液压马达分类与原理
液压马达工作原理解说明

液压马达工作原理解说明液压马达是一种将液压能转化为机械能的装置,它在工程机械、船舶、风力发电等领域都有广泛的应用。
液压马达的工作原理是利用液压系统中的液压能,通过液压马达的内部构造和工作原理,将液压能转化为旋转机械能,驱动机械设备的运动。
液压马达的内部构造通常包括定子、转子、油口、排油口、分配器等部件。
液压马达的工作原理主要是通过液压系统中的液压油压力作用在定子和转子上,从而产生转矩,驱动机械设备的转动。
液压马达的工作原理可以分为液压能转化为机械能的过程。
当液压油进入液压马达内部时,油液的压力作用在定子和转子上,使得定子和转子产生相对运动,从而产生转矩。
定子和转子的相对运动是通过液压系统中的油液压力传递到液压马达内部的定子和转子上,使得定子和转子产生相对运动,从而产生转矩。
这种转矩可以驱动机械设备的转动,从而实现液压能转化为机械能的过程。
液压马达的工作原理还包括液压油的进出口控制。
液压马达内部的液压油进口和出口是通过液压系统中的分配器控制的。
分配器可以根据机械设备的需要,控制液压油的进出口,从而实现液压能的控制和调节。
这种控制和调节可以根据机械设备的需要,调整液压马达的转速和转矩,从而满足不同工况下机械设备的运行要求。
总之,液压马达的工作原理是通过液压系统中的液压油压力作用在液压马达内部的定子和转子上,从而产生转矩,驱动机械设备的转动。
液压马达的工作原理还包括液压油的进出口控制,可以根据机械设备的需要,调整液压马达的转速和转矩,从而实现液压能的控制和调节。
液压马达的工作原理在工程机械、船舶、风力发电等领域有着广泛的应用,是现代工程技术中不可或缺的重要装置。
液压马达原理是什么

液压马达原理是什么
液压马达原理是利用液压力来产生动力,将液压能转化为机械能的装置。
液压马达通常由马达本体、马达转子和定子组成。
液压马达的工作原理是基于液压力传递的原理。
当液压系统的液体通过马达的进油口流入马达时,液体压力使马达转子产生转动。
转子内的活塞随即开始运动,并且通过连杆将动力传递给外部机械部件。
同时,在液压系统中提供足够的流量和压力以保持马达的持续运转。
液压马达中的转子通常由一系列槽和凸轮组成。
液压能量通过流入槽中的液压油产生扭矩,从而使转子旋转。
液压油流入槽所产生的压力差会推动转子的运动,并将动力传递给外部机械负载。
液压马达的转速和扭矩取决于液压系统的流量和压力。
通过调节液压系统中的压力和流量,可以控制液压马达的输出速度和输出扭矩。
此外,液压马达还可以通过改变转子的设计和凸轮的形状来实现不同的输出效果。
总之,液压马达的工作原理是利用液体流体的压力来推动转子旋转,将液压能转化为机械能,从而实现马达的动力输出。
液压马达工作原理

液压马达工作原理液压马达是一种将液压能转换为机械能的装置,它通过液压系统中的液压力将液压能转化为旋转或线性运动。
液压马达的工作原理是基于液压力对液压马达内部某些部件的作用,从而驱动液压马达实现旋转或线性运动。
液压马达的工作原理可以分为液压力传递、液压能转换和输出功率三个方面来进行解释。
首先,液压力传递是指液压系统中的液压泵将液体压力传递给液压马达。
液压泵通过机械运动将液体压力传递给液压马达,形成一定的压力作用于液压马达内部的活塞或齿轮等部件上。
其次,液压能转换是指液压马达内部的活塞或齿轮等部件受到液压力的作用,产生相应的运动。
液压马达内部的活塞或齿轮等部件在受到液压力的作用下,产生旋转或线性运动,从而将液压能转化为机械能。
最后,输出功率是指液压马达通过液压能转换产生的机械运动输出到液压系统中的执行机构上。
液压马达通过输出旋转或线性运动,驱动液压系统中的执行机构,实现对工作物体的控制或操作。
液压马达的工作原理可以根据不同的结构和工作方式进行分类,常见的液压马达包括齿轮式液压马达、柱塞式液压马达和涡轮式液压马达等。
