复数与向量的关系教学提纲
复数与向量:复数运算和向量分析

复数与向量:复数运算和向量分析复数与向量是数学中重要而常用的概念,它们在代数和几何中都有广泛的应用。
本文将介绍复数的基本运算以及向量的分析性质,并深入探讨它们之间的联系和应用。
一、复数运算1.1 复数的定义和表示方法复数是由实数部分和虚数部分构成的数,可以用a+bi的形式表示,其中a是实数部分,b是虚数部分,i是虚数单位,满足i^2=-1。
复数可以表示为有序对(a, b),其中a和b均为实数。
1.2 复数的基本运算复数的基本运算包括加法、减法、乘法和除法。
1.2.1 加法和减法两个复数相加时,实部与实部相加,虚部与虚部相加,即(a+bi) + (c+di) = (a+c)+(b+d)i。
减法同理,即(a+bi) - (c+di) = (a-c)+(b-d)i。
1.2.2 乘法两个复数相乘时,根据乘法分配律展开,并利用虚数单位i的平方性质,即(a+bi)(c+di) = (ac-bd)+(ad+bc)i。
1.2.3 除法两个复数相除时,将分子和分母都乘以共轭复数的同一个形式。
即(a+bi)/(c+di) = [(a+bi)(c-di)] / [(c+di)(c-di)]。
1.3 欧拉公式欧拉公式是复数运算中的重要公式,表达了自然对数底e的指数函数与三角函数的关系。
欧拉公式为e^(ix) = cos(x) + isin(x),其中e为自然对数底,i为虚数单位,x为实数。
二、向量分析2.1 向量的定义和表示方法向量是有大小和方向的量,可以用箭头表示,也可以用坐标表示。
在二维空间中,一个向量可以表示为(x, y),其中x和y分别表示向量在x轴和y轴上的分量。
在三维空间中,一个向量可以表示为(x, y, z),其中x、y和z分别表示向量在x轴、y轴和z轴上的分量。
2.2 向量的基本运算向量的基本运算包括加法、减法、数乘和点乘。
2.2.1 加法和减法两个向量相加时,将它们的对应分量相加,即(x1, y1) + (x2, y2) =(x1+x2, y1+y2)。
复数和向量的关系

复数和向量的关系复数和向量是有着密切关系的两个概念。
在物理学、工程学以及数学的各个方面都用到了这两个概念。
复数的符号含义为a + bi,其中i为虚数单位,a和b分别为实部和虚部。
而向量是物理学里最基本的概念之一,它是有大小和方向的量。
本文将介绍复数和向量之间的关系。
一、复数可以表示向量复数和向量在某种意义上是等价的。
我们可以用一个复数来表示一个二维向量。
具体来说,如果将一个复数a + bi看作是一个有序数对(a,b),那么这个复数可以表示平面上的一个向量(以原点为起点)。
其中a为向量的横坐标,b为向量的纵坐标。
而向量则可以用复数表示,它的实部表示向量在横坐标上的投影,虚部表示向量在纵坐标上的投影。
二、复数的求模与向量的长度复数的求模表示对应复平面上,从原点到复数对应的点的距离。
而对于向量来说,长度则表示向量的大小。
因此,复数的模和向量的长度有一一对应的关系。
具体来说,对于一个复数a + bi,其模为|a+bi| = √(a²+b²)。
而对于一个向量v(x,y),其长度为|v| = √(x²+y²)。
四、复数的四则运算与向量的运算复数和向量都可以进行加、减、乘、除等各种运算。
具体来说,复数a+bi和c+di的加减法规则如下:(a+bi) + (c+di) = (a+c) + (b+d)i而复数的乘法规则是:而向量的加、减、乘等运算也有对应的规律。
向量v(x,y)和w(u,v)的加减法规则如下:v + w = (x+u, y+v)而向量的乘法规则则有两种:点积和叉积。
其中点积的公式为:v · w = |v| |w| cosθ而叉积的公式为:其中θ为v和w之间的夹角。
综上所述,复数和向量有着密不可分的关系。
无论是求模、幅角,还是进行四则运算和向量的加、减、乘等运算,都存在着一一对应的关系。
这一关系在各种物理学和工程学的计算中都有着非常重要的应用。
因此,深入理解复数和向量的关系,对于学习数学、物理学、工程学等相关学科都有着重要的帮助。
研究性学习课题:复数与平面向量的联系

