变量马达
变量马达的工作原理

变量马达的工作原理
变量马达是一种将电能转换成机械能的装置,它的工作原理基于电磁感应和洛伦兹力。
变量马达由定子和转子两部分组成。
定子是由铁心和绕组组成的,绕组通常由若干个线圈组成,每个线圈都与外部电源相连。
绕组中的电流会产生磁场,这个磁场是恒定不变的。
转子则是由一个或多个导体环组成,这些导体环与定子中的磁场相互作用。
当导体环在定子磁场中旋转时,根据洛伦兹力的原理,导体环内的电子将受到一个力的作用,从而使转子旋转起来。
导体环内的电子受到的力和方向是根据右手定则来确定的。
根据这个定则,当右手的大拇指指向磁场的方向,其他四指指向电流的方向时,正好与导体环受到的力的方向相同。
通过不断改变绕组中的电流,可以改变定子的磁场方向和大小。
这样,转子在定子的变化磁场中会受到不断变化的力,从而使转子旋转。
变量马达的工作原理是基于电磁感应和洛伦兹力的相互作用,在实际应用中可用于驱动各种机械装置。
液压马达技术参数

最高连续压力间歇压力连续转速间歇转速最大扭矩(Bar)(Bar)(rpm)(rpm)(Nm/bar)MRH-20020824527410 ~60010 ~30073037MRH-50049824527410 ~50010 ~250177078MRH-750745245274 5 ~ 400 5 ~ 2002700115MRH-10001005245274 5 ~ 380 5 ~ 1903080165MRH-13501357245274 3 ~ 300 5 ~ 1504820165MRH-15001530245274 3 ~ 300 5 ~ 1505590165MRH-22002195245274 3 ~ 220 5 ~ 1108040225MRH-31503140245274 3 ~ 175 5 ~ 10011480280MRH-36003628245274 3 ~ 125 5 ~ 7512747372MRH-44004398245274 3 ~ 125 5 ~ 7515790372MRH-52005255245274 3 ~ 120 5 ~ 6018464520MRH-620061862452743 ~ 1205 ~ 6022190520型号Motor Type 排量(cm 3)重量 (kg)KYB JOBAN HYDROSTAR 低速高扭力液压马达HYDROSTAR 是采用径向柱塞设计,满足了在整个转速范围内都可以输出较高的扭矩,在 3rmp 低转速时能达到极高的输出力油产生的力由柱塞通过连杆传递给偏心轴推动轴旋转配流转阀跟随轴旋转分配压力油进入工作柱塞腔多个柱塞同时处于压力证旋转连连贯平滑如左图所示变量马达是通过内置于凸轮偏心轴内部的柱塞移动来达到变量的效果。
HYDROSTAR 马达主要应用于渔船设备、钻孔机械、注塑机、伐木设备、矿山设备、破碎设备、铁路设备、锯木机械、游乐设拟器、输送行业及工业设备。
a6vm160马达变量

A6VM160是一种变量马达型号,通常用于液压传动系统中。
以下是关于A6VM160变
量马达的一些基本信息:
1. 型号:A6VM160
2. 制造商:通常与德国力士乐(Bosch Rexroth)有关。
3. 功率范围:根据型号命名规则,A6VM160表示该马达的最大容积为160 cm³。
4. 变量马达:A6VM160是一种变量容积液压马达,其输出转矩和转速可以根据控制信
号进行调整和调节。
这使得它非常适合需要根据实际工作需求调整输出的应用场景。
5. 用途:A6VM160变量马达通常用于工程机械、农业机械、港口设备等重型机械领域,用于驱动各种液压系统,如挖掘机的旋转机构、装载机的行走机构等。
需要注意的是,具体的技术参数和应用范围可能会因不同厂家或不同应用而有所差异。
如果你具体想了解某个特定厂家的A6VM160变量马达,请参考相关的厂家文档或与
供应商联系以获取更详细和准确的信息。
变量柱塞泵、马达、整体式多路阀零件的去毛刺、光整设备和工具

加 压充 入 一个 密封 容 器 中 , 学反 应产 热 , 容器 内温 化 使
度 高达 3 0  ̄ 0 0C:在 1 ~ 5 内将 工件 内外 表面 的毛 刺 5 2 ms
一
盖、 限位 块 、 回转 座 、 回转 架 、 回程盘 , 球铰 等零 件表 面去
毛刺 ; 用磁 性磨 粒光 整 工具 的有 1 7道工 序 , 2 % , 占 7 分 别 为 变量 活塞 、 泵体 、 缸体 、 油 盘 , 配 阀体 、 阀套 、 阀杆 等 零 件外 圆和 内孔 去毛 刺 、 超精 光 整等 工序 ; 热 能去 毛 用 刺 机或水 射流去 毛刺机 的有 1 2道工序 , 1 %, 占 9 分别 为 变 量 活塞 、 控制 阀体 、 先导 阀套 过 渡块 , 装 架 、 安 回转 架 等零件 的交叉孑 去毛刺 ;用六 角滚 筒 的有 3道 工序 , L 占
摘
0 50 ) 600
要 : 对 工 程机 械 的 变量 柱 塞 泵 、 达 、 体 式 多 路 阀 的 零 件进 行 了研 究 , 行 业 最 薄 弱 的 工 艺 环 节 即 去 毛 刺 、 整 工 艺 进 行 了 分 针 马 整 对 光
析 。为 避 免 重蹈 日本 2 O世 纪 7 0年代 的覆 辙 , 统 地 提 出 了去 毛 刺 、 整 设 备 和 工 具应 用 的可 行 性 方 案 , 补 了行 业 的空 白 , 把 去 毛 系 光 填 并 刺 、 整技 术 提 高 到 2 世 纪 机 械 制造 业 的 战 略 高度 , 决策 层 和 企 业 的投 资提 供 了依 据 。 光 1 为 关 键 词 : 量 柱 塞 泵 ; 达 ; 体 式 多路 阀零 件 ; 变 马 整 去毛 刺 ; 光整 设 备 和 工 具
5 , 别为 外控拨 块 、 馈拨 叉 、 % 分 反 变量拨 块 去毛刺 : 压 挤
海特克柱塞马达样本-HA6V

产品外观及简介
开式回路和闭式回路 规格8 0、10 7、1 6 0 高压范 围 至3 5 M P a
目录
特点…………………………………………………………………………………………………………………………… 147 剖视图………………………………………………………………………………………………………………………… 147 型号说明……………………………………………………………………………………………………………………… 148 技术参数……………………………………………………………………………………………………………………… 149 HD液控 变 量 … … … …… … … … … … … … … … … … ………………………………………………………………………… 150 HA高压 自 动 变 量 … …… … … … … … … … … … … … ………………………………………………………………………… 151 外形尺寸……………………………………………………………………………………………………………………… 152
规格的计算
流量
qv
=
V g·n· ηv —
1000
[L / m i n]
输出转速
N
=
Q·1 0 0 0·ηv —
Vg
[r / m i n]
输出扭矩
M
=
— V g· △p·ηmh
=
1 . 5 9 V g· △p·ηmh —
[N
m]
2π
10
或 M =— K M· △P·ηmh 10
[N m]
输出功率
P=
控 制 起 点 在V gmin 控 制 终 点 在V gmax。
萨奥丹佛斯51系列选型表-马达

MMC-代码系列系列 060 080 110 51****-1- 51-1系列- 斜轴柱塞变量马达X X XMMC-代码R: 安装法兰型式060 080 110 V SAE J 744标准安装法兰,双向变量马达X X XC 插装式法兰,双向变量马达 X X XD DIN-ISO-3019/2 标准安装法兰,双向变量马达X X XMMC-代码排量排量 060 080 110 060 排量= 60,0 ccm X080 排量= 80,7 ccm X110 排量= 109,9 ccm XMMC-代码G:后端盖油口(标准标准::SAE J518 代码62) 060 080 110A 轴向油口带冲洗阀, 代码62X X XR 侧向油口带冲洗阀, 代码62X X X 上述选项在冲洗阀选项K为NN(不带冲洗阀)时同样有效MMC-代码L: 主轴选项060 080 110 C6 21齿16/32径节XC7 23齿16/32 径节XC8 27齿16/32 径节X S1 14齿12/24 径节X XD1 W30x2x30x14x9g, 标准:DIN 5480 XD2 W35x2x30x16x9g, 标准:DIN 5480 X XD3 W40x2x30x18x9g, 标准:DIN 5480 X X D4 W45x2x30x21x9g, 标准:DIN 5480 X F1 13齿8/16 径节XMMC-代码F: 最大排量限制器060 080 110 N 100%(无最大排量限制) 60 80.7 109.9 如需其它型号排量限制要求请联系萨澳-丹佛斯代表处MMC-代码M: 控制方式060 080 110 N1 液压双位控制 X X X E1 电液双位控制,12伏电磁阀带DIN接头(带电=最小排量)X X X E2 电液双位控制,24伏电磁阀带DIN接头(带电=最小排量)X X XE7 电液双位控制,12伏电磁阀带AMP Junior Timer接头 (电磁阀带电=最小排量)X X X注:表中符号“x”=优先选项MMC-代码M: 控制方式060 080 110 F1 电液双位控制,12伏电磁阀带DIN 接头(带电=最大排量) X X X F2电液双位控制,24伏电磁阀带DIN 接头(带电=最大排量)XXXMMC-代码N :伺服压力供油及压力补偿控制匹配控制方式匹配控制方式 B1内部伺服压力(系统低压侧压力)E1,E2, E7 , F1 , F2NN 仅控制方式选项“M”=N1(液控双位)时可选N1MMC-代码J: 控制起始调节范围备注备注N无应用控制方式标准配置MMC-代码S:控制压力升幅斜度备注备注N无应用控制方式标准配置MMC-代码T: 标准阻尼孔匹配控制选项匹配控制选项U1内部伺服压力供油,标准阻尼孔选项E*/F*/N1MMC-代码W: 特殊硬件特性适于适于 060 080 110 51 VX X X 51 D X X X NNN标准选项,无特殊硬件51 CX X X 51 V X X X 51 D X ABA内部集成磁性感应环无速度传感器 壳体带传感器安装孔51 CXXXY: 最小排量限制器 (ccm/转) 3位代码位代码,,单位单位::立方厘米)排量排量 最小排量设定范围起始点最小排量设定范围起始点最小排量设定范围终止点最小排量设定范围终止点60 从 012 ccm 至040 ccm 80 从 016 ccm 至054 ccm 110从022 ccm至074 ccmMMC-代码P: A/B 口高压设定值060 080 110 AA无应用XXXMMC-代码K: 固定式冲洗阀060 080 110 NN无回路冲洗功能XXX注: 表中符号 “ x ” = 优先选项MMC-代码K: 固定式冲洗阀060 080 110 E4 4,0 l/min (2x0,8mm) X X X E6 7,0 l/min (1x1,5mm) X X X F0 11,0 l/min (2x1,5mm) X X X F3 16,0 l/min (3x1,5mm) X X X G0 22,0 l/min (4x1,6mm) X X X G3 27,0 l/min (4x1,8mm) X X X 相对压差=25±1bar,油液温度=50 - 60°C ,冲洗阀开启压力=16bar备注 MMC-代码V: 