这些液压马达在工作原理上有所不同,但都是基于液压力传递、液压能转换和输出功率这三个基本原理来实现液压能的转换和输出。
齿轮式液压马达的工作原理是通过液压力作用于齿轮,驱动齿轮旋转,从而将液压能转化为机械能。
柱塞式液压马达的工作原理是通过液压力作用于柱塞,驱动柱塞产生往复运动,从而将液压能转化为机械能。
涡轮式液压马达的工作原理是通过液压力作用于涡轮,驱动涡轮旋转,从而将液压能转化为机械能。
除了工作原理的不同外,液压马达的工作效率、输出功率、扭矩和速度等性能也会有所差异。
因此,在选择液压马达时,需要根据具体的工作要求和液压系统的参数来进行合理的选择。
总之,液压马达是一种将液压能转换为机械能的装置,其工作原理是基于液压力传递、液压能转换和输出功率三个基本原理来实现液压能的转换和输出。
液压马达在工程机械、冶金设备、船舶设备和航空航天等领域有着广泛的应用,对于提高设备的工作效率和精度具有重要的意义。
各种液压马达的特点

各种液压马达的特点液压马达是液压系统中非常重要的组成部分,它可以将液压能转换成机械能,从而驱动机械设备的运动。
液压马达根据不同的结构和工作原理,可分为多种类型。
本文将介绍几种常见的液压马达,并详细描述它们的特点。
1. 轨迹摆线液压马达轨迹摆线液压马达是一种高效、耐用、扭矩大的马达。
它的工作原理是通过摆线齿轮的运动,将液压能转换成机械能。
摆线齿轮是由内齿轮和外齿轮组成的,当液压油进入内齿轮的油口时,内齿轮会旋转,从而驱动外齿轮转动。
由于摆线齿轮的齿轮形状合理,因此轨迹摆线液压马达的效率很高,噪音小,寿命长。
2. 液压轮式马达液压轮式马达是一种利用液压能驱动车轮运动的马达。
它的特点是结构简单,重量轻,易于维护。
液压轮式马达通常应用于轻型车辆、地面清扫车和农业机械中。
它的工作原理是将液压油进入液压马达的缸体中,从而推动轴向柱塞运动,驱动车轮转动。
液压轮式马达可根据不同的需求选择不同的速度和扭矩。
3. 摆动式液压马达摆动式液压马达是一种通过液压能驱动摆动运动的马达。
它的特点是具有高扭矩和低速度的优点。
摆动式液压马达通常应用于建筑机械、农业机械和金属加工机床中。
它的工作原理是利用液压油进入摆动式液压马达的液压缸体,从而推动摆杆运动,摆动杆的运动再转化为摆动式液压马达的轴向运动。
4. 液压齿轮泵马达液压齿轮泵马达是一种简单、耐用、可靠的液压马达。
它的特点是体积小,扭矩大。
液压齿轮泵马达通常应用于液压系统中的小型机械设备中。
它的工作原理是通过液压油进入液压齿轮泵马达的泵体中,从而推动齿轮运动,将液压能转换成机械能。
液压齿轮泵马达的耐用性好,可以在恶劣的工作环境下使用。
不同类型的液压马达都有着各自独特的特点和适用范围。
在选购液压马达时,应该根据具体的需求和工作环境来选择合适的类型。
同时,在使用液压马达时,也要做好维护工作,以保证液压马达的正常运行和长寿命。
液压马达的工作原理

液压马达的工作原理液压马达是利用液压能将液压能转换为机械能的一种液压执行元件。
它广泛应用于各种工程机械和工业设备中,如挖掘机、起重机、注塑机等。
那么,液压马达是如何工作的呢?接下来,我们将深入探讨液压马达的工作原理。
首先,液压马达是通过液压系统提供的液压能来驱动的。
液压系统由液压泵、液压马达、液压阀、液压缸等组成。
当液压泵将液压油送入液压马达时,液压马达内部的液压油压力会增加,从而推动液压马达内部的活塞或齿轮等零部件运动,从而驱动液压马达的输出轴转动。
其次,液压马达的工作原理可以分为液压齿轮马达和液压柱塞马达两种类型。
液压齿轮马达是利用液压油推动齿轮旋转来实现输出轴转动的,而液压柱塞马达则是通过液压油推动柱塞往复运动来实现输出轴转动的。
不同类型的液压马达在工作原理上有所差异,但本质上都是利用液压能来驱动输出轴转动。
此外,液压马达的工作原理还涉及到液压能的转换过程。
