2019-2020学年高中数学 第二章 圆锥曲线与方程 2.3.2 抛物线的几何性质课堂导学案 新人教B版选修1-1
人教A版高中数学选修1-1《二章 圆锥曲线与方程 2.3 抛物线 圆锥曲线的光学性质及其应用》优质课教案_3

高中数学人教A版2003课标版选修1-1第二章圆锥曲线与方程→2.3抛物线→阅读与思考圆锥曲线的光学性质及其应用《圆锥曲线的光学性质及其应用》的教学设计第一课时抛物线的光学性质及其应用一、教学目标1.理解抛物线的光学性质,并会应用数学推理得出抛物线的光学性质,并会应用它解决数学问题。
2.会用数学建模的思想将实际生活问题数学化,也会用数学建模的思想将数学问题生活化。
二、教学重点理解抛物线的光学性质并会推导。
三、教学难点数学建模思想的应用。
四、教学过程(一)课题引入问题一:手电筒一只很小的灯泡发出的光,会分散地射向各方,但把它装在圆柱形手电筒里,经过适当调节,就能射出一束比较强的平行光线。
这是为什么呢?设计意图:从生活中的一个例子出发,提出问题,引发学生的求知欲,从而提出课题。
(二)课题提出抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴。
抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的.问题二:生活问题数学化要探究抛物线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证,那么我们如何用数学语言阐述并证明抛物线的光学性质?设计意图:提出抛物线的光学性质,并通过列举它在生活中的大量应用,让学生感知数学无处不在,并有将生活问题数学化的欲望。
2019-2020学年高中数学人教版选修1-1习题:第二章2.3-2.3.1抛物线及其标准方程 Word版含答案

第二章 圆锥曲线与方程2.3 抛物线2.3.1 抛物线及其标准方程A 级 基础巩固一、选择题1.准线方程为y =23的抛物线的标准方程为( ) A .x 2=83y B .x 2=-83y C .y 2=-83xD .y 2=83x解析:由准线方程为y =23,知抛物线焦点在y 轴负半轴上,且p 2=23,则p =43.故所求抛物线的标准方程为x 2=-83y .答案:B2.已知抛物线y -2 016x 2=0,则它的焦点坐标是( ) A .(504,0) B.⎝⎛⎭⎪⎫18 064,0 C.⎝⎛⎭⎪⎫0,18 064 D.⎝⎛⎭⎪⎫0,1504 解析:抛物线的标准方程为x 2=12 016y ,故其焦点为(0,18 064). 答案:C3.抛物线y =12x 2上的点到焦点的距离的最小值为( ) A .3 B .6 C.148 D.124解析:将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148. 答案:C4.一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆过定点( ) A .(4,0) B .(2,0) C .(0,2)D .(0,4)解析:由题意易知直线x +2=0为抛物线y 2=8x 的准线,由抛物线的定义知动圆一定过抛物线的焦点. 答案:B5.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是焦点,|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .x 1,x 3,x 2成等差数列C .y 1,y 2,y 3成等差数列D .y 1,y 3,y 2成等差数列解析:由抛物线的定义知|AF |=x 1+p2,|BF |=x 2+p 2, |CF |=x 3+p 2.因为|AF |,|BF |,|CF |成等差数列,所以2⎝⎛⎭⎪⎫x2+p 2=⎝⎛⎭⎪⎫x1+p 2+⎝⎛⎭⎪⎫x3+p 2,即2x 2=x 1+x 3.故x 1,x 2,x 3成等差数列.故选A.答案:A 二、填空题6.抛物线y 2=2x 上的两点A ,B 到焦点的距离之和是5,则线段AB 中点的横坐标是________. 解析:由抛物线的定义知点A ,B 到准线的距离之和是5,则AB 的中点到准线的距离为52,故AB 中点的横坐标为x =52-12=2.答案:27.抛物线过原点,焦点在y 轴上,其上一点P (m ,1)到焦点的距离为5,则抛物线的标准方程是________. 解析:由题意,知抛物线开口向上,且1+p 2=5,所以p =8,即抛物线的标准方程是x 2=16y . 答案:x 2=16y8.焦点为F 的抛物线y 2=2px (p >0)上一点M 在准线上的射影为N ,若|MN |=p ,则|FN |=________. 解析:由条件知|MF |=|MN |=p ,MF ⊥MN ,在△MNF 中,∠FMN =90°,得|FN |=2p . 答案:2p 三、解答题9.求满足下列条件的抛物线的标准方程.(1)焦点在坐标轴上,顶点在原点,且过点(-3,2);(2)顶点在原点,以坐标轴为对称轴,焦点在直线x -2y -4=0上.解:(1)当焦点在x 轴上时,设抛物线的标准方程为y 2=-2px (p >0).把(-3,2)代入,得22=-2p ×(-3),解得p =23.所以所求抛物线的标准方程为y 2=-43x .当焦点在y 轴上时,设抛物线的标准方程为x 2=2py (p >0). 