控制起始点设置备注00 固定设置(非调节式) 任何双位控制标准配置MMC-代码Z: 压力补偿控制设定备注备注00 无压力补偿控制 匹配控制方式选项:E*/F*/N1 注:表中符号“x”=优先选项MMC-代码系列系列 060 080 110 51****-1- 51-1系列- 斜轴柱塞变量马达X X XMMC-代码R: 安装法兰型式060 080 110 V SAE J 744标准安装法兰,双向变量马达X X XC 插装式法兰,双向变量马达 X X XD DIN-ISO-3019/2 标准安装法兰,双向变量马达X X XMMC-代码排量排量 060 080 110 060 排量= 60,0 ccm X080 排量= 80,7 ccm X110 排量= 109,9 ccm XMMC-代码G:后端盖油口(标准标准::SAE J518 代码62) 060 080 110A 轴向油口带冲洗阀, 代码62X X XR 侧向油口带冲洗阀, 代码62X X X 上述选项在冲洗阀选项K为NN(不带冲洗阀)时同样有效MMC-代码L: 主轴选项060 080 110 C6 21齿16/32径节XC7 23齿16/32 径节XC8 27齿16/32 径节X S1 14齿12/24 径节X XD1 W30x2x30x14x9g, 标准:DIN 5480 XD2 W35x2x30x16x9g, 标准:DIN 5480 X XD3 W40x2x30x18x9g, 标准:DIN 5480 X X D4 W45x2x30x21x9g, 标准:DIN 5480 X F1 13齿8/16 径节XMMC-代码F: 最大排量限制器060 080 110 N 100% (无最大排量限制要求) 60 80.7 109.9 如需其它型号排量限制要求请联系萨澳-丹佛斯代表处MMC-代码M: 控制方式060 080 110 TA 压力补偿控制 X X X TH 带压力补偿液压双位控制(控制触发 = 最大排量处) X X XT1 带压力补偿电液双位控制(控制触发 = 最大排量处)(电磁阀接头标准:DIN 43650 - 12V)X X X注:表中符号“ x ”=优先选项MMC-代码M: 控制方式060 080 110 T2带压力补偿电液双位控制(控制触发 = 最大排量处)(电磁阀接头标准:DIN 43650 - 24V)XXXT7 带压力补偿电液双位控制(控制触发 = 最大排量处)(电磁阀接头:AMP Junior Timer - 12V)X X XMMC-代码N :伺服压力供油及压力补偿控制匹配控制方式匹配控制方式 CA 内部伺服压力;压力补偿控制作用口;A+B;液控制动压力失效控制 T* C1 内部伺服压力;压力补偿控制作用口;A+B;无制动压力失效控制T*D1内部伺服压力;压力补偿控制作用口:A+B;电控制动压力失效控制 (电磁阀接头标准:DIN 43650,12V)D7内部伺服压力;压力补偿控制作用口:A+B;电控制动压力失效控制 (电磁阀接头:AMP Junior Timer 插座,12V)D2内部伺服压力;压力补偿控制作用口:A+B;电控制动压力失效控制 (电磁阀接头标准:DIN 43650,24V)T*MMC-代码J: 控制起始调节范围备注备注N无应用控制方式标准配置MMC-代码S:控制压力升幅斜度备注备注N无应用控制方式标准配置MMC-代码T: 标准阻尼孔匹配控制选项匹配控制选项X1内部伺服压力供油,标准阻尼孔选项T*MMC-代码W: 特殊硬件特性适于适于 060 080 110 51 VX X X 51 D X X X NNN标准选项,无特殊硬件51 CX X X 51 VX X X 51 D X ABA内部集成磁性感应环 无速度传感器 壳体带传感器安装孔51 CXXXY: 最小排量限制器 (ccm/转) 3位代码位代码,,单位:立方厘米)排量排量 最小排量设定范围起始点最小排量设定范围起始点最小排量设定范围终止点最小排量设定范围终止点60从 012 ccm至040 ccm注: 表中符号 “ x ” = 优先选项Y: 最小排量限制器 (ccm/转) 3位代码位代码,,单位单位::立方厘米)排量排量 最小排量设定范围起始点最小排量设定范围起始点最小排量设定范围终止点最小排量设定范围终止点80 从 016 ccm 至054 ccm 110从022 ccm至074 ccmMMC-代码P: A/B 口高压设定值060 080 110 AA无应用XXXMMC-代码K: 固定式冲洗阀060 080 110 NN 无回路冲洗功能 X X X E4 4,0 l/min (2x0,8mm) X X X E6 7,0 l/min (1x1,5mm) X X X F0 11,0 l/min (2x1,5mm) X X X F3 16,0 l/min (3x1,5mm) X X X G0 22,0 l/min (4x1,6mm) X X X G327,0 l/min (4x1,8mm)XXX相对压差=25±1bar ,油液温度=50 - 60°C ,冲洗阀开启压力=16barMMC-代码V:控制起始点设置 备注备注00固定设置 (非调节式)任何双位控制标准配置MMC-代码Z: 压力补偿控制设定 备注备注**双位代码,单位:10bar压力补偿控制起始点压力设定范围:110bar-370bar注: 表中符号 “ x ” = 优先选项系列 160 250 MMC-代码系列51 51系列- 斜轴柱塞变量马达X XMMC-代码R: 安装法兰型式160 250 V SAE J 744标准安装法兰,双向变量马达X XC 插装式法兰,双向变量马达 XMMC-代码规格160 250 160 排量= 160,9 ccm X250 排量= 250,0 ccm X标准::SAE J518 代码62) 160 250 MMC-代码G: 后端盖油口(标准A 轴向油口带冲洗阀, 代码62X XR 侧向油口带冲洗阀, 代码62X X 上述选项在冲洗阀选项为(不带冲洗阀)时同样有效MMC-代码L: 主轴选项160 250 C8 27齿16/32径节X X F1 13齿8/16径节XF2 15齿8/16径节X X D5 W50x2x30x24x9g,标准:DIN 5480 XMMC-代码F: 最大排量限制器160 250 N 100% (无最大排量限制要求)160.9 250 如需其他排量限制器请联系萨澳-丹佛斯代表处MMC-代码M: 控制方式160 250 E2 电控双位,24V电磁阀带DIN接头(电磁阀带电=最小排量)F2 电控双位,24V电磁阀带DIN接头(电磁阀带电=最大排量) X X HZ 液压双位控制,单控制油路(控制压力>45psi=切换至最小排量) X X匹配控制方式MMC-代码N:伺服压力供油及压力补偿控制匹配控制方式B1 内部伺服压力;无压力补偿控制 HZA5 内部伺服压力;无压力补偿控制 F1,F2范围备注备注控制起始调节范围MMC-代码J: 控制起始调节A 2-5bar(29-73psi) 液压双位控制压力达到设定值时切换至最小排量 注:表中符号“ x ”=优先选项MMC-代码S:控制压力升幅斜度备注备注 N 无应用 控制方式标准配置MMC-代码T: 标准阻尼孔匹配控制选项匹配控制选项 G0 内部伺服压力供油,标准阻尼孔选项 F2A5 , HZB1MMC-代码W: 特殊硬件特特殊硬件特性性适于适于 160 25051 V X X51 DACA速度传感器, 4.5-15V, Packard weather-pack 4针插座,带旋向检测功能(KPP*13408, KPP*23408)51 C51 V X X51 D XNNN 无特殊硬件51 C XMMC-代码P: A/B口高压设定值160 250 AA 无应用 X XMMC-代码K: 固定式冲洗阀160 250 NN 无回路冲洗功能 X X H0 34,5 l/min (4x2,3mm) X X F0 11,0 l/min (2x1,5mm) X X F3 16,0 l/min (3x1,5mm) X X G0 22,0 l/min (4x1,6mm) X X G3 27,0 l/min (4x1,8mm) X XMMC-代码V:控制起始点设置备注备注03 固定设置(非调节式) 任何双位控制标准配置MMC-代码Z: 压力补偿控制设定备注备注00 无压力补偿控制 标准配置注:表中符号“ x ”=优先选项Y: 最小排量限制器(立方厘米/转),3位代码)排量排量最小排量设定范围起始点最小排量设定范围起始点 最小排量设定范围终止点最小排量设定范围终止点 160 从032 ccm至115 ccm250 从050 ccm至168 ccm系列 160 250 MMC-代码系列51 51系列- 斜轴柱塞变量马达X XMMC-代码R: 安装法兰型式160 250 V SAE J 744标准安装法兰,双向变量马达X XC 插装式法兰,双向变量马达 XMMC-代码规格160 250 160 排量= 160,9 ccm X250 排量= 250,0 ccm X标准::SAE J518 代码62) 160 250 MMC-代码G: 后端盖油口(标准A 轴向油口带冲洗阀, 代码62X XR 侧向油口带冲洗阀, 代码62X X 上述选项在冲洗阀选项为(不带冲洗阀)时同样有效MMC-代码L: 主轴选项160 250 C8 27齿16/32径节X XF1 13齿8/16径节XF2 15齿8/16径节X XD5 W50x2x30x24x9g,标准:DIN 5480 X MMC-代码F: 最大排量限制器160 250 N 100%无限制(其他排量限制器请联系萨澳代表处)160.9 250 MMC-代码M: 控制方式160 250 TA 压力补偿控制 X XTH 带液控双位的压力补偿控制(外控口存在压力信号=最大排量) X XT1 带电控双位的压力补偿控制(12V,DIN接头,带电=最大排量) X XT2 带电控双位的压力补偿控制(24V,DIN接头,带电=最大排量) X X匹配控制方式 MMC-代码N: 伺服控制压力及压力补偿控制功能匹配控制方式C0 内部伺服供油压力(高压侧压力),压力补偿作用口A+B,带制动压力失效功能 TA, TH, T1, T2 C2 内部伺服供油压力(低压侧压力),压力补偿作用口A+B,无制动压力失效功能 TA, TH, T1, T2MMC-代码J: 控制起始点设置范围备注备注L 110-370 bar 匹配控制:TA,TH,T1,T2注:表中符号“ x ”=优先选项MMC-代码S:控制压力升幅斜度备注备注N无应用控制方式标准配置MMC-代码T: 标准阻尼孔匹配控制选项匹配控制选项G0内部伺服压力供油,标准阻尼孔选项T1C0,T1C2,T2C2,TAC0,TAC1,TAC2,THC0, THC2MMC-代码W: 特殊硬件特性适于适于 160 250 51 V X X 51 D ACA速度传感器, 4.5-15V, Packard weather-pack 4针插座,带旋转方向检测功能(KPP*13408, KPP*23408)51 C 51 VX X 51 D X NNN无特殊硬件51 CXY: 最小排量限制器 (立方厘米/转), 3位代码)排量排量 最小排量设定范围起始点最小排量设定范围起始点最小排量设定范围终止点最小排量设定范围终止点160 从 032 ccm 至115 ccm 250从050 ccm至 168 ccmMMC-代码P: A/B 口高压设定值160 250 AA无应用XXMMC-代码K: 固定式冲洗固定式冲洗阀阀160 250 NN 无回路冲洗功能 X X H0 34,5 l/min (4x2,3mm) X X F0 11,0 l/min (2x1,5mm) X X F3 16,0 l/min (3x1,5mm) X X G0 22,0 l/min (4x1,6mm) X X G327,0 l/min (4x1,8mm)XXMMC-代码V:控制起始点设置 备注备注00无任何压力补偿控制标准配置MMC-代码Z: 压力补偿控制设定(2位代码位代码,,单位单位:10bar :10bar :10bar)) 备注(举例举例::A1A1==110bar 110bar,,B0B0==200bar 200bar,,C7C7==370bar 370bar)) **双位代码中第一位代码A=1,B=2,C=3 即A*=1*,B*=2*,C*=3*压力补偿设定压力=2位代码×10barA1-A9=110 - 190 Bar (1450-2755 psi) B0-B9=200 - 290 Bar (2900-4205 psi) C0-C9=300 - 390 Bar (4350-5655 psi)注: 表中符号 “ x ” = 优先选项MMC-代码系列系列 080 110 160 25051 51系列- 斜轴柱塞变量马达X X X XMMC-代码R: 安装法兰型式080 110 160 250 V SAE J 744标准安装法兰,双向变量马达X X X XD DIN-ISO-3019/2 标准法兰,双向变量马达X X XMMC-代码规格080 110 160 250 080 排量= 80,7 ccm X110 排量= 109,9 ccm X160 排量= 160,9 ccm X250 排量= 250,0 ccm X MMC-代码G: 后端盖油口(标准标准::SAE J518 代码62) 080 110 160 250A 轴向油口带冲洗阀, 代码62X X X XR 侧向油口带冲洗阀, 代码62X X X X 上述选项在冲洗阀选项K为NN(不带冲洗阀)时同样有效MMC-代码L: 主轴选项080 110 160 250 F2 15齿8/16 径节X X C7 23齿16/32径节XC8 27齿16/32径节X X X S1 14齿12/24 径节XD5 W50x2x30x24x9g, 标准:DIN 5480 XD2 W35x2x30x16x9g,标准:DIN 5480 XD3 W40x2x30x18x9g,标准:DIN 5480 X XD4 W45x2x30x21x9g,标准: DIN 5480 X XF1 13齿8/16径节X XMMC-代码F: 最大排量限制器080 110 160 250 N 100%(无最大排量限制要求)80.7 109.9 160.9 250 如需其他排量限制器请联系萨澳-丹佛斯代表处MMC-代码M: 控制方式080 110 160 250EQ 电液比例控制(PCP伺服阀,DIN接头)外部伺服供油压力,可选配压力补偿控制(PCOR)X X X XHS 液压比例控制(单控制油路),可选配压力补偿控制(PCOR)X X X X HZ 紧凑型液压比例控制(单控制油路) X X X X 注:表中符号“ x ”=优先选项MMC-代码M: 控制方式080 110 160 250D7 电液比例控制(比例减压阀,PWM 12V,AMP Junior Timer接头)外部伺服供油压力.带电=最小排量,可选配PCORX X X XD8 电液比例控制(比例减压阀,PWM 24V,AMP Junior Timer接头)外部伺服供油压力.带电=最小排量,可选配PCORX X X XL1 电液比例控制(比例换向阀,12V,DIN接头)电磁阀工作=最小排量X X X XL2 电液比例控制(比例换向阀,24V,DIN接头)电磁阀工作=最小排量X X X XL7 电液比例控制(比例换向阀,12V,AMP Junior Timer接头)电磁阀工作=最小排量X X X XMMC-代码N: 伺服控制压力及压力伺服控制压力及压力补偿控制功能补偿控制功能匹配控制方式匹配控制方式 A1 内部伺服供油压力,压力补偿作用口(PCOR)A+B, 带制动压力失效功能 HS,EQA2 内部伺服供油压力,压力补偿作用口(PCOR)A+B, 不带制动压力失效功能 HS,EQA5 内部伺服供油压力,无压力补偿作用,无制动压力失效功能 EQM1 外部伺服供油压力,压力补偿作用口(PCOR)A+B, 带制动压力失效功能 D7,D8 B1 外部伺服供油压力,无压力补偿作用,无制动压力失效功能 HZ,L1,L2,L7MMC-代码J: 控制起始点设置范控制起始点设置范围围备注备注B 5-12 bar HS,HZC 12-30 bar HS,HZA 2 - 5 bar HS,HZJ 15 - 50 mA EQV 220 mA L2W 440 mA L1,L7K 50 - 85 mA EQR 320 mA D8S 640 mA D7MMC-代码S: 比例控制压力升幅斜度(马达斜轴角度范围从32° 到6°, 比率5 : 1 ) Y 70mA 匹配控制方式:EQA 425 mA 匹配控制方式:L2B 850 mA 匹配控制方式:L1,L7E 7 bar 匹配控制方式: HS,HZH 14 bar 匹配控制方式: HS,HZK 548 mA 匹配控制方式:D7J 274mA 匹配控制方式:D8Z 95mA 匹配控制方式:EQMMC-代码T: 压力补偿控制标准阻尼孔尺寸匹配控制方式匹配控制方式 A6 内部伺服控制压力,无压力补偿控制( PCOR )功能 EQA5,HSA5 A9 内部伺服控制压力,无压力补偿控制( PCOR )功能 EQA6 C0 内部伺服控制压力,无压力补偿控制( PCOR )功能 L1B1,L2B1 C2 内部伺服控制压力,无压力补偿控制( PCOR )功能 HZB1,L2B1 E1 内部伺服控制压力, PCOR 作用口 A+B,无制动压力失效功能 EQA2,HSA2 E2 内部伺服控制压力, PCOR 作用口 A+B,带制动压力失效功能 EQA1,HSA1 G0标准阻尼孔HZB1,L1B1,L7B1MMC-代码W: 特殊硬件特性适于适于 080 110 160 250 51 V X X X X 51 D ACA速度传感器, 4.5-15V, Packard weather-pack 4针插座,带旋向检测功能(KPP*13408,KPP*23408)51 C X 51 VX X X X 51 D NNN无特殊硬件51 CXXY: 最小排量设置范围 (立法厘米/转) 3 位代码规格规格设定范围起始点设定范围起始点设定范围终止点设定范围终止点 80 从 016 ccm 到 054 ccm110 从 022 ccm 到 074 ccm160 从 032 ccm 到 115 ccm 250从 050 ccm到 168 ccmMMC-代码P: 回路冲洗阀080 110 160 250 AA回路冲洗阀开启压力为 6.2bar (此选项同样适用于选项 K: NN)XXXXMMC-代码K: 不可调节式冲洗阀设定 080 110 160 250 NN 无回路冲洗功能 X X X X E4 4,0 l/min (2x0,8mm) X X X E6 7,0 l/min (1x1,5mm) X X X X F0 11,0 l/min (2x1,5mm) X X X X F3 16,0 l/min (3x1,5mm) X X X X G0 22,0 l/min (4x1,6mm) X X X X G3 27,0 l/min (4x1,8mm) X X X X H034,5 l/min (4x2,3mm)XXXXMMC-代码T: 压力补偿控制标准阻尼孔尺寸匹配控制方式匹配控制方式 A6 内部伺服控制压力,无压力补偿控制( PCOR )功能 EQA5,HSA5 A9 内部伺服控制压力,无压力补偿控制( PCOR )功能 EQA6 C0 内部伺服控制压力,无压力补偿控制( PCOR )功能 L1B1,L2B1 C2 内部伺服控制压力,无压力补偿控制( PCOR )功能 HZB1,L2B1 E1 内部伺服控制压力, PCOR 作用口 A+B,无制动压力失效功能 EQA2,HSA2 E2 内部伺服控制压力, PCOR 作用口 A+B,带制动压力失效功能 EQA1,HSA1 G0标准阻尼孔HZB1,L1B1,L7B1MMC-代码W: 特殊硬件特性适于适于 080 110 160 250 51 V X X X X 51 D ACA速度传感器, 4.5-15V, Packard weather-pack 4针插座,带旋向检测功能(KPP*13408,KPP*23408)51 C X 51 VX X X X 51 D NNN无特殊硬件51 CXXY: 最小排量设置范围 (立法厘米/转) 3 位代码规格规格设定范围起始点设定范围起始点设定范围终止点设定范围终止点 80 从 016 ccm 到 054 ccm110 从 022 ccm 到 074 ccm160 从 032 ccm 到 115 ccm 250从 050 ccm到 168 ccmMMC-代码P: 回路冲洗阀080 110 160 250 AA回路冲洗阀开启压力为 6.2bar (此选项同样适用于选项 K: NN)XXXXMMC-代码K: 不可调节式冲洗阀设定 080 110 160 250 NN 无回路冲洗功能 X X X X E4 4,0 l/min (2x0,8mm) X X X E6 7,0 l/min (1x1,5mm) X X X X F0 11,0 l/min (2x1,5mm) X X X X F3 16,0 l/min (3x1,5mm) X X X X G0 22,0 l/min (4x1,6mm) X X X X G3 27,0 l/min (4x1,8mm) X X X X H034,5 l/min (4x2,3mm)XXXXMMC MMC--代码V: 控制起始点备注备注((单位单位::1bar 或mA )**起始点设定值需在选项 “J”允许的范围内举例:06=6bar,30=30mA,B2=220mA(控制方式L2),D4=440mA(控制方式L1/L7),C2=320mA(控制:D8),F4=640mA(控制方式:D7)MMC-代码Z: 压力补偿控制设定备注备注**压力补偿设定 单位:10bar当伺服压力及压力补偿选项“N”=‘A5’或‘B1’时,“Z”=‘00’ 当“N”=‘A1’‘A2’‘M1’时,压力补偿起始点设定压力为**×10bar注: 表中符号 “ x ” = 优先选项。
【精品完整版】A6V斜轴式变量马达

A6V80HA22FZ2斜轴式轴向柱塞变量马达的设计兰州理工大学 热能与动力工程(液压方向) 杨自升摘要近年来,液压传动的应用迅猛拓展,在国外工业发达的国家液压工业发展速度要高于机械工业的增长,然而因为没有掌握核心技术的知识产权,国内液压工业表面火爆场面的背后确实存在很大的不足。
基于此,一些国内的企业和研究机构积极开展液压技术(主要是泵、马达等主要液压元件)的研究工作,并取得了一系列的成果。
本次设计的斜轴式轴向柱塞马达的额定压力为31.5MPa ,排量为80ml/r ,公称转速为2750r/min 。
本文描述了斜轴式轴向柱塞变量马达的工作原理,并对其进行了运动学分析,并且还着重对柱塞马达的连杆-柱塞、缸体、配流盘和主轴进行了设计和校核。
此次设计的柱塞马达为了降低流量脉动采用了七个柱塞,配流盘的设计采用了球面配流方式,具有良好的自定位和自保持性,转速稳、噪声低,卸荷槽的设计也在一定程度上减小了液压冲击。
本设计对斜轴式柱塞马达进行了分析和设计,主要分析了轴向柱塞马达的结构,包括连杆-柱塞的结构形式,配流盘的结构形式和变量机构的结构形式。
此外,本文还对轴向柱塞马达关键零部件进行了受力分析和校核,并用SolidWorks 软件绘制出了A6V 斜轴式柱塞马达的三维零件图和装配图。