液压能是通过液压油的压力和流量来传递的,而液压马达则将液压能转换为机械能。
在液压马达内部,液压油的压力和流量会推动活塞或齿轮等零部件运动,从而实现输出轴的转动。
这一转换过程需要液压系统提供足够的液压能,以确保液压马达能够正常工作。
最后,液压马达的工作原理还涉及到一些辅助部件的作用,如密封件、冷却系统等。
密封件能够有效防止液压油泄漏,保证液压马达的正常工作;而冷却系统则能够帮助液压马达散热,避免因过热而损坏液压马达。
总之,液压马达是利用液压能来驱动输出轴转动的液压执行元件。
它的工作原理涉及液压能的转换过程,液压马达的类型和液压系统的配合等多个方面。
通过对液压马达工作原理的深入了解,我们可以更好地应用和维护液压马达,确保其正常高效地工作。
液压马达的工作原理

液压马达的工作原理液压马达是一种将液压能转换为机械能的装置,广泛应用于各种工程机械和工业设备中。
本文将介绍液压马达的工作原理及其组成部分,以及相关原理和应用。
一、液压马达的工作原理液压马达的工作原理基于流体力学原理,主要是通过液体的压力来驱动液压马达的转动。
液压马达由进口阀组、柱塞或齿轮等组成,它们的工作原理有所不同,但基本上都是通过液体的流动来驱动转动。
液压马达的工作原理可以简单概括为以下几个步骤:第一步,液压泵将液体从外部供应源吸入,并通过管道输送到液压马达的进口端。
第二步,液体进入液压马达后,受到进口阀组的控制,压力将液体驱动到柱塞或齿轮上。
第三步,液体在柱塞或齿轮的作用下,产生一定的转动力,使液压马达的轴承和转子开始转动。
第四步,液体经过转子的作用后,再次通过出口阀组流出,返回到外部环境。
通过上述步骤,液压马达就完成了液体能量到机械能量的转换过程。
当液体不断从进口流入时,液压马达会稳定地运转,提供所需的机械动力。
二、液压马达的组成部分液压马达主要由进口阀组、柱塞或齿轮、轴承和转子等组成。
1. 进口阀组:作为液体流入液压马达的控制口,主要由进口阀门和相关管道组成。
进口阀组可以控制液体的流速和流量,保证液压马达的正常工作。
2. 柱塞或齿轮:液压马达的核心组成部分,柱塞马达内部有多个柱塞同时工作,通过液压传动力量,使柱塞不断作出往复运动,从而带动转子旋转。
齿轮马达内部则由齿轮齿条配合运动,将液体能量转化为机械能。
3. 轴承:液压马达中的轴承主要用于支撑转子并提供承载能力,确保液压马达的稳定运转。
4. 转子:是液压马达的主要运动部件,通过转子的旋转来驱动输出轴承,并提供机械能。
三、液压马达的原理和应用液压马达工作原理的应用十分广泛,常见于各类工程机械和工业设备中。
1. 工程机械:液压马达广泛应用于挖掘机、装载机、推土机等工程机械中。
它们通过液压马达的驱动,实现各种工作装置的动力传递,提高工作效率和精度。
液压马达的结构原理特点

八个字:重载低速、轻载高速
二、 马达变量的方式分类
1. 高压自动变量: 排量的大小随工作压力自动变化。
HA1
HA1:恒压变量(两点式) 马达Vmin至Vmax,工作压力增量1MPa 马达变量起点:13MPa 如:A6V107HA1FP1065 (QY16CD) HA2 HA2:升压变量: 马达Vmin至Vmax,工作压力增量10MPa A6V107HA2FZ1065(QY20B) 马达变量终点:18MPa
微动:即起升速度慢,则最理想是马达处 于最大排量。要求手柄在小开口时,小电 流时,要求马达不变量。 即增大马达变量的起始点。方法有二, 方法一:手柄小开口时,马达变量电磁阀没有控制电流:修改控制程序 方法二:增大马达变量起始点的控制压力,将压力提高 若原本变量控制压力为6-19bar,调整到10-19bar
⑴ 转速来说:高速液压马达、低速液压马达:500r/min ⑵ 排量是否变化:定量马达、变量马达 3. 马达变量方式分类:高压自动、液控、电控
思考?:起重机的卷扬系统为什么采用变量马达, 变量马达有什么特点?
