y =7Mpa, xy = -1.4Mpa,该单层板弹性
别用最大应力理论、Tsai-Hill 强度理论和 Tsai-Wu 强度理论校核该单层的强度。
9. 有一单向板,其强度特性为 X t =500Mpa, X c =350Mpa, Yt =5Mpa, Yc =75Mpa,
S =35Mpa, 其受力特性为 x = y =0 , xy = 。试问在偏轴 45o 时,材料满足
复合材料及其结构力学
课后习题及作业题
第 1 章 绪论
1.复合材料的优缺点及其分类。 2.相关基本概念。
第 2 章 各向异性弹性力学基础
H2A-书上习题 1. P44 T2-2 试证明 12 的界限不等式成立。
2. P44 T2-3 试由下不等式证明各向同性材料的泊松比满足
1 。 (已知 1 ) 2
常数为 E1 =14Gpa,Байду номын сангаасE2 =3.5Gpa, G12 =4.2Gp, 21 =0.4, =60o,求弹性主轴上的应 力、应变,以及偏轴应变。
7. 一单层板受力情况, x = -3.5Mpa, y =7Mpa, xy = -1.4Mpa,该单层板强度
X t =250Mpa, X c =200Mpa, Yt =0.5Mpa, Yc =10Mpa, S =8Mpa, =60o ,分别按
2. 有一单向复合材料薄壁管,平均直径 R0 =25mm,壁厚 t =2mm,管端作用轴向
第02章各向异性弹性力学基础

2.2.1有一个弹性对称面的材料
此时:z=-z’,w=-w’,(新旧坐标系)
yz
w y
v z
( w y
v ) z
yz
4
zx
u z
w x
( u z
w) x
zx
5
其余应变分量不变
2.2.1有一个弹性对称面的材料
为保证W值不变,将含有xz和yz(4与 5)一次项的Cij置为零,只剩下13个独立
0
0
0
0 0 0
0 0
1
2
C11 C12
0
0
1 2
C11
C12
2.2.4各向同性材料
S11 S12 S12
0
0
0
S12
S11
S12
0
0
0
S
S12
S12
S11
0
0 0 0 2 S11 S12
0 0
0
0
0 0 0 0 0 0
0 0
2 S11 S12
0
0
2 S11 S12
x
xz
y
xy
z
yz
x
2 2 x
yz
不满足协调方程,则变 形后,不能将小单元体 拼合成连续体,产生小 裂缝。为使变形后连续,
y
xy
z
yz
x
zx
y
2 2 y
zx
应变分量必须满足协调 方程。因此变形协调方 程是保证物体连续的一
z
yz
x
zx
y
xy
z
2
2 z
xy
个必要条件。
6个变形协调方程,其中只有3个独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xy
yz
前三个分别是xy,yz,zx平面内的3个应变量间 的协调关系;而后三者则分别是正应变和3个切 应变之间的协调关系。
3、边界条件 * 力边界条件: ij ni Ti (在S )
位移边界条件: ui ui (在Su ) 4、各向异性本构方程(小变形) (i, j 1,2,,6) i Cij j 及 i Sij j
S16 S 26 S36 S 45 0
即: S11 S12 S13
S 22 S 23 S 33 对 称 0 0 0 S 44 0 0 0 0 S 55 0 0 0 0 0 S 66
由此可得:1)当采用材料主轴来描述正交异性 体时,没有任何拉剪耦合现象;2)在非材料主 轴系里,正交异性材料仍有耦合现象。
五、各向同性(2个弹性常数) E G E, 2(1 )
S11 S 12 S12 0 0 0 S12 S11 S12 0 0 0 S12 S12 S11 0 0 0 0 0 0 2( S11 S12 ) 0 0 0 2( S11 S12 ) 0 0 0 2( S11 S12 ) 0 0 0 0 0 0
即:
S11 S 21 S 21 0 0 0
S12 S 22 S 23 0 0 0
S12 S 23 S 22 0 0 0
0 0 0 S 44 0 0
0 0 0 0 S 66 0
0 0 0 0 0 S 66
由工程应变形式的展开式为:
2
x zx ( )2 x y z x yz 2 y zx xy yz ( )2 y z x y zx yz zx xy 2 z ( )2 z x y z xy
二、有一弹性对称面(13个弹性常数)
弹性对称面:沿这些平面的对称方向弹性性 能是相同的。 材料主轴(或弹性主轴):垂直于弹性对称 面的轴。
利用两个方向下材料的应变能密度表达式 应保持不变(即利用两个坐标系计算得到的单 位体积应变能的结果是相同的)可以推得: 设仅有 1 , 4 ,即有