课 题:研究性学习课题:复数与平面向量的联系 教学目的:1. 理解复数与从原点出发的向量的对应关系2. 了解复数加减法运算的几何意义教学重点:复数与从原点出发的向量的对应关系.教学难点:复数加减法运算的几何意义授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.若(,)A x y ,(0,0)O ,则(),OA x y =2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --= 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 14.复平面、实轴、虚轴:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系. 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数i非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.5.复数的加(减)法 (a +bi )±(c +di )=(a ±c )+(b ±d )i .与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减).二、讲解新课:1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 2. 复数z a bi =+←−−−→一一对应平面向量OZ 3.复数加法的几何意义:设复数z 1=a +bi ,z 2=c +di ,在复平面上所对应的向量为1OZ 、2OZ ,即1OZ 、2OZ 的坐标形式为1OZ =(a ,b ),2OZ =(c ,d )1OZ 、2OZ 为邻边作平行四边形OZ 1ZZ 2,则对角线OZ 对应的向量是OZ ,∴OZ = 1OZ +2OZ =(a ,b )+(c ,d )=(a +c ,b +d )=(a +c )+(b +d )i4. 复数减法的几何意义:复数减法是加法的逆运算,设z =(a -c )+(b -d )i ,所以z -z 1=z 2,z 2+z 1=z ,由复数加法几何意义,以OZ 为一条对角线,1OZ 为一条边画平行四边形,那么这个平行四边形的另一边OZ 2所表示的向量2OZ 就与复数z -z 1的差(a -c )+(b -d )i 对应由于21O Z Z Z = ,所以,两个复数的差z-z 1与连接这两个向量终点并指向被减数的向量对应.三、讲解范例:例1已知复数z 1=2+i ,z 2=1+2i 在复平面内对应的点分别为A 、B ,求AB 对应的复数z ,z 在平面内所对应的点在第几象限?解:z =z 2-z 1=(1+2i )-(2+i )=-1+i ,∵z 的实部a =-1<0,虚部b =1>0,∴复数z 在复平面内对应的点在第二象限内.点评:任何向量所对应的复数,总是这个向量的终点所对应的复数减去始点所对应的复数所得的差. 即AB 所表示的复数是z B -z A . ,而BA 所表示的复数是z A -z B 尽管向量AB 的位置可以不同,只要它们的终点与始点所对应的复数的差相同,那么向量AB 所对应的复数是惟一的,因此我们将复平面上的向量称之自由向量,即它只与其方向和长度有关,而与位置无关例2 复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数. 分析一:利用BC AD =,求点D 的对应复数.解法一:设复数z 1、z 2、z 3所对应的点为A 、B 、C ,正方形的第四个顶点D 对应的复数为x +yi (x ,y ∈R ),是:OA OD AD -==(x +yi )-(1+2i )=(x -1)+(y -2)i ;OB OC BC -==(-1-2i )-(-2+i )=1-3i . ∵BC AD =,即(x -1)+(y -2)i =1-3i ,∴⎩⎨⎧-=-=-,32,11y x 解得⎩⎨⎧-==.1,2y x故点D 对应的复数为2-i .分析二:利用原点O 正好是正方形ABCD 的中心来解. 解法二:因为点A 与点C 关于原点对称,所以原点O 为正方形的中心,于是(-2+i )+(x +yi )=0,∴x =2,y =-1.故点D 对应的复数为2-i.点评:根据题意画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用四、课堂练习:1.