排量:液压马达的主轴每旋转一圈,液压个)×蓝色容积
⑶ 液控变量马达外面不用加QY16-0331单向节流阀,因为马达内部有这样 的节流孔
⑷ 液控变量马达问题的处理: 起升速度不够:将液控变量控制油管子取掉(马达处于大排量),看 速度有没有变化。压力切断值调得太小。 重钩吊不动:压力足够的话,则马达排量偏小、则马达压力切断值太 高。 压力切断值调得太小:起升速度不够 调得太大:重钩掉不动
⑶ 高压自动变量升压变量方式:HA2 变量终点压力:18MPa , 升压变量ΔP=10MPa 那起重机用马达变量起始点是多少?是8MPa么? 回答:不是,因为我们公司使用的马达的最小排量(一般为65ml/r) 并不是马达厂家设计马达时的最小排量(一般为),可计算我们使 用马达的马达变量起始点值。 ⑷ 升压变量方式:降低起升抖动,关键是消除马达变量的波动。也增 加QY16-0331单向节流阀,可将阻尼孔调小,解决抖动问题。 思考:如果调试现场满配重,吊不动,如何处理 ① 测量主阀压力,压力不够,调整主阀溢流阀 ② 如果主阀压力够了,则我们应该想到 是不是马达的排量偏小? 是不是马达没有变到大排量?变量终点压力过高。 ③ 是不是QY16-0331单向节流阀阻尼孔太小,堵住了。 ⑸ HA1、HA2两种变量方式比较,各有哪些优缺点?
液压马达分类与原理

液压马达分类与原理(一)液压马达分类(二)齿轮马达的工作原理图2-12为外啮合齿轮马达的工作原理图。
图中I为输出扭矩的齿轮,B为空转齿轮,当高压油输入马达高压腔时,处于高压腔的所有齿轮均受到压力油的作用(如中箭头所示,凡是齿轮两侧面受力平衡的部分均未画出),其中互相啮合的两个齿的齿面,只有一部分处于高压腔。
设啮合点c到两个齿轮齿根的距离分别为阿a 和b,由于a和b均小于齿高h,因此两个齿轮上就各作用一个使它们产生转矩的作用力pB(h—a)和pB(h—b)。
这里p代表输入油压力,B代表齿宽。
在这两个力的作用下,两个齿轮按图示方向旋转,由扭矩输出轴输出扭矩。
随着齿轮的旋转,油液被带到低压腔排出。
图2-12 啮合齿轮马达的工作原理图齿轮马达的结构与齿轮泵相似,但是内于马达的使用要求与泵不同,二者是有区别的。
例如;为适应正反转要求,马达内部结构以及进出油道都具有对称性,并且有单独的泄漏油管,将轴承部分泄漏的油液引到壳体外面去,而不能向泵那样由内部引入低压腔。
这是因为马达低压腔油液是由齿轮挤出来的,所以低压腔压力稍高于大气压。
若将泄漏油液由马达内部引到低压腔,则所有与泄漏油道相连部分均承受回油压力,而使轴端密封容易损坏。
(三)叶片马达的工作原理图2-13为叶片马达的工作原理图。
当压力为p的油液从进油口进入叶片1和叶片3之间时,叶片2因两面均受液压油的作用,所以不产生转矩。
叶片1和叶片3的一侧作用高压油,另一侧作用低压油.并且叶片3伸出的面积大于叶片1伸出的面积,因此使转子产生顺时针方向的转矩。
同样,当压力油进入叶片5和叶片7之间时,叶片7伸出面积大于叶片5伸出的面积,也产生顺时针方向的转矩,从而把油液的压力能转换成机械能,这就是叶片马达的工作原理。
为保证叶片在转子转动前就要紧密地与定子内表面接触,通常是在叶片根部加装弹簧,完弹簧的作用力使叶片压紧在定子内表面上。
叶片马达一般均设置单向阀为叶片根部配油。