把(-3,2)代入,得(-3)2=4p ,解得p =94.所以所求抛物线的标准方程为x2=92 y.(2)直线x-2y-4=0与x轴的交点为(4,0),与y轴的交点为(0,-2),故抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,设抛物线方程为y2=2px(p>0),则p2=4,所以p=8.所以抛物线方程为y2=16x.当焦点为(0,-2)时,设抛物线方程为x2=-2py(p>0),则-p2=-2,所以p=4.所以抛物线方程为x2=-8y.10.已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程.解:设动圆圆心为M(x,y),半径为r,则由题意可得M到C(0,-3)的距离与到直线y=3的距离相等,则动圆圆心的轨迹是以C(0,-3)为焦点,y=3为准线的一条抛物线,其方程为x2=-12y.B级能力提升1.点M(5,3)到抛物线y=ax2的准线的距离为6,那么抛物线的方程是( )A.y=12x2B.y=12x2或y=-36x2C.y=-36x2D.y=112x2或y=-136x2解析:当a>0时,抛物线开口向上,准线方程为y=-14a,则点M到准线的距离为3+14a=6,解得a=112,抛物线方程为y=112x2.当a<0时,开口向下,准线方程为y=-14a,点M到准线的距离为⎪⎪⎪⎪⎪⎪3+14a=6,解得a=-136,抛物线方程为y=-136x2.答案:D2.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值为________.解析:由已知得抛物线的焦点为F(1,0),由抛物线的定义知:动点P到直线l1和直线l2的距离之和的最小值即为焦点F(1,0)到直线l1:4x-3y+6=0的距离,由点到直线的距离公式得:d=|4-0+6|42+(-3)2=2,所以动点P到直线l1和直线l2的距离之和的最小值是2.答案:23.抛物线y2=2px(p>0)且一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y=2x,斜边长为513,求此抛物线方程.解:设抛物线y2=2px(p>0)的内接直角三角形为AOB,直角边OA所在直线方程为y=2x,另一直角边所在直线方程为y =-12x .解方程组⎩⎪⎨⎪⎧y =2x ,y2=2px ,可得点A 的坐标为⎝ ⎛⎭⎪⎫p 2,p ;解方程组⎩⎪⎨⎪⎧y =-12x ,y2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513,所以⎝ ⎛⎭⎪⎫p24+p2+(64p 2+16p 2)=325.所以p =2,所以所求的抛物线方程为y 2=4x .。
2019-2020学年高中数学(人教B版 选修1-1)教师用书:第2章 圆锥曲线与方程 2-3-1

2.3 抛物线2.3.1抛物线及其标准方程1.掌握抛物线的定义及其标准方程.(重点)2.了解抛物线的实际应用.(难点))3.能区分抛物线标准方程的四种形式.(易混点[基础·初探]教材整理抛物线的定义与标准方程阅读教材P57~P58例1以上部分,完成下列问题.1.抛物线的定义平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程四种不同标准形式的抛物线方程判断(正确的打“√”,错误的打“×”)(1)标准方程y2=2px(p>0)中的p的几何意义是焦点到准线的距离.( )(2)抛物线的焦点位置由一次项及一次项系数的正负决定.( )(3)平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线.( )(4)抛物线可看作双曲线的一支.( )【答案】(1)√(2)√(3)×(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_____________________________________________________解惑:______________________________________________________疑问2:_____________________________________________________解惑:______________________________________________________疑问3:_____________________________________________________解惑:_______________________________________________________[小组合作型](1)过点(-3,2);(2)焦点在直线x-2y-4=0上;(3)焦点到准线的距离为52. 【导学号:25650075】【精彩点拨】本题主要考查抛物线标准方程的求法,解题的关键是明确标准方程的类型和参数p的值.【自主解答】(1)∵点(-3,2)在第二象限,∴设抛物线方程为y 2=-2px 或x 2=2py (p >0). 将点(-3,2)代入方程,得2p =43或2p =92.∴当焦点在x 轴上时,所求抛物线方程是y 2=-43x ,其焦点为⎝ ⎛⎭⎪⎪⎫-13,0,准线方程为x =13;当焦点在y 轴上时,所求抛物线方程为x 2=92y ,其焦点为⎝ ⎛⎭⎪⎪⎫0,98,准线方程为y =-98.