已知复数z 1=a 2-3+(a +5)i ,z 2=a -1+(a 2+2a -1)i (a ∈R )分别对应向量1OZ 、2OZ (O 为原点),若向量21Z Z 对应的复数为纯虚数,求a 的值. 解:21Z Z 对应的复数为z 2-z 1,则z 2-z 1=a -1+(a 2+2a -1)i -[a 2-3+(a +5)i ]=(a -a 2+2)+(a 2+a -6)i ∵z 2-z 1是纯虚数∴⎪⎩⎪⎨⎧≠-+=+-060222a a a a 解得a =-1. 2.已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数.解:设D (x ,y ),则OA OD AD -=对应的复数为(x +yi )-(1+2i )=(x -1)+(y -2)iOB OC BC -=对应的复数为:(-1-2i )-(-2+i )=1-3i ∵BC AD = ∴(x -1)+(y -2)i =1-3i∴⎩⎨⎧-=-=-3211y x ,解得⎩⎨⎧-==12y x∴D 点对应的复数为2-i五、小结 :复数加法的几何意义:如果复数z 1,z 2分别对应于向量1OP 、2OP ,那么,以OP 1、OP 2为两边作平行四边形OP 1SP 2,对角线OS 表示的向量OS 就是z 1+z 2的和所对应的向量 复数减法的几何意义:两个复数的差z -z 1与连接这两个向量终点并指向被减数的向量对应.六、课后作业:七、板书设计(略)八、课后记:。
中学数学认识复数与向量的运算法则

中学数学认识复数与向量的运算法则数学是一门令人惊叹的学科,它涵盖了各种各样的概念和运算法则。
在中学数学中,复数与向量是两个重要的主题。
本文将介绍复数与向量的运算法则,并讨论它们在实际问题中的应用。
一、复数的运算法则复数是由实数和虚数组成的数,其中虚数是指具有形式为bi的数,其中b是实数而i是虚数单位。
复数可以表达为a+bi的形式,其中a是实部,bi是虚部。
下面是复数的运算法则:1. 复数的加法:对于两个复数a+bi和c+di,它们的和等于(a+c)+(b+d)i。
2. 复数的减法:对于两个复数a+bi和c+di,它们的差等于(a-c)+(b-d)i。
3. 复数的乘法:对于两个复数a+bi和c+di,它们的乘积等于(ac-bd)+(ad+bc)i。
4. 复数的除法:对于两个复数a+bi和c+di,它们的商等于[(ac+bd)/(c^2+d^2)]+[(bc-ad)/(c^2+d^2)]i。
5. 复数的共轭:一个复数a+bi的共轭等于a-bi。
这些运算法则为我们解决复数相关的问题提供了便利。
复数在电路分析、信号处理等领域有着广泛的应用。
二、向量的运算法则向量是有大小和方向的量,它可以用有序数对(x, y)来表示。
向量的运算法则如下:1. 向量的加法:对于两个向量A(x1, y1)和B(x2, y2),它们的和等于A+B=(x1+x2, y1+y2)。
2. 向量的减法:对于两个向量A(x1, y1)和B(x2, y2),它们的差等于A-B=(x1-x2, y1-y2)。
3. 向量的数乘:对于一个向量A(x, y)和一个实数k,它们的数乘等于kA=(kx, ky)。
4. 向量的数量积:对于两个向量A(x1, y1)和B(x2, y2),它们的数量积等于A·B=x1x2+y1y2。
5. 向量的夹角:对于两个非零向量A和B,它们的夹角θ的余弦等于cosθ=(A·B)/(|A||B|),其中|A|和|B|分别表示向量A和B的模。
高中数学教案复数与平面向量

高中数学教案复数与平面向量高中数学教案:复数与平面向量引言:本教案旨在帮助高中数学教师教授复数与平面向量这一重要的数学概念。
复数和平面向量在解决数学问题和实际应用中具有重要作用。
本教案将侧重于复数的基本概念、运算规则以及平面向量的定义、运算法则和相关应用,旨在帮助学生深入理解和掌握这两个概念。
一、复数的基本概念复数由实部和虚部组成,用符号 z=a+bi 表示,其中 a 和 b 分别表示实数部分和虚数部分。
复数可以用坐标形式表示,并在复平面上对应一个点。
1.1 复数的定义复数是实数与虚数的和,其中实数部分和虚数部分分别用 a 和 b 表示。
实部用 a 表示,虚部用 b 表示。
1.2 复数的表示形式复数可以用代数形式和三角形式表示。
代数形式为 z=a+bi,三角形式为z=r(cosθ+isinθ),其中 r 表示复数的模,θ 表示复数的辐角。