为适应正反转的要求,叶片沿转子径向安置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创作编号:BG7531400019813488897SX创作者:别如克*液压马达分类与原理(一)液压马达分类(二)齿轮马达的工作原理图2-12为外啮合齿轮马达的工作原理图。
图中I为输出扭矩的齿轮,B为空转齿轮,当高压油输入马达高压腔时,处于高压腔的所有齿轮均受到压力油的作用(如中箭头所示,凡是齿轮两侧面受力平衡的部分均未画出),其中互相啮合的两个齿的齿面,只有一部分处于高压腔。
设啮合点c到两个齿轮齿根的距离分别为阿a和b,由于a 和b均小于齿高h,因此两个齿轮上就各作用一个使它们产生转矩的作用力pB(h—a)和pB(h—b)。
这里p代表输入油压力,B代表齿宽。
在这两个力的作用下,两个齿轮按图示方向旋转,由扭矩输出轴输出扭矩。
随着齿轮的旋转,油液被带到低压腔排出。
图2-12 啮合齿轮马达的工作原理图齿轮马达的结构与齿轮泵相似,但是内于马达的使用要求与泵不同,二者是有区别的。
例如;为适应正反转要求,马达内部结构以及进出油道都具有对称性,并且有单独的泄漏油管,将轴承部分泄漏的油液引到壳体外面去,而不能向泵那样由内部引入低压腔。
这是因为马达低压腔油液是由齿轮挤出来的,所以低压腔压力稍高于大气压。
若将泄漏油液由马达内部引到低压腔,则所有与泄漏油道相连部分均承受回油压力,而使轴端密封容易损坏。
(三)叶片马达的工作原理图2-13为叶片马达的工作原理图。
当压力为p的油液从进油口进入叶片1和叶片3之间时,叶片2因两面均受液压油的作用,所以不产生转矩。
叶片1和叶片3的一侧作用高压油,另一侧作用低压油.并且叶片3伸出的面积大于叶片1伸出的面积,因此使转子产生顺时针方向的转矩。
同样,当压力油进入叶片5和叶片7之间时,叶片7伸出面积大于叶片5伸出的面积,也产生顺时针方向的转矩,从而把油液的压力能转换成机械能,这就是叶片马达的工作原理。
为保证叶片在转子转动前就要紧密地与定子内表面接触,通常是在叶片根部加装弹簧,完弹簧的作用力使叶片压紧在定子内表面上。
叶片马达一般均设置单向阀为叶片根部配油。
为适应正反转的要求,叶片沿转子径向安置。
图2-13为叶片马达的工作原理图(四)轴向柱塞马达的工作原理轴向柱塞马达包括斜盘式和斜轴式两类。
由于轴向柱塞马达和轴向柱塞泵的结构基本相同,工作原理是可逆的,所以大部分产品既可作为泵使用。
图2-14所示轴向柱塞式液压马达的工作原理。
斜盘l 和配油盘4固定不动,缸体2和马达轴5相连接,并可一起旋转。
当压刀油经配油窗口进入缸体孔作用到柱塞端面上时,压力油将柱塞项出,对斜盘产生推力,斜盘则对处于压油区一侧的每个柱塞都要产生一个法向反力F,这个力的水平分力FX与柱塞上的液压力平衡,而垂直分力Fy则使每个柱塞都对转子中心产生一个转矩,使缸体和马达轴作逆时针方问旋转。
如果改变液压马达压力油的输入方向,马达轴就可作顺针方向旋转。
图2-14 轴向柱塞马达的工作原理(五)曲轴连杆式径向柱塞马达工作原理曲轴连杆式液压马达的工作原理如图2-15所示。
图中仅画出马达的一个柱塞缸。
它相当于一个曲柄连杆机构。
通压力油的柱塞缸受液压力的作用,在柱塞上产生推力P。
此力通过连杆作用在偏心轮中心,使输出轴旋转,同时配流轴随着一起转动。
当柱塞所处位置超过下止点时,柱塞缸便由配流轴接通总回油口,柱塞便被偏心轮往上推,作功后的油液通过配流轴返回油箱。