关键词:斜轴式柱塞马达;大排量;配流盘; 变量机构AbstractIn recent years, the application of hydraulic is expanding rapidly. In the industrial developed foreign countries, the growth pace of industrial development of hydraulic is higher than that of the machinery industry. But without mastering the advanced intellectual property rights of advanced technology, it is actually a great deficiency behind the domestic hot hydraulic industrial surface. Based on this, a number of domestic enterprises and research institutions carry out the research on pump and motor, and made a series of results.The design of the Bent Axis Piston Motor ’s rated pressure is 31.5MPa, the displacement is 80ml/ r ,the rotate speed is 2750r/min. This article describes the Bent Axis Piston Motor, the working principle of the piston pump kinematics analysis and force. Focusing on piston pump plunger, cylinder, valve plate and shaft design and check .The piston motor design in order to reduce flow pulsation with a seven plunger valve plate design with a spherical surface with flow mode, with good self-positioning and self-preservation, steady speed, low noise, the design of the plastic bag hydraulic impact is reduced to a certain extent.The design of the Bent axis piston motor for the analysis and design, the main structure of the axial piston motor, including the plunger, the structure, the structural type of valve plate for analysis and design. This article also carried out analysis and calculation of piston motor, a variable piston motor mechanism design, the work piston assembly parts diagram and three-dimensional map with the help of SolidWorks.Keywords: Bent Axis Piston Motor; Large displacement; Valve plate; Institutional variables一、前言1、设计参数公称压力31.5n P MPa = 公称排量80/q ml r = 额定转速2750/min n r =变量形式:高压自动变量2、A6V 斜轴式轴向柱塞变量马达结构图斜轴式液压马达一般都由缸体、配油盘、连杆-柱塞、主轴、变量机构等主要零件组成(图2-1-1)。
变量柱塞马达

变量柱塞马达(Variable Displacement Piston Motor)是一种液压马达,其柱塞的排列和工作状态可以根据需要进行调整和改变。
它是通过调整柱塞行程和排列方式来改变输出扭矩和速度的液压装置。
变量柱塞马达的主要原理是通过控制流入柱塞马达的液体的流量来改变其工作状态。
当液体流入时,柱塞沿着马达的内部圆柱体轨道运动。
通过改变柱塞的行程和排列方式,可以调整和改变输出扭矩和速度。
一种常见的变量柱塞马达设计是斜盘式(Swashplate Type)马达。
它包括一个斜面盘,盘上有一定数量的柱塞。
当液体流入马达时,斜面盘被控制器调整角度,改变柱塞的行程,从而改变输出扭矩和速度。
变量柱塞马达具有调节范围广、响应速度快、效率高等优点。
它广泛应用于工程机械、农业机械、航空航天设备等领域,用于驱动各种液压系统和执行各种工作任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Variable Plug-in Motor A6VEData sheetFeaturesVariable plug-in motor with axial tapered piston rotary group –of bent-axis design, for hydrostatic drives in open and closed circuitsFar-reaching integration in mechanical gearbox due to a –recessed mounting flange located on the center of the case (extremely space-saving construction)Easy to install, simply plug into the mechanical gearbox (no –configuration specifications to be observed)T ested –unit ready to installFor use –especially in mobile applications The displacement can be infinitely changed from –V g max to V g min = 0.The wide control range enables the variable motor to satisfy –the requirement for high speed and high torque.The output speed is dependent on the flow of the pump and –the displacement of the motor.The output torque increases with the pressure differential –between the high-pressure and low-pressure side and with increasing displacement.Series 63Size Nominal pressure/Maximum pressure 28 to 160 400 bar/450 bar 250350 bar/400 bar Open and closed circuitsContentsOrdering code for standard program 2T echnical data4HD – Proportional control hydraulic 9EP – Proportional control electric 12HZ – Two-point control hydraulic 15EZ – Two-point control electric16HA – Automatic control high-pressure related 17DA – Automatic control speed-related 21Electric travel direction valve (for DA) 23Dimensions 28 to 250 24Connector for solenoids28Flushing and boost pressure valve 29Counterbalance valve BVD and BVE 31Counterbalance valve integrated BVI 35Speed sensor 38Installation instructions 39General instructions40Ordering code for standard programOnly 1)possible in combination with port plate 22 (integrated counterbalance valve).Specify 2)exact settings for V g min and V g max in plain text when ordering: V g min = ... cm 3, V g max = ... cm3Axial piston unit01Bent-axis design, variable A6VOperating mode02Motor, plug-in versionESizes (NG)03Geometric displacement, see table of values on page 7285580107160250Pressure control (only for HD, EP)05Without pressure control (without code)Pressure control, fixed setting DOverride of controls HA06Without override (without code)Hydraulic override, remote control, proportionalTSeries07Series 6, index 363Direction of rotation08Viewed on drive shaft, bidirectional W2)Seals28558010716025010FKM (fluor-caoutchouc)llllllVA6VE/63W–V010203040506070809101112131415161718= Availablem = On request – = Not availableOrdering code for standard programDrive shafts285580107160250 11Splined shaft DIN 5480l –l –l –A –l –l–lZConnector for solenoids (see page 28)28 to 16025016Without connector (without solenoid, only with hydraulic controls)l –0(size 250 without code)–l DEUTSCH – molded connector, 2-pin – without suppressor diode l –PHIRSCHMANN connector – without suppressor diode (without code)–lBeginning of control 285580107160250 17Port plate 02, 37, 38at V g min (standard for HA)l l l l l l A at V g max (standard for HD, HZ, EP, EZ, DA)l l l l l l B Port plate 22at V g min (standard for HA3)–l l l l –B at V g max (standard for HZ3)–llll–BStandard / special version 18Standard version (without code)Standard version with installation variants (e. g. T ports against standard open or closed)-Y Special version -SMetric fastening thread3)Only 4) for HZ3 and HA3. Add specification of integrated counterbalance valve BVI, see separate ordering code on page 35. Note the restrictions on page 36.Only possible in conjunction with HD, EP and HA1 and HA2 5) controlSpecify ordering code of counterbalance valve according to6) data sheet (BVD – RE 95522, BVE - RE 95525) separately.Note the restrictions on page 32.7) Specify ordering code of sensor according to data sheet 8) (DSA – RE 95133) separately and observe the requirements on the electronics.Counterbalance valve MHB32, please contact us.9) = Availablem = On request – = Not available A6VE/63W–V010203040506070809101112131415161718T echnical dataHydraulic fluidBefore starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and applica-tion conditions.The variable motor A6VE is not suitable for operation with HFA hydraulic fluid. If HFB, HFC, or HFD or environmentally acceptable hydraulic fluids are used, the limitations regardingt echnical data or other seals must be observed.Selection diagramt min °Copt V i s c o s i t y ν [m m 2/s ]Details regarding the choice of hydraulic fluidThe correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within theoptimum range (νopt see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.Example: At an ambient temperature of X °C, an operating tem-perature of 60 °C is set in the circuit. In the optimum viscosity range (νopt., shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.NoteThe case drain temperature, which is affected by pressure and speed, can be higher reservoirtemperature. At no point of the component may the tempera-ture be higher than 115 °C. The temperature difference speci-fied belo when determining the viscosity in the bearing.If the above conditions cannot be maintained due to extreme operating flushing the case with a flushing and boost pressure valve (see page 29).Viscosity and temperature of hydraulic fluidViscosity [mm 2/s ]TemperatureCommentTransport and storage at ambient temperature T min ≥ -50 °CT opt = +5 °C to +20 °C factory preservation: up to 12 months with standard, up to 24 months with long-term (Cold) start-up 1)νmax = 1600T St ≥ -40 °Ct ≤ 3 min, without load (p ≤ 50 bar), n ≤ 1000 rpm (sizes 28 to 160), n ≤ 0.25 • n nom (size 250)Permissible temperature difference ΔT ≤ 25 Kbetween axial piston unit and hydraulic fluid Warm-up phase ν < 1600 to 400T = -40 °C to -25 °C At p ≤ 0.7 • p nom , n ≤ 0.5 • n nom and t ≤ 15 min Operating phase T emperature difference ΔT = approx. 12 K between hydraulic fluid in the bearing and at port T.Maximum temperature 115 °C in the bearing 103 °Cmeasured at port TContinuous operation ν = 400 to 10 νopt = 36 to 16T = -25 °C to +90 °C measured at port T,no restriction within the permissible data Short-term operation 2)νmin ≥ 7T max = +103 °C measured at port T, t < 3 min, p < 0.3 • p nom FKM shaft seal 1)T ≤ +115 °Csee page 5At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).1)Size 250, 2) please contact us.T echnical dataFiltration of the hydraulic fluidFiner filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.T o ensure the functional reliability of the axial piston unit, a gra-vimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanli-ness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.If the above classes cannot be achieved, please contact us.Shaft sealPermissible pressure loadingThe service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pres-sure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceed-ed at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.The case pressure must be equal to or higher than the ambient pressure.12345D i f f e r e n t i a l p r e s s u r e Δp [b a r ]Speed n in rpmThe values are valid for an ambient pressure p abs = 1 bar.Temperature rangeThe FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.NoteFor application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.Influence of case pressure on beginning of controlAn increase in case pressure affects the beginning of control of the variable motor when using the following control options:HD, HA.T (sizes 28 to 160) ______________________increase HD, EP, HA, HA.T (size 250) _____________________increase DA _________________________________________decrease With the following controls, an increase in the case pressure has no influence on the beginning of control: EP, HA (sizes 28 to 160)The factory settings for the beginning of control are made at p abs = 2 bar (sizes 28 to 160) or p abs = 1 bar (size 250) case