(2)令x =0,由方程x -2y -4=0,得y =-2. ∴抛物线的焦点为F (0,-2). 设抛物线方程为x 2=-2py (p >0), 则由p2=2,得2p =8,∴所求抛物线方程为x 2=-8y .令y =0,由方程x -2y -4=0,得x =4. ∴抛物线的焦点为F (4,0). 设抛物线方程为y 2=2px (p >0), 则由p 2=4,得2p =16,∴所求抛物线方程为y 2=16x .综上,所求抛物线方程为x 2=-8y 或y 2=16x . 其准线方程为y =2或x =-4, 焦点坐标为(0,-2)或(4,0).(3)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .求抛物线方程,通常用待定系数法,若能确定抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可.若抛物线的焦点位置不确定,则要分情况讨论.焦点在x 轴上的抛物线方程可设为y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可设为x 2=ay (a ≠0).[再练一题]1.根据下列条件写出抛物线的标准方程: (1)准线方程为y =-1;(2)焦点在x 轴的正半轴上,焦点到准线的距离是3.【解】 (1)由准线方程为y =-1知抛物线焦点在y 轴正半轴上,且p2=1,则p =2.故抛物线的标准方程为x 2=4y .(2)设焦点在x 轴的正半轴上的抛物线的标准方程为y 2=2px (p >0), 则焦点坐标为⎝ ⎛⎭⎪⎪⎫p 2,0,准线为x =-p 2,则焦点到准线的距离是⎪⎪⎪⎪⎪⎪⎪⎪-p 2-p 2=p =3,因此所求的抛物线的标准方程是y 2=6x .B 高5m ,且与OA 所在的直线相距4m ,水流落在以O 为圆心,半径为9m 的圆上,则管柱OA 的长是多少? 【导学号:25650076】【精彩点拨】 根据题意先建立坐标系,设出抛物线方程,把实际问题转化为数学问题. 【自主解答】 如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2=-2py (p >0),因为点C (5,-5)在抛物线上,所以25=-2p ·(-5),因此2p =5, 所以抛物线的方程为x 2=-5y , 点A (-4,y 0)在抛物线上, 所以16=-5y 0,即y 0=-165,所以OA 的长为5-165=1.8 (m).所以管柱OA 的长为1.8 m.在建立抛物线的标准方程时,常以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.[再练一题]2.某河上有一座抛物线形的拱桥,当水面距拱顶5 m 时,水面宽8 m ,一木船宽4 m ,高2 m ,载货的木船露在水面上的部分为0.75m ,当水面上涨到与拱顶相距多少时,木船开始不能通航? 【导学号:25650077】【解】 以桥的拱顶为坐标原点,拱高所在的直线为y 轴建立直角坐标系.(如图)设抛物线的方程是x 2=-2py (p >0), 由题意知A (4,-5)在抛物线上, 故16=-2p ×(-5)⇒p =85,则抛物线的方程是x 2=-165y (-4≤x ≤4),设水面上涨,木船面两侧与抛物线形拱桥接触于B 、B ′时,木船开始不能通航. 设B (2,y ′),∴22=-165y ′⇒y ′=-54.∴54+0.75=2.故当水面上涨到与抛物线形的拱顶相距2 m 时,木船开始不能通航.[探究共研型]探究1 【提示】 抛物线标准方程中的p 的几何意义是焦点到准线的距离. 探究2 抛物线定义的功能是什么?【提示】 根据抛物线的定义,抛物线上的任意一点到焦点的距离等于它到准线的距离,因此,抛物线定义的功能是可以把点点距转化为点线距,从而使有关的运算问题变得简单、快捷.(1)若动点M 到点F (4,0)的距离比它到直线x +5=0的距离小1,则动点M 的轨迹方程是________.(2)如图2-3-1,已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2).求|P A |+|PF |的最小值,并求此时P 点坐标.图2-3-1【精彩点拨】 (1)中先由抛物线的定义确定点M 的轨迹,再写方程.(2)由定义知,抛物线上点P 到焦点F 的距离等于点P 到准线的距离d ,求|P A |+|PF |的问题可转化为|P A |+d 的问题.【自主解答】 (1)如图,设点M 的坐标为(x ,y ).由已知条件可知,点M与点F的距离等于它到直线x+4=0的距离.根据抛物线的定义,点M的轨迹是以F(4,0)为焦点的抛物线,且p2=4,即p=8.因为焦点在x轴的正半轴上,所以点M的轨迹方程为y2=16x.【答案】y2=16x(2)如图,作PQ⊥l于Q,由定义知,抛物线上点P到焦点F的距离等于点P到准线l的距离d,由图可知,求|P A|+|PF|的最小值的问题可转化为求|P A|+d的最小值的问题.将x=3代入抛物线方程y2=2x,得y=±6.∵6>2,∴A在抛物线内部.设抛物线上点P到准线l:x=-12的距离为d,由定义知|P A|+|PF|=|P A|+d.由图可知,当P A⊥l时,|P A|+d最小,最小值为7 2 .