1.3 复数的运算规则复数的加法、减法、乘法、除法运算规则需要掌握。
具体运算规则如下:- 加法:z1+z2=(a1+a2)+(b1+b2)i- 减法:z1-z2=(a1-a2)+(b1-b2)i- 乘法:z1*z2=(a1*a2-b1*b2)+(a1*b2+a2*b1)i- 除法:z1/z2=(a1*a2+b1*b2)/(a2^2+b2^2)+((b1*a2-a1*b2)/(a2^2+b2^2))i二、复数的应用复数在实际应用中具有广泛的应用,例如在电路分析、信号处理、量子力学等领域。
以下是一些常见的应用案例:2.1 电路分析复数在电路分析中用于计算交流电路中的电压、电流和功率。
通过将电路中的电阻、电感和电容与复数形式的阻抗相结合,可以简化计算过程。
2.2 信号处理复数在信号处理中用于表示和分析模拟和数字信号。
通过对信号进行傅里叶变换,可以将时域信号转换为频域信号,并使用复数进行频域分析。
2.3 量子力学复数在量子力学中用于描述粒子的波函数。
波函数是一个复数函数,描述了粒子的位置和动量的概率分布。
复数与向量的

复数与向量的复数与向量的关系及应用复数与向量都是数学中的重要概念,它们在各个学科领域中都有广泛的应用。
本文将探讨复数与向量之间的关系以及它们在实际问题中的具体应用。
一、复数与向量的定义及表示方法1. 复数的定义与表示方法复数是由实部和虚部组成的数,可以用a+bi的形式表示,其中a为实部,b为虚部,i为虚数单位。
实部和虚部都是实数。
例如,3+4i就是一个复数,其中实部为3,虚部为4。
2. 向量的定义与表示方法向量是由大小和方向组成的量,可以用有序数对表示。
我们通常用加粗的小写字母或带箭头的小写字母表示向量,例如v或→v。
向量可以在平面内或空间中表示,可以用点的坐标表示,也可以用向量的模和方向表示。
二、复数与向量的关系1. 复数与有序数对的关系复数的实部和虚部分别对应有序数对的横坐标和纵坐标,可以将复数看作是平面上的点。
实部和虚部的关系确定了复数在平面上的位置。
2. 复数与向量的关系复数也可以看作是一个向量,实部和虚部可分别看作向量在x轴和y轴上的分量。
因此,复数的模和方向可以表示一个向量的大小和方向。
三、复数与向量的应用1. 复数在电路分析中的应用复数在电路分析中有广泛的应用,特别是在交流电路中。
复数的实部和虚部分别表示电流和电压的实部和虚部,可以通过相量法对电路进行计算和分析。
2. 向量在几何学中的应用向量在几何学中经常用于表示线段、线、面等几何对象,计算和描述它们的特性。
例如,在计算线段的长度、线的方程或面的法向量时,都需要用到向量的相关知识。
3. 复数与向量在物理学中的应用复数和向量在物理学中也有广泛的应用。
例如,在力学中,向量经常用于表示力、速度和加速度等物理量;在电磁学中,复数用于描述电场和磁场的相位差和振幅。
四、复数与向量的扩展应用1. 复数与向量在信号处理中的应用复数和向量在信号处理中有重要的应用,例如在频域分析中,信号可以用复数表示,通过复频域处理可以对信号进行滤波、变换等操作。
2. 复数与向量在机器学习中的应用复数和向量在机器学习领域中也有应用,例如在图像处理中,可以将图像看作是复数矩阵或向量,可以使用复数的性质进行图像的处理和分析。
复数和向量知识点总结

复数和向量知识点总结# 复数## 1. 复数的定义复数是由实部和虚部构成的数,一般表示为a+bi,其中a为实部,b为虚部,i为虚数单位,满足i^2=-1。
通常将实数看成是虚部为零的复数,即实数可以看成是复数的一种特殊情况。
## 2. 复数的表示复数可以通过直角坐标系和极坐标系表示。
在直角坐标系中,复数a+bi对应于平面上的点(a, b),这被称为复平面。
在极坐标系中,复数a+bi对应于长度为r = √(a^2 + b^2) 的线段和与正实轴的夹角θ = arctan(b/a)。