pressure.Direction of flowDirection of rotation, viewed on drive shaft cw ccw A to BB to AT echnical dataOperating pressure range(operating with mineral oil)Pressure at service line port A or BSizes 28 to 160Nominal pressure p nom _________________400 bar absolute Maximum pressure p max ________________450 bar absolute Single operating period _____________________________10 s T otal operating period _____________________________300 h Size 250Nominal pressure p nom _________________350 bar absolute Maximum pressure p max ________________400 bar absolute Single operating period _____________________________10 s T otal operating period _____________________________300 h Minimum pressure (high-pressure side) ___25 bar absolute Summation pressure (pressure A + pressure B) p Su _700 bar Rate of pressure change R A maxwith integrated pressure-relief valve_____________9000 bar/s without pressure-relief valve __________________16000 bar/s Minimum pressure – pump mode (inlet)T o prevent damage to the axial piston motor in pump operation mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). This minimum pres-sure is dependent on the speed and displacement of the axial piston unit (see characteristic curve below).0.22)0.52) 0.82) 1.12)1)1.42)I n l e t p r e s s u r e p a b s [b a r ]Speed n / n nom1) For sizes 28 to 160 2) For size 250This diagram is valid only for the optimum viscosity range from νopt = 36 to 16 mm 2/s.Please contact us if the above conditions cannot be satisfied.NoteValues for other hydraulic fluids, please contact us.DefinitionNominal pressure p nomThe nominal pressure corresponds to the maximum design pressure.Maximum pressure p maxThe maximum pressure corresponds to the maximum operat-ing pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.Minimum pressure (high-pressure side)Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.Summation pressure p SuThe summation pressure is the sum of the pressures at both service line ports (A and B).Rate of pressure change R AMaximum permissible rate of pressure rise and reduction dur-ing a pressure change over the entire pressure range.T otal operating period = t 1 + t 2 + ... + t nT echnical data1.00.80.750.630.60.40.380.2Speed n / n nom D i s p l a c e m e n t V g / V g m a xValues in this range on request5) Table of values(theoretical values, without efficiency and tolerances; values rounded)The minimum and maximum displacement 1)are infinitely adjustable, see ordering code, page 2. (standard setting for size 250 if not specified in the order: V g min = 0.2 • V g max , V g max = V g max ).The values 2) are valid:- for the optimum viscosity range from νopt = 36 to 16 mm 2/s - with hydraulic fluid based on mineral oilsRestriction of input flow with counterbalance valve, see page 33) 2T orque without radial force, with radial force see page 84) NoteOperation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible startup angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.Permissible radial and axial forces of the drive shaftsWith intermittent operation.1)Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.2) When 3) at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.Please contact us.4) NoteInfluence of the direction of the permissible axial force:+F ax max = Increase in service life of bearings –F ax max= Reduction in service life of bearings (avoid)Effect of radial force F q on the service life of bearingsBy selecting a suitable direction of radial force F q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rota-tion. Examples:Toothed gear drive V-belt driveϕo p t =45°ϕo pt=45°ϕop t=70°ϕopt=70°"Counter-clockwise"direction of rotation Pressure at port BAlternating direction of rotationAlternatingdirection of rotation"Clockwise" direction of rotation Pressure at port A"Counter-clockwise" direction of rotation Pressure at port BT echnical dataDetermining the operating characteristics Input flowq v =V g • n [L/min]1000 • ηv Speed n =q V • 1000 • ηv[min -1]V gT orque T =V g • Δp • ηmh[Nm]20 • πPower P =2 π • T • n =q v • Δp • ηt[kW]60000600V g = Displacement per revolution in cm 3Δp = Differential pressure in barn= Speed in rpmηv = Volumetric efficiencyηmh = Mechanical-hydraulic efficiency ηt = T otal efficiency (ηt = ηv • ηmh )HD – Proportional control hydraulicThe proportional hydraulic control provides infinite setting of the displacement, proportional to the pilot pressure applied to port X.Beginning of control at V–g max (maximum torque, minimum speed at minimum pilot pressure)End of control at V–g min (minimum torque, maximum permis-sible speed at maximum pilot pressure)NoteMaximum permissible pilot pressure: p–St = 100 barThe control oil is internally taken out of the high-pressure–side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.Please note that pressures up to 450 bar can occur atport G.Please state the desired beginning of control in plain text–when ordering, e. g.: beginning of control at 10 bar.The beginning of control and the