即|P A|+|PF|的最小值为72,此时P点纵坐标为2,代入y2=2x,得x=2.∴点P坐标为(2,2).1.对于动点到定点的距离比此动点到定直线的距离大多少或小多少的问题,实际上也是抛物线问题.2.抛物线的定义在解题中的作用,就是灵活地进行抛物线上的点到焦点的距离与到准线距离的转化,另外要注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.[再练一题]3.(1)已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和的最小值为( )A.172B .2 C.5D.92 (2)(2015·上海高考)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =________.【解析】 (1)如图,由抛物线定义知|P A |+|PQ |=|P A |+|PF |,则所求距离之和的最小值转化为求|P A |+|PF |的最小值,则当A 、P 、F 三点共线时,|P A |+|PF |取得最小值. 又A (0,2),F ⎝ ⎛⎭⎪⎪⎫12,0,∴(|P A |+|PF |)min =|AF |=错误!=错误!.故选A. (2)依题意,点Q 为坐标原点,所以p2=1,则p =2.【答案】 (1)A (2)2[构建·体系]1.抛物线y =2x 2的焦点坐标是( )A .(1,0) B.⎝ ⎛⎭⎪⎪⎫0,14C.⎝ ⎛⎭⎪⎪⎫14,0 D.⎝⎛⎭⎪⎪⎫0,18【解析】 抛物线的标准方程为x 2=12y ,所以p =14,故焦点坐标是⎝ ⎛⎭⎪⎪⎫0,18.【答案】 D2.抛物线y 2=8x 的焦点到准线的距离是( ) A .1 B .2 C .4D .8【解析】 抛物线焦点到准线的距离是p =4. 【答案】 C3.若双曲线x2m -y23=1的右焦点与抛物线y 2=12x 的焦点重合,则m =________. 【导学号:25650078】【解析】 双曲线x2m -y23=1的右焦点为(m +3,0),抛物线y 2=12x 的焦点F (3,0),∴m +3=3,∴m =6.【答案】 64.以抛物线y 2=8x 上的任意一点为圆心作圆与直线x +2=0相切,则这些圆必过一定点,这个定点的坐标是________.【解析】 抛物线y 2=8x 的准线方程是x +2=0,根据抛物线的定义,圆心到直线x +2=0的距离等于圆心到焦点的距离,所以这些圆必过抛物线的焦点,所以应填(2,0).【答案】 (2,0)5.已知抛物线的焦点在x 轴上,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的标准方程和m 的值.【解】 法一 设抛物线方程为y 2=-2px (p >0), 则焦点F ⎝ ⎛⎭⎪⎪⎫-p 2,0,由题设可得⎩⎪⎨⎪⎧m2=6p ,m2+⎝⎛⎭⎪⎪⎫3-p 22=5,解得⎩⎪⎨⎪⎧p =4,m =26,或⎩⎪⎨⎪⎧p =4,m =-26,故所求的抛物线方程为y 2=-8x , m 的值为±26.法二 设抛物线方程为y 2=-2px (p >0),则焦点F ⎝ ⎛⎭⎪⎪⎫-p 2,0,准线方程为x =p 2,根据抛物线的定义,点M 到焦点的距离等于5,也就是M 到准线的距离为5,则3+p2=5,∴p =4,因此,抛物线方程为y 2=-8x ,又点M (-3,m )在抛物线上,于是m 2=24, ∴m =±26.。
(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

a=13,b=m1 ,
9 m2
取顶点0,13,一条渐近线为 mx-3y=0, 所以15=|-m32×+139|,则 m2+9=25,
∵m>0,∴m=4.
答案: D
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知点(2,3)在双曲线 C:ax22-by22=1(a>0,b>0)上, C 的焦距为 4,则它的离心率为________.
合作探究 课堂互动
高效测评 知能提升
1.双曲线 2x2-y2=8 的实轴长是( )
A.2
B.2 2
C.4
D.4 2
解析: 双曲线方程可化为x42-y82=1,∴a2=4,a=2,
则 2a=4,故选 C. 答案: C
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
c e=__a__
__y_=__±_ba_x_
_y_=__±_ab_x__
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
等轴双曲线
___实__轴__和___虚__轴___等长的双曲线叫做等轴双曲线.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
由①②联立,无解.
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令 y=0,解得 x=±3,因此顶点坐标为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0). 实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程 y=±bax=±23x. 作出草图(如图所示).