各柱塞缸依次接通高、低压油,各柱塞对输出轴中心所产生的驱动力矩同向相加,就使马达输出轴获得连续而平稳的回转扭矩。
当改变油流方向时,便可改变马达的旋转方向。
如将配流轴转180°装配,也可以实现马达的反转。
如果将曲轴固定,进、出油直接通到配流轴中,就可实现外壳旋转。
壳转马达可用来驱动车轮和绞车卷筒等。
图2-15 轴连杆式液压马达的工作原理(六)摆线马达工作原理摆线齿轮马达的工作原理基于摆线针齿内啮合行星齿轮传动(见图2-16)。
内齿轮(即定子)的轮齿齿廓(即针齿)是由以d为直径的圆弧构成;小齿轮(即转子)的轮齿齿廓是圆弧的共轭曲线,即圆弧中心轨迹a(整条的短幅外摆线)的等距曲线β,转子和定子之间有偏心距A,当两轮的齿数差为I时,两轮所有的轮齿都能啮合(见图2-17),且形成z2(定子针齿数)个独立的容积变化的密封腔。
当作为马达时,这些密封腔容积变大的部分通过配流机构通以高压油,使马达转子旋转。
另一些容积变小的密封腔通过配流机构排出低压油。
如此循环,使液压马达连续工作。
通常的摆线齿轮马达采用6-7齿或8-9齿啮合。
下面以6-7齿啮合为例(即定子针齿数为7,转子齿数为6)来说明其配油原理。
如图所示,两相互啮合的齿轮形成7个密封腔,当转子相对定子中心公转1转,此时转子自身在相反方向上自转1/6 转,马达内7个密封腔分别完成从低压→高压→低压的一次循环。
因此转子自转1整转时,7个油腔将完成6次循环,总起来即可得7*6=42个高压油腔的容积。
因此摆线齿轮马达能输出比较大的扭矩,这就是摆线齿轮马达的功率重量比能大大提高的原因。
图2-16 摆线齿轮马达工作原理图图2-17 摆线齿轮马达的配油原理图1-转子组件 2-花键轴 3-定子$ 4-转子二、液压马达性能参数与评价(一)主要参数1.压力(1)额定压力在规定的转速范围内连续运转,并能保证设计寿命的最高输入压力。
(2)背压保证马达稳定运转的最小输出压力。
2.转速(1)额定转速额定压力、规定背压条件,能够连续运转并能保证设计寿命的最高转速。
(2)最低转速既能保持额定压力又能稳定运转的最低转速。
3.排量(1)排量马达轴旋转一周所输入的液体体积。
(2)空载排量空载压力下测得的实际输入排量。
(3)有效排量在设定压力下测得的实际输入排量。
4.流量(1)实际流量液压马达进口处的流量。
(2)理论流量空载压力下马达的输入流量。
5.功率(1)输入功率液压马达入口处的液压功率。
(2)输出功率液压马达输出轴上输出的机械功率。
6.效率(1)容积效率液压马达理论流量与实际流量的比值。
(2)机械效率液压马达的实际扭矩与理论扭矩之比值。
(3)总效率液压马达的输出功率与输入功率之比。
(二)液压马达检测与评价参见下列标准:机械行业标准:JB/T8728-1998《低速大扭矩液压马达》机械行业标准:JB/T53349-1998《低速大扭矩液压马达产品质量分等》机械行业标准:JB/T10206-2000《摆线液压马达》机械行业标准JB/T50004—1999《液压斜轴式轴向柱塞泵产品质量分等:31.5MPa定量柱塞泵(马达)》三、液压马达变量方式和控制1.先导液控变量(图2-18)根据先导压力无级控制马达排量。
控制起点在Vgmax(最大扭矩,最低转速),控制终点在Vgmin(最小扭矩,最高转速)。
也可,相反控制功能。
控制起点Vgmin,控制终点在Vgmax。