HD characteristic are influ-–enced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.A leakage flow of maximum 0.3 L/min can escape at port X –due to internal leakage (operating pressure > pilot pressure). The control is to be suitably configured to avoid an indepen-dent build-up of pilot pressure.HD1Pilot pressure increase Δp St = 10 barA pilot pressure increase of 10 bar at port X results in a de-crease in displacement from V g max to 0 cm3 (sizes 28 to 160) or from V g max to 0.2 V g max (size 250).Beginning of control, setting range ______________2 to 20 bar Standard setting:Beginning of control at 3 bar (end of control at 13 bar)HD2Pilot pressure increase Δp St = 25 barA pilot pressure increase of 25 bar at port X results in a de-crease in displacement from V g max to 0 cm3 (sizes 28 to 160) or from V g max to 0.2 V g max (size 250).Beginning of control, setting range ______________5 to 35 bar Standard setting:Beginning of control at 10 bar (end of control at 35 bar)HD2 characteristicHD – Proportional control hydraulicSchematic HD1, HD2 Sizes 28 to 160Schematic HD1, HD2Size 250M BBXV g minV g maxMT 1AT 2M A deviceThe control part can stick in an undefined position by inter-nal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.Check whether the application on your machine requires ad-ditional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If neces-sary, make sure these are properly implemented.HD – Proportional control hydraulicHD.DPressure control, fixed settingThe pressure control overrides the HD control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the in-crease in displacement the motor develops more torque, while the pressure remains constant.Setting range of the pressure control valveSizes 28 to 160 ___________________________80 to 400 bar Size 250 ______________________________80 to 350 to barSchematic HD.DSizes 28 to 160Schematic HD.DSize 250M B BXV g minV g maxGMG2 T1AT2M AEP – Proportional control electricThe proportional electric control provides infinite setting of the displacement, proportional to the control current applied to the solenoid (sizes 28 to 200) or proportional valve (sizes 250).For size 250, the pilot oil supply at port P requires an external pressure of p min = 30 bar (p max = 100 bar).Beginning of control at V –g max (maximum torque, minimum speed at minimum control current)End of control at V –g min (minimum torque, maximum permis-sible speed at maximum control current)Characteristic0.2 0.4 0.6 0.8 1.01600max 140012001000800600400200V g minVg / V g maxV g max800max 700600500400300200100EP1(12 V)EP2(24 V)NoteThe control oil is internally taken out of the high-pressure side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.Please note that pressures up to 450 bar can occur at port G.The following only needs to be noted for size 250:The beginning of control and the EP characteristic are influ- –enced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 5) and thus a parallel shift of the characteristic.Technical data, solenoid Sizes 28 to 160EP1EP2Voltage 12 V (±20 %)24 V (±20 %)Control current Beginning of control 400 mA 200 mA End of control 1200 mA 600 mA Limiting current 1.54 A 0.77 A Nominal resistance (at 20 °C) 5.5 Ω22.7 ΩDither frequency 100 Hz 100 Hz Duty cycle100 %100 %Type of protection see connector design page 28The following electronic controllers and amplifiers are available for controlling the proportional solenoids:BODAS controller RC–Series 20 _________________________________RE 95200 Series 21 __________________________________RE 95201 Series 22 _________________________________RE 95202 Series 30 _______________________RE 95203, RE 95204 and application softwareAnalog amplifier RA – _________________________RE 95230Electric amplifier VT 2000, series 5X (see RE 29904) –(for stationary application)Further information can also be found on the Internet at /mobile-electronics Technical data, proportional valveSize 250EP1EP2Voltage12 V (±20 %) 24 V (±20 %)Beginning of control at V g max 900 mA 450 mA End of control at V g min 1400 mA 700 mA Limiting current 2.2 A 1.0 A Nominal resistance (at 20 °C) 2.4 Ω12 ΩDuty cycle100 %100 %Type of protection see connector design page 28See also proportional pressure-reducing valve DRE 4K (RE 29181).deviceThe control part can stick in an undefined position by inter-nal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.Check whether the application on your machine requires ad-ditional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If neces-sary, make sure these are properly implemented.EP – Proportional control electricSchematic EP1, EP2 Sizes 28 to 160Schematic EP1, EP2Size 250M B BV g minV g maxGM STT1AT2M A MP Proportionalpressure-reducingvalve DRE 4K(see RE 29181)EP – Proportional control electricEP.DPressure control, fixed settingThe pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint of the pressure control, the motor will swivel towards a larger displacement.The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the