2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2.3.2 双曲线的几何性质学习目标核心素养1.了解双曲线的简单几何性质.(重点)2.会求双曲线的渐近线、离心率、顶点、焦点坐标等.(重点)3.知道椭圆与双曲线几何性质的区别.1.通过双曲线性质的学习,提升直观想象素养.2.借助性质的应用,提升数学运算素养.1.双曲线的简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称轴x轴,y轴对称中心原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abx(1)实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①等轴双曲线的离心率e=2;②等轴双曲线的渐近线方程为y =±x ,它们互相垂直. 思考:(1)渐近线一样的双曲线是同一条双曲线吗? (2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示] (1)渐近线一样的双曲线有无数条,但它们实轴与虚轴的长的比值一样.(2)e 2=c 2a 2=1+b 2a 2,ba是渐近线的斜率或其倒数.1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±23xB .y =±49xC .y =±32xD .y =±94xC [双曲线的焦点在x 轴上,且a =2,b =3,因此渐近线方程为y =±32x .]2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)B [由题意知,双曲线的焦点在x 轴上,且a =4,因此双曲线的顶点坐标是(-4,0),(4,0).]3.假设双曲线x 24-y 2m =1(m >0)的渐近线方程为y =±32x ,那么双曲线的焦点坐标是________.(-7,0),(7,0) [由双曲线方程得出其渐近线方程为y =±m2x ,∴m =3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标为(-7,0),(7,0).]4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么双曲线的离心率为________.53 [因为渐近线方程为y =43x ,所以b a =43, 所以离心率e =ca=1+⎝ ⎛⎭⎪⎫b a2=1+⎝ ⎛⎭⎪⎫432=53.]由双曲线的方程求其几何性质【例1】 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路探究] 此题给出的方程不是标准方程,应先化方程为标准形式,然后根据标准方程求出根本量a ,b ,c 即可得解,注意确定焦点所在坐标轴.[解] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13, 因此顶点坐标A 1(-3,0),A 2(3,0), 焦点坐标F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133, 渐近线方程为y =±b a x =±23x .作草图,如下图:用双曲线标准方程研究几何性质的步骤1.将双曲线方程化为标准方程形式; 2.判断焦点的位置; 3.写出a 2与b 2的值; 4.写出双曲线的几何性质.1.求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、渐近线方程和离心率. [解] 将方程x 2-3y 2+12=0化为标准方程为y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4,∴双曲线的实轴长2a =4,虚轴长2b =43,焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2. 求双曲线的标准方程【例2】 求适合以下条件的双曲线的标准方程. (1)两顶点间的距离为6,渐近线方程为y =±32x ;(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).[思路探究] 利用待定系数法,当渐近线方程时,可利用双曲线设出方程进展求解. [解] (1)设以直线y =±32x 为渐近线的双曲线方程为x 24-y29=λ(λ≠0),当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=λ(λ≠0),将点(2,-2)代入双曲线方程,得λ=222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.双曲线方程的求解方法1.根据双曲线的几何性质求双曲线的标准方程时,一般采用待定系数法,首先要根据题目中给出的条件,确定焦点所在的位置,然后设出标准方程的形式,找出a ,b ,c 的关系,列出方程求值,从而得到双曲线的标准方程.2.以y =±n m x 为渐近线的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0),以此求双曲线方程可防止分类讨论.2.求适合以下条件的双曲线的标准方程. (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 225-x 2144=1.(2)法一:∵双曲线的渐近线方程为y =±12x ,假设焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),那么b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1. ②由①②联立,无解.假设焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),那么a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.法二:由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0).∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.求双曲线的离心率及其取值范围ABC ABC A B C 曲线的离心率为________.(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求双曲线离心率的取值范围.[思路探究] (1)根据图形并由双曲线的定义确定a 与c 的关系,求出离心率;(2)可以通过图形借助直线与双曲线的关系,因为过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,那么必有b a≥tan 60°.(1)1+32 [由题意2c =AB =BC ,∴AC =2×2c ×sin 60°=23c , 由双曲线的定义,有2a =AC -BC =23c -2c ⇒a =(3-1)c , ∴e =c a=13-1=1+32.] (2)[解] 因为双曲线渐近线的斜率为k =b a, 直线的斜率为k =tan 60°=3,故有b a≥3,所以e =ca =a 2+b 2a 2≥1+3=2, 所以所求离心率的取值范围是[2,+∞).双曲线离心率的求法1.求双曲线的离心率就是求a 和c 的关系,一般可以采用几何观察法和代数关系构造法来寻求a ,b ,c 三者中两者的关系,进而利用c 2=a 2+b 2进展转化.2.求双曲线离心率的取值范围,一般可以从以下几个方面考虑:(1)与范围联系,通过求值域或解不等式来完成.(2)通过判别式Δ>0来构造.(3)利用点在双曲线内部形成不等关系.(4)利用解析式的特征,如c >a ,或c >b .3.F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.[解] 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a.由PF 2=QF 2,∠PF 2Q =90°, 知PF 1=F 1F 2,∴b 2a=2c ,∴b 2=2ac ,∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a 2-2×c a-1=0, 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ(λ≠0),再结合其他条件求得λ,可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为准确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.1.判断(正确的打“√〞,错误的打“×〞)(1)双曲线虚轴的两个端点,不是双曲线的顶点.( ) (2)等轴双曲线的渐近线是y =±x .( ) (3)双曲线的实轴长一定大于虚轴长.( ) [答案] (1)√ (2)√ (3)×2.双曲线x 2a 2-y 23=1(a >0)的离心率为2,那么a =( )A .2B .62 C .52D .1 D [由题意得e =a 2+3a=2,∴a 2+3=2a ,∴a 2+3=4a 2,∴a 2=1,∴a =1.]3.假设双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),那么双曲线的方程是________.x 2-y 29=1 [双曲线的焦点在x 轴上,那么c =10,b a∵a 2+b 2=c 2,解得a 2=1,b 2=9, ∴方程为x 2-y 29=1.]4.求适合以下条件的双曲线的标准方程.(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分.[解] (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1,由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y216=1. (2)由两顶点间的距离是6,得2a =6,即a 2c =4a =12,即c =6,于是b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.。
2020_2021学年高中数学第2章圆锥曲线与方程2.3.2双曲线的简单几何性质素养课件新人教A版选

【错因分析】虽然已知双曲线的渐近线方程,但是不能确 定双曲线的焦点就一定在 x 轴上,而应讨论焦点在 x 轴和 y 轴 上,对两种情况求解.