## 3. 复数的运算### (1) 加法和减法两个复数(a+bi)和(c+di)的加法和减法分别定义为(a+bi) + (c+di) = (a+c) + (b+d)i 和(a+bi) - (c+di) = (a-c) + (b-d)i。
### (2) 乘法和除法两个复数(a+bi)和(c+di)的乘法定义为(a+bi) × (c+di) = (ac-bd) + (ad+bc)i,而它们的除法定义为(a+bi) ÷ (c+di) = [(ac+bd)/(c^2+d^2)] + [(bc-ad)/(c^2+d^2)]i。
## 4. 复数的性质### (1) 共轭复数两个复数a+bi和a-bi称为共轭复数,它们有着相同的实部但虚部符号相反的特点。
### (2) 模和幅角复数a+bi的模定义为|a+bi| = √(a^2 + b^2),而它的幅角定义为θ = arctan(b/a)。
模和幅角反映了复数在复平面中的大小和方向。
## 5. 复数的应用### (1) 电路分析在电路分析中,复数常用来表示电流、电压和阻抗等量,利用复数运算可以简化电路计算和分析过程。
### (2) 信号处理在信号处理中,复数常用来表示信号的频谱成分,利用复数运算可以进行频域分析和滤波等处理。
# 向量## 1. 向量的定义向量是有大小和方向的量,通常表示为箭头或在坐标系中的位置。
高中数学教案:复数与向量的运算与应用

高中数学教案:复数与向量的运算与应用一、引言复数与向量作为高中数学中的重要概念,具有广泛的运用和应用。
本教案旨在帮助学生掌握复数与向量的运算规则,并了解其在实际问题中的应用。
二、复数的基本概念与运算1. 复数的定义:复数由实部和虚部组成,形如a+bi,其中a是实部,b是虚部。
2. 复数的表示方法及性质:a) 代数式表示法:将a和b分别表示出来。
b) 图形表示法:利用平面直角坐标系,将复平面上点z对应于复数z=a+bi。
c) 共轭复数:若z=a+bi,则其共轭复数为z*=a-bi。
d) 模长:模长表示了复数到原点距离(或向量长度),记作|z|,即|z|=√(a²+b²)。
3. 复数的四则运算及性质:a) 加法:(a+bi)+(c+di)=(a+c)+(b+d)i。
b) 减法:(a+bi)-(c+di)=(a-c)+(b-d)i。
c) 乘法:(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
d) 除法:(a+bi)/(c+di)=((ac+bd)/(c²+d²))+((bc-ad)/(c²+d²))i。
4. 复数的乘方和开平方运算:a) 乘方:(a+bi)^n=|a+bi|^n*(cos(nθ)+isin(nθ)),其中θ为复数的幅角。
b) 开平方:√(a+bi)=±√|a+bi|*(cos(θ/2)+isin(θ/2))。
三、向量的基本概念与运算1. 向量的定义:向量是具有大小和方向的量,用带箭头的字母表示。
2. 向量的表示方法及性质:a) 坐标表示法:用直角坐标系中的两个坐标差值表示向量。
b) 自由向量与定位向量:自由向量没有特定位置,而定位向量有固定起点和终点。
c) 零向量与单位向量:零向量模长为0,单位向量模长为1且方向固定。
3. 向量的加法和减法:a) 加法规则:将两个向量首尾相连形成一个新的向量,新向量从第一个原点指向第二个头端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数与向量的关系重视复平面上复数与向量的联系作用平面向量与复数是高中数学的重要内容,联系紧密,联系是在复平面进行的。
随着知识的发展,相互对应相互促进是联系的主要体现。
复数中的概念、运算等在向量中可以作出几何解释;向量的运算,可以对应有关的复数运算.复数与向量的这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们的联系作用,将是一件高效快乐的事情.一 复数商与内积的联系复数运算,向量运算之间的许多联系,在现有课本里是可以学习到的,下面我们来看复数商与内积的联系.例1 复数z 1=a 1+b 1i, z 2=a 2+b 2i ,它们的三角式分别为z 1=|z 1|(cos θ1+isin θ1), z 2=|z 2|(cos θ2+isin θ2),对应的向量分别是1oz =(a 1,b 1)、2oz =(a 2,b 2).