图2-18先导液控变量2.高压自动控制(图2-19)根据工作压力自动控制马达排量。
此种控制方式是直接感受A口或B口的内部工作压力(不需要用先导压力)。
当A口或B口达到设定值时,马达由最小排量Vgmin向最大排量Vgmax转变(倾斜角α由小变大)有两种控制方式可供选择:其一是恒压调节在调节范围内工作压力基本上是恒定的,ΔP=1Mpa,从Vgmax至Vgmin时压约1Mpa。
二是升压调节:调节范围从8-35Mpa之间可调。
在调节范围内,工作压力升高ΔP=10Mpa,Vgmin变到Vgmax时压力升高10Mpa。
3. 电气控制(图2-20)根据电气信号无级控制或两点控制马达排量。
如果只需要变量马达作两点控制,则只要使电流通断就足以得到两个位置。
图2-19高压自动控制图2-20先导液控变量四、液压马达的选用原则选定液压马达时要考虑的因素有工作压力、转速范围、运行扭矩、总效率、容积效率、滑差特性、寿命等机械性能及在机械设备上的安装条件、外观等。
液压马达的种类很多,特性不一样,应针对具体用途选择合适的液压马达,表列出了典型液压马达的特性对比。
低速场合可以用低速马达,也可以用带减速装置的高速马达。
二者在结构布置、占用空间、成本、效率等方面各有优点,必须仔细论证。
表2-7典型液压马达的比较种类高速马达低速马达齿轮式叶片柱塞式径向柱塞式额定压力Mpa 21 17.5 35 35排量ml/r 4-300 25-300 10-1000 125-38000转速r/min 300-5000 400-3000 10-5000 1-500总效率% 75-90 75-90 85-95 80-92堵转效率% 50-85 70-80 80-90 75-85堵转泄漏大大小小污染敏感度大小小小变量能力不能困难可可确定了所用液压马达的种类之后,可根据所需要的转速和扭矩从产品系列中选出能满足需要的若干种规格,然后利用各种规格的特性曲线查出(或算出)相应的压降、流量和总效率。
接下去进行综合技术经济评价来确定某个规格。
如果原始成本最重要,则应选择流量最小的,这样泵、阀、管路等都最小;如果运行成本最重要,则应选择总效率最高的;如果工作寿命最重要,则应选择压降最小的;也许最佳选择是上述方案的折衷。
需要低速运行的马达,要核对其最低稳定转速。
如果缺乏数据,应在有关系统的所需工况下实际试验后再定取舍。
为了在极低转速下平稳运行,马达的泄漏必须恒定,负载要恒定,要有一定的回油背压(如0.3—0.5MPa)和至少35mm2/s 的油液粘度。
轴承寿命与转速、载荷有关:式中Lne—轴承实际寿命(h);Lref—额定工况下的轴承B10寿命(h);nnew—实际转速(r/min);nref—额定转速(r/min);Pnew—实际轴上载荷(N);PREF—额定轴上载荷(N)。
根据这些关系,如果转速减半则轴承寿命延长为原来的2倍。
轴上载荷每减小10%则轴承寿命加长40%。
为了防止作为泵工作的制动马达发生气蚀或丧失制动能力,应保证这时马达的“吸油口”有足够的补油压力。
这可以靠闭式回路中的补油泵或开式回路中的背压阀来实现。
当液压马达驱动大惯量负载时,为了防止停车过程中惯性运动的马达缺油,应设置与马达并联的旁通单向阀补油。
需要长时间防止负载运动时,应使用在马达轴上的液压释放机械制动器。
创作编号:BG7531400019813488897SX创作者:别如克*。