【正解】(1)当双曲线焦点在 x 轴上时,ba=34,
所以 e=
1+ba22=45;
(2)当双曲线焦点在 y 轴上时,ba=43,
所以 e=ac=
1+ba22=
(2)当焦点在 x 轴上时,由ba=32且 a=3, ∴b=92. ∴所求双曲线方程为x92-48y12=1. 当焦点在 y 轴上时,由ba=23且 a=3,∴b=2. ∴所求双曲线方程为y92-x42=1.
(3)设与双曲线x22-y2=1 有公共渐近线的双曲线方程为x22 -y2=k(k≠0),将点(2,-2)代入得 k=222-(-2)2=-2,∴双 曲线的标准方程为y22-x42=1.
与弦长、中点有关的问题,常联立直线与曲线的方程,利 用根与系数的关系求解.在解题时,要注意灵活转化.
3.直线 l 在双曲线x32-y22=1 上截得的弦长为 4,其斜率为 2,求直线 l 在 y 轴上的截距 m.
【解析】直线 l 的方程为 y=2x+m, y=2x+m,
由x32-y22=1, 得 10x2+12mx+3(m2+2)=0.设直线 l 与 双曲线交于 A(x1,y1),B(x2,y2)两点,由根与系数的关系,得 x1+x2=-56m,
A.x2-y2=8
B.x2-y2=4
C.y2-x2=8
D.y2-x2=4
【答案】A
【解析】在直线 3x-4y+12=0 中,令 y=0,得 x=-4,
∴等轴双曲线的一个焦点坐标为(-4,0).∴c=4,a2=b2=12c2
=12×16=8.故选 A.
高中数学《抛物线的简单几何性质》(导学案)

第二章 圆锥曲线与方程 2.3.2抛物线的简单几何性质一、学习目标1.掌握抛物线的性质、焦半径、焦点弦的应用. 2.掌握直线与抛物线位置关系的判断. 【重点难点】1.会用抛物线的性质解决与抛物线相关的综合问题.(重点)2.直线与抛物线的位置关系的应用.(难点) 二、学习过程 【问题导思】类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质? 【提示】 范围、对称性、顶点、离心率. 【导入新课】标准方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py(p >0)x 2=-2py(p >0)图形性质焦点 (p2,0) (-p2,0) (0,p2)(0,-p2)准线x =-p 2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈R x ≤0,y ∈R________________对称轴 ____________顶点 ______ 离心率 ______ 开口方向向右 向左向上向下特征:1.2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1. 【典型例题】例1. 已知抛物线的顶点在原点,对称轴重合于椭圆x 29+y 216=1短轴所在的直线,抛物线的焦点到顶点的距离为5,求抛物线的标准方程.例2 斜率为1的直线l 经过抛物线24y x 的焦点F ,且与抛物线相交于A,B 两点,求线段AB 的长.例3 求过点P(0,1)且与抛物线y2=2x只有一个公共点的直线方程.【变式拓展】1.已知抛物线的顶点在原点,对称轴为y轴,顶点到准线的距离为4,求该抛物线的方程并指出焦点坐标与准线方程.2.直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C有:(1)一个公共点;(2)两个公共点;(3)没有公共点.3.求顶点在原点,焦点在x轴上且截直线2x-y+1=0所得弦长为15的抛物线方程.三、总结反思(1)本节课我们学习了抛物线的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义. (2)了解了研究抛物线的焦半径,焦点弦和通径这对我们解决抛物线中的相关问题有很大的帮助.(3)在对曲线的问题的处理过程中,我们更多的是从方程的角度来挖掘题目中的条件,认识并熟练掌握数与形的联系.在本节课中,我们运用了数形结合,待定系数法来求解抛物线方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想.求抛物线弦长问题的方法:(1)一般弦长公式|AB|=|x1-x2|·1+k2=|y1-y2|·1+1k2.