然后复数作商: 代数式作商:21z z =2221122121||)()(z i b a b a b b a a -++;-------------(1) 三角式作商:21z z =||||21z z [cos(θ1-θ2)+isin(θ1-θ2)],------(2) 比较(1)(2)式,可得||||21z z [cos(θ1-θ2)]=222121||z bb a a +, ……(3) ||||21z z [sin(θ1-θ2)]=222112||z ba b a -………(4) 则从中可得下列变式:(1) 复数对应向量间的夹角余弦公式:cos(θ1-θ2||||212121oz oz ⋅ ,( 我們总可以适当选择θ1、θ2的主值范围,使得|θ1-θ2|∈),0[π,所以1oz 与2oz 的夹角就是|θ1-θ2|).(2) 向量内积:1oz ·2oz =a 1a 2+b 1b 2=|1oz |·|oz 2|cos(θ1-θ2).若对(4)取绝对值得到:|1oz ×2oz |=|a 1b 2-a 2b 1|=|1|oz |·2|oz |sin(θ1-θ2)|,这是空间xoy 平面上向量)0,,(),0,,(2121b b b a a a ==叉积的绝对值,是以线段oz 1、oz 2为邻边的平行四边形的面积公式.复数商运算式中,隐含着向量间的夹角公式,向量的内积,平行四边形面积的公式.若复数代数式i y x z i y x z 222111,-=+=的三角式分别是)sin (cos 1111θθi r z +=,=2z )],sin()[cos(222θθ-+-i r 然后,将它们的代数式,三角式分别相乘,比较结果,同样可以得到上面的三个式子.数学中的这种相互包容联系,真是体现了数学中的统一和谐之美.二 复数向向量表示上的转化联系利用复数与向量的联系,复数可以向向量表示上的转化,使有些复数的问题转化为向量问题或构造向量图像去处理,借向量之力去解决复数问题.例2 已知复数z 1、z 2的模为1,z 1+z 2i 2321+=,求复数21、z z . 解:根据题意,设复数21、z z 对应的向量为21oz oz ,以这两个向量为邻边,边长为1,构作一个平行四边形,并建如图1的直角坐标系.记z z z =+21,对应向量oz .∵oz 对应的复数是i 2321+ ∴1||=,∠zoz 1=600Θ1||1=oz ∴∆oz 1z 是正三角形, Θ∆ ozz 2≅z oz 1∆ 2ozz ∆∴是正三角形.∴11=z ,i z 23212+-=,或1,232121=+-=z i z . 本题在解题的思路上借助了复数向向量转化的作用.复数向向量转化是较常用的思想方法.此题纯粹用代数方法去做,计算量是较大的.例3复平面内,已知动点A,B 所对应的复数的辐角为定值,分别θ、-θ,)20(πθ∠∠,O 为原点,ΔAOB 的面积是定值S ,求ΔAOB 的重心M 所对应的复数模的最小值.图2.解:根据题设,设向量OM OB OA 对应复数、z 、z z 21且 ||||||||||||2211z 、r z 、r z =====,则有θ2sin 2121r r s =, θ2sin 221sr r =∵)(31+= 图2∴ )()(91||91||22OB OA OB OA OB OA OM +⋅+=+==)2|||(|9122⋅++=)2cos 2(91212221θr r r r ++≥θθθ221cos 22sin 292)2cos 1(92⨯⨯=+sr r =θcot 94s∴ |z|=|θcot 32|s OM ≥,即重心M 所对应的复数模的最小值θcot 32s (1z =θ2sin 2s)sin (cos 2sin 2),sin (cos 2θθθθθi sz i -=+时,取最小值).该题用向量方法可较简捷获解.复数向向量表示上的转化的特点是:能将复数条件化为特殊的向量图形, 或构造一个向量运算,然后,顺利进行推理运算,求得结果.三 向量向复数表示上的转化联系利用复数与平面向量的联系,由向量向复数表示上的转化,使向量问题转化为复数问题或构造复数的结论去处理,借复数之力去解决向量问题,并使人觉得返朴归真之感.例4已知三个不共线的向量,,,c b a 且,0=++c b a 证明:c b a ,,可构成一个三角形.证明:不妨设c b a ,,对应复数的三角式分别为:),sin (cos 111θθi r +)sin (cos 222θθi r +,),sin (cos 333θθi r +且321r r r ≤≤.=++Θo i r i r i r =+++++∴)sin (cos )sin (cos )sin (cos 333222111θθθθθθ )1......