in-crease in displacement the motor develops more torque, while the pressure remains constant.Setting range of the pressure control valveSizes 28 to 160 ___________________________80 to 400 bar Size 250 ______________________________80 to 350 to barSchematic EP.DSizes 28 to 160Schematic EP.DSize 250M B BV g minV g maxGM STP T1AT2M AMG2 Proportionalpressure-reducingvalve DRE 4K(see RE 29181)HZ – Two-point control hydraulicThe two-point hydraulic control allows the displacement to be set to either V g min or V g max by switching the pilot pressure at port X on or off.Position at V –g max (without pilot pressure, maximum torque, minimum speed)Position at V –g min (with pilot pressure > 10 bar activated, minimum torque, maximum permissible speed)Characteristic HZV g min V g maxDisplacement10P i l o t p r e s s u r e Δp S [b a r ]100NoteMaximum permissible pilot pressure: 100 bar–The control oil is internally taken out of the high-pressure –side of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. For lower pressures, please contact us.Please note that pressures up to 450 bar can occur at port G.A leakage flow of maximum 0.3 L/min is present at port X (op- –erating pressure > pilot pressure). T o avoid a build-up of pilot pressure, pressure is to be relieved from port X to the reservoir.Schematic HZ3Sizes 55 to 107Size 160With integrated counterbalance valve BVI, see page 37Schematic HZ1Sizes 28, 160Schematic HZ Size 250M B BXV g minV g maxGMT 1A T 2M AEZ – Two-point control electricThe two-point electric control with switching solenoid (sizes 28 to 160) or control valve (size 250) allows the displacement to be set to either V g min or V g max by switching the electric current at the switching solenoid or control valve on or off.NoteThe control oil is internally taken out of the high-pressureside of the motor (A or B). For reliable control, an operating pressure of at least 30 bar is required in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at portG via an external check valve. For lower pressures, please contact us.Please note that pressures up to 450 bar can occur at port G. Technical data, solenoid with Ø37Sizes 28, 160EZ1EZ2Voltage12 V (±20 %)24 V (±20 %) Displacement V g max de-energized de-energized Displacement V g min energized energized Nominal resistance (at 20 °C) 5.5 Ω21.7 ΩNominal power26.2 W26.5 W Minimum required current 1.32 A0.67 ADuty cycle100 %100 %Type of protection see connector design page 28 Technical data, solenoid with Ø45Sizes 55 to 107EZ3EZ4Voltage12 V (±20 %)24 V (±20 %) Displacement V g max de-energized de-energized Displacement V g min energized energized Nominal resistance (at 20 °C) 4.8 Ω19.2 ΩNominal power30 W30W Minimum required current 1.5 A0.75 ADuty cycle100 %100 %Type of protection see connector design page 28 Technical data, control valveSize 250EZ1EZ2Voltage12 V (±20 %)24 V (±20 %) Displacement V g max de-energized de-energized Displacement V g min energized energized Nominal resistance (at 20 °C) 6 Ω23 ΩNominal power26 W26W Minimum required current 2 A 1.04 ADuty cycle100 %100 %Type of protection see connector design page 28Schematic EZ1, EZ2Schematic EZ3, EZ4Sizes 55 to 107Schematic EZ1, EZ2Size 250M B Bv g minv g maxG T1AT2M A MHA – Automatic control high-pressure related The automatic high-pressure related control adjusts the dis-placement automatically depending on the operating pressure.The displacement of the A6VE motor with HA control is V g min(maximum speed and minimum torque). The control unit mea-sures internally the operating pressure at A or B (no controlline required) and upon reaching the beginning of control, thecontroller swivels the motor from V g min to V g max with increaseof pressure. The displacement is modulated between V g min andV g max, thereby depending on load conditions.Beginning of control at V–g min (minimum torque, maximumspeed)–g max (maximum torque, minimum speed)End of control at VNote–For safety reasons, winch drives are not permissible withbeginning of control at V g min (standard for HA).–The control oil is internally taken out of the high-pressureside of the motor (A or B). For reliable control, an operatingpressure of at least 30 bar is required in A (B). If a controloperation is performed at an operating pressure < 30 bar, anauxiliary pressure of at least 30 bar must be applied at portG via an external check valve. For lower pressures, pleasecontact us.Please note that pressures up to 450 bar can occur atport G.–HA characteristic are influ-The beginning of control and theenced by the case pressure. An increase in case pressurecauses an increase in the beginning of control (see page 5)and thus a parallel shift of the characteristic. Only for HA1T(sizes 28 to 160) and HA1, HA2, HA3, HA.T, (size 250).–A leakage flow of maximum 0.3 L/min is present at port X (op-erating pressure > pilot pressure). T o avoid a build-up of pilotpressure, pressure is to be relieved from port X to the reservoir.Only for control HA.T.。