(2)焦点弦长设AB是抛物线y2=2px(p>0)的一条过焦点F的弦,A(x1,y1),B(x2,y2),则弦长:|AB|=|AF|+|BF|=x1+x2+p.即求抛物线的焦点弦长,通常是利用焦半径,把点点距转化为点线距(点到准线的距离)解决,这体现了抛物线的特殊性以及求抛物线焦点弦的便捷特点.四、随堂检测1.抛物线x2=-8y的通径为线段AB,O为抛物线的顶点,则AB长是( )A.2B.4C.8D.12.(2015·兰州高二检测)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|= ( )A.6B.8C.9D.103.(2015·阜新高二检测)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,点P为C的准线上一点,则△ABP的面积为( )A.18B.24C.36D.484.已知过抛物线y2=6x焦点的弦长为12,则该弦所在直线的倾斜角是( )A.错误!未找到引用源。
高中数学 第二章 圆锥曲线与方程 2.3 抛物线 2.3.2 抛

SABO
=
1 2
·4p·2p=4p2.
故选 B.
题型二 直线与抛物线的位置关系 【例2】 已知直线l:y=k(x+1)与抛物线C:y2=4x.问:k为何值时,直线l与抛物 线C有两个交点、一个交点、无交点?
解:由方程组
y y
kx
2 4x
1
,
消去
y
得
k2x2+(2k2-4)x+k2=0. 记Δ=(2k2-4)2-4k4=16(1-k2). ①若直线与抛物线有两个交点, 则 k2≠0,且Δ>0,即 k2≠0,且 16(1-k2)>0, 解得 k∈(-1,0)∪(0,1). 所以当 k∈(-1,0)∪(0,1)时,直线 l 和抛物线 C 有两个交点.
x p 2
. x≥0,y∈R
向右
p
|PFx0|= 2 .
e=
x p 2
.
x≤0,y∈R
1.
y p 2
. y≥0,x∈R
向左
向上
p
|PF|x0= 2 .
p
|PFy|0 = 2 .
y p 2
. y≤0,x∈R
向下
|PF|y0=
p 2
.
知识点二 抛物线的焦点弦
梳理 已知AB是抛物线y2=2px(p>0)的焦点弦,且A(x1,y1),B(x2,y2),点F是 抛物线的焦点(如图),则有:
点,OA⊥OB,则△ABO的面积是( )
(A)8p2
(B)4p2
(C)2p2
(D)p2
解析:设点 A 在 x 轴的上方,则由抛物线的对称性及 OA⊥OB 知,直线 OA 的方程为 y=x.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 第二章 圆锥曲线与方程 2.3.2 抛物线的
几何性质课堂导学案 新人教B 版选修1-1
三点剖析
一、利用抛物线定义求最值
【例1】 在抛物线x 2=8y 上求一点P ,使得P 点到焦点的距离与P 点到定点A (1,3)的距离
之和最小,并求出这个最小距离.
解析:过A 作直线l 与准线垂直交于点A ′,与抛物线交于点P ,则P 点即为所求. 将P (1,y )代入x 2=8y 中,则y =81,于是点P 的坐标为(1,8
1),且最小距离d =5. 温馨提示
此题解法中将点P 到焦点F 与点A 的最小距离,转化为线段AA ′的长,是紧扣定义得到的,这一方法在解决圆锥曲线问题时经常用到.
二、焦点弦问题
【例2】 已知过抛物线y 2=4x 的焦点F 的弦长为36,求弦所在的直线方程.
思路分析:弦所在的直线经过焦点(1,0),只需求出直线的斜率,因为弦长为36,所以可以判断直线的斜率是存在的且不为0.
解析:由题意可设弦所在的直线的斜率为k ,且与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点.
∵抛物线y 2=4x 的焦点F (1,0),
∴直线方程为y =k (x -1).
由,4)1(2⎩⎨⎧=-=x
y x k y 整理得k 2x 2-(2k 2+4)x +k 2=0.
∴x 1+x 2=2242k
k +. ∴|AB |=|AF |+|BF |
=x 1+x 2+2=2
242k k ++2. 又|AB |=36,∴2242k
k ++2=36, 解得k 2=81,即k =±4
2.
∴所求直线方程为y =42(x -1)或y =-4
2(x -1). 温馨提示
(1)此题也可以先求出两交点坐标,再根据两点间的距离公式列出等式求出k ,但是计算复杂,一般不采用.