(0cos cos cos 332211=++∴θθθr r r 332211sin sin sin θθθr r r ++=0 (2)由(1),(2)解得)cos(22121222123θθ-++=r r r r r,,Θ不共线,)(21Z k k ∈≠-∴πθθ1)cos(121∠-∠-∴θθ2122212321222122r r r r r r r r r ++∠∠-+∴12312r r r r r +∠∠-∴,,∴可构成一个三角形.从证明过程知道,其逆也成立的,故此命题可写成充要条件的形式.该题纯粹用向量概念去证明是比较简单的,但学生听了后,并觉得没有复数解明白.向量向复数表示上的转化的特点是:转化为复数问题后能构造出复数的某些结论或某些代数公式,从而通过它们去实现目标完成.四 复数与向量并用联系用多种形式表示一个命题的方法,在数学中是常用的手段,而且是常用常新,也是知识、思想、方法融会贯通的重要途径.如有些命题既可以用复数表示、也可以用向量表示,对于这类命题的处理自然要选择合适的形式来表示,或者是两者并用,实现相互左证,这样可以使问题明了简单.例5已知线段AB 的中点C,以AC 和CB 为对角线作平行四边形AECD 和BFCG,又作平行四边形CFHD 和CGKE,求证H 、C 、K 三点在一条直线上,且CK=CH,如图3.证明:以C 为原点,AB 为X 轴建立直角直角坐标系.设向量CD 、CF 、CB对应复数321,z ,z z 那么,向量CA 对应复数分别为31211z z 、z 、z z ----;又+=、+=分别对应复数32z z +、)()(3121z z z z --+- ∵1)()(312132-=--+-+z z z z z z ,图3 ∴1-=,∴、平行,但又有公共点C ,故H 、C 、K 三点共线,且CK=CH. 例6已知k P (k=1,2,……,n)是单位圆上的n 个等分点,P 是该圆上任意一点,求证22221||......||||n pp pp pp +++为一定值.如图4.证明:以单位圆的圆心O 为直角坐标的原点,OP n 为X 轴,建立坐标系,则∠nkop p k n π2=(当k=n 时,假定此角为2π), ∵ 点i nkn k z p k k ππ2sin 2cos +=对应的复数三角式为,对应向量是k op ,则其长为1,向量和01111==∑∑∑===nk knk k nk k z z op 对应于复数和,即01=∑=nk k op .∴ 22221||......||||n pp pp pp +++=22221||......||||n pp pp pp +++ =()()(.....)()()()2211op op op op op op op op op op op op n n -⋅-++-⋅-+-⋅-=)......(2||||......||||21222221n n op op n op op op ++⋅-++++ =2n-2⋅=2n,为定值.在这两个问题解决的过程中,我们既用了复数,又用到了向量及它们之间的等价结论.复数与向量并用的特点是:并用表示后,相互之间有左证作用或有等价结论,而且在各自的范围内有顺利进行计算推理的可能.在平面图中,证明点共线,直线平行,直线垂直,判断三角形的形状等时,经常用复数与向量之间来转换、或并用来表示命题的,从而实现共同之目的.复数与平面向量之间的联系是很多的,既有数形联系,又有等价结论联系.用好这些联系的意义是很大的.在教学中能揭示这些联系,可以活跃思维,培养兴趣,提高学习的积极性,提高学习的效率. 要牢固掌握这些联系,关键在平时要理清复数与向量的对应联系,并把它们装在心中,拿在手中,落实在应用中,千万别将它们分离.例4已知),.....,2,1(n k p k =是单位圆上的n 个等分点(按逆时针排列),o 是原点,求证:o op nk k =∑=1证明:以单位圆的圆心O 为直角坐标的原点,OP n 为X 轴,建立直角坐标系,则∠nkop p k n π2=(当k=n 时,假定此角为2π). ∵ 点i nkn k z p k k ππ2sin 2cos +=对应的复数三角式为,对应向量是k op ,则其长为1,向量和01111==∑∑∑===nk k nk k nk k z z op 对应于,∴ 01=∑=nk k op .这种等分圆周的有关向量求和问题,通过复数之后,可以转化为复数数列求和来完成.。