W S11 2S14 1 4
共有81个方程,但只有6个是不同的,其余的 不是恒等式就是由于 ij 的对称性而都是重复 的。 6个独立等式: 2 2 2 xy x y
y
2
x
2
xy
2 2
y
2
z 2 2 z y yz
2
yz
2
z x zx 2 2 x z zx
Sij 可展开为:
四、横观同性(5个弹性常数)
纤维在横截面内随机排列的,宏观而言, 其在横向的所有方向的弹性性能相同,则称为 横向同性。由于横向同性,则在2-3平面内应为 各向同性,则有 E2 G23 2(1 23 )
故只有5个独立常数:
E1 , E2 , 21(或 12), 23) G12 , G (或 23
C66
剪 - 剪耦 合
§3-2 各向异性弹性力学的本构方程
一、完全各向异性(21个弹性常数)
1 S11 1 S12 2 S13 3 S14 4 S15 5 S16 6
其中Sij为柔度系数,4、5和6即为剪应 力23、31和 12。可见各向异性体一般具有耦 合现象:正应力引起剪应变,剪应力也可以 引起正应变;反之亦然。
1、对于各向同性,可推得: 1 1 E0 2 1 实际上一般为: 0 2 2、对于正交各向异性,有:
E1 , E2 , E3 , G23 , G31 , G12 0
1 E1…… 等等
作业:
1.推导正交各向异性材料柔度矩阵为 零的分量; 2.推导正交各向异性材料中各个常数 的取值范围。
ij, j f i 0
分量形式为:
(i, j 1,2,3)
x xy xz X 0 x y z yx x y y yz z Y 0
zx zy z Z 0 x y z
2、几何关系(小变形)
第三章 各向异性弹性力学基础
§3-1 各向异性弹性力学基本方程
基本未知量: 位移分量:u, v, w
应变分量: x , y , z , yz , zx , xy 应力分量: x , y , z , yz , zx , xy
基本方程: 1、平衡方程
Cij C ji 刚度矩阵 Sij S ji 柔度矩阵
*
各向异性体的弹性应变能为:
1 1 W C ij i j S ij i j 2 2
拉-拉耦合 (泊桑效 应)
拉剪耦 合
C11
C22
C33 C44 C55
如果 3 0 ,其余应力分量为零,则有:
1 S13 3 ; 2 S 23 3 ; S ; 33 3 3
4 23 0 5 31 0 6 12 S36 3
此公式说明:当沿弹性主轴拉伸时,除纵向 伸长、横向收缩外,还会引起与主轴垂直的 面内剪应变。
1 ij (u i , j u j ,i ) 2
分量形式为:
u x x
yz
zx
w v y z
u w z x
v y y
w z z
xy
v u x y
变形协调方程:六个应变分量应该满足的一 个关系,即 ij,kl kl,ij lj,ki ki,lj 0 (i, j, k , l 1,2,3)
2 1
2 4
而 1 4 在z变向时要变号,为保证W相同, 则有
S14 0
同理: S14 S 24 S 34 S 46 0
S15 S 25 S 35 S 56 0
独立常数减少为13个,即
S11 S12 S 22 S13 S 23 S 33 对 称 0 0 0 S 44 0 0 0 S 45 S 55 S16 S 26 S 36 0 0 S 66
纤 维 在 横截 面 内 按矩形排列的单向纤 维复合材料,宏观而 言则是一正交异性体。 共有9个弹性常数:
E1 , E2 , E3 , 12 , 31 , 23 , G23 , G31 , G12
1轴沿纤维方向,并有
ij ji
,而是
ij
Ej
ji
Ei
即 ij 没有对称性。
E1 E 2 E 3 , 12 G G G 23 12 1 1 [ 1 ( 2 3 )] E 2 2 3 1 3 1 2 3 1 23 23 31 G 31 12 12
六、弹性常数的取值范围
三、正交各向异性(9个弹性常数)
正交各向异性是指有三个互相正交的弹性主轴 的情况。(有三个互相正交的弹性对称面)
取 x1 , x2 , x3 为三个正交弹性主轴,如图所示:
由 a)、 b)两坐标系中计算的应变能应该 相同,而在两坐标系下:
31 , 12 , 31 , 12(即 5 , 6 , 5 , 6 )变号,可得:
判定依据是非零应力状态下,材料的弹性 应变能位正值,应变能应是应变(或应力)的 正定二次型。 1 W S ij i j 2
W 为 i 的正定二次型的充要条件是矩阵 S
的所有主要主子式大于零,即:
S11 0,
S11
S12
S 21 S 22
0, , det Sij 0