(2)也可以利用弦长公式|AB |=21k +|x 1-x 2|来求,这个方法普遍适用于求二次曲线的弦长.
(3)因为本题的弦是过焦点的,是特殊位置的弦,所以结合抛物线的定义得到|AB |=x 1+x 2+p ,解起来更简捷.
三、直线与抛物线的位置关系
【例3】 直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时l 与C 有(1)一个公共点;(2)两
个公共点;(3)没有公共点.
解析:将l 和C 的方程联立,412⎩⎨⎧=+=x
y kx y 消去y ,得k 2x 2+(2k -4)x +1=0.(*) 当k =0时,方程(*)只有一个解x =
41,∴y =1. ∴直线l 与C 只有一个公共点(4
1,1),此时直线l 平行于对称轴. 当k ≠0时,方程(*)是一个一元二次方程.
(1)当Δ>0,即k <1,且k ≠0时,l 与C 有两个公点,此时称直线l 与C 相交;
(2)当Δ=0,即k =1时,l 与C 有一个公共点,此时称直线l 与C 相切;
(3)当Δ<0,即k >1时,l 与C 没有公共点,此时称直线l 与C 相离.
综上所述,可知:当k =1或k =0时,直线l 和C 有一个公共点;当k <1,且k ≠0时,直线l 和C 有两个公共点;当k >1时,直线l 和C 没有公共点.
温馨提示
一般地,直线与抛物线相切,直线与抛物线只有一个公共点;反过来,直线与抛物线只有一个公共点,则直线与抛物线不一定是相切的(如图).因此,直线与抛物线只有一个公共点是直线与抛物线相切的必要而非充分条件.
各个击破
类题演练1
给定抛物线y 2=2x ,设A (a ,0),a >0,P 是抛物线上的一点,且|PA |=d ,试求d 的最小值.
解析:设P (x 0,y 0),(x 0≥0),
则y 20=2x 0,
∴d =|PA |=.12)]1([2)()(200202020-+-+=+-=+-a a x x a x y a x
∵a >0,x 0≥0,
∴(1)当0<a <1时,1-a >0,此时当x 0=0时,
d 最小=.12)1(2a a a =-+-
(2)当a ≥1时,1-a ≤0,
此时当x 0=a -1时,
d 最小=12-a
变式提升1
抛物线y 2=2px 动弦AB 长为a (a ≥2p ),弦AB 中点到y 轴最短距离是( ) A.2
a B.
2p C.22p a + D.22p a - 答案:D
类题演练2
过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A 、B 两点. 求证:.2||1||1p
FB FA =+ 证明:设A (x 1,y 1),B(x 2,y 2),则|FA |=x 1+
2p ,|FB |=x 2+2p ,|AB |=x 1+x 2+p 当AB ⊥x 轴时,结论显然成立;当AB 不垂直于x 轴时,⎪⎩
⎪⎨⎧=-=px y p x k y 2)2(2
消去y 得k 2x 2-p (k 2
+2)x +42
2p k =0, 则x 1+x 2=22)2(k
k p +,x 1x 2=42
p , .24
)(2)2
)(2(|
|112
2121212121p p x x p x x p x x p x p x p x x FB |FA|=+++++=++++=+
变式提升2
(2006湖北黄冈中学综合能力测试(三),14)已知椭圆E 的离心率为e ,两焦点为F 1,F 2,抛物线C 以F 1为顶点,F 2为焦点,P 为两曲线的一个交点,若|
|||21PF PF =e ,则e 的值为_________. 解析:如图,抛物线准线为x =-3c ,,|
|||21e PF PF =
又|PF 2|=|P H |,∴||1PH PF =e ,∴x =-3c 也为椭圆E 的准线.∴-c a 2=-3c ⇒e =3
3. 答案:3
3
类题演练3 设双曲线22
a
x -y 2=1(a >0)与直线x +y =1相交于两个不同的点A 、B ,求a 的取值范围. 解析:由C 与l 相交于两个不同的点, 故知方程组⎪⎩
⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0 ①
所以⎪⎩⎪⎨⎧>-+≠-0
)1(84012222a a a a 解得0<a <2且a ≠1. 故a 的取值范围是(0,1)∪(1,2)
变式提升3
设抛物线y 2=2px (p >0)上各点到直线3x +4y +12=0的距离的最小值为1,求p 的值. 解析:由题意可知,抛物线必在直线3x +4y +12=0的上方.
则直线3x +4y +12=0上方且和它相距为1的直线方程为3x +4y +7=0.
由题意⎩⎨⎧=++=0
74322y x px y 只有一解.
消去x 得:p
y 232
+4y +7=0. 由Δ=16-4×p 23×7=0,所以p =821.。