电磁场与电磁波(第四版之第三章静态场及其边值问题的解)
合集下载
3 电磁场与电磁波--静态电磁场及其边值问题的解

• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
电位差(电压) 将 E 两端点乘 dl ,则有 E dl dl dl d l 上式两边从点P到点Q沿任意路径进行积分,得
电场力 做的功
Q
P
Q E dl d ( P) (Q)
2
1 P1 2 Δl
P2
1 2 1 2 S n n
若介质分界面上无自由电荷,即S=0
1 2 1 2 n n
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
或
D1n D2n S
表明在两种媒质的分界面上存在自由面电荷分布时,电位移 矢量的法向分量是不连续的。
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
若分界面上不存在自由面电荷,即S=0,则
en (D1 D2 ) 0
或
D1n D2n
此时,在分界面上,电位移矢量的法向分量是连续的。由 边界条件: E E 和 E E ,可得场矢量在分界 1t 2t 1 1n 2 2n 面上的折射关系:
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
3.1 静电场分析 3.2 导电媒质中的恒定电场分析
3.3 恒定磁场分析 3.4 静态场的边值问题及解的惟一性原理 3.5 镜像法 3.6 分离变量法 3.7 有限差分法
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
3.1 静电场分析
R
z L
( , , z)
2 ( z z ) 2 ,则
R
1 dz
L L
(r ) l 0 4 π 0
第三章 静态电磁场及其边值问题的解
电位差(电压) 将 E 两端点乘 dl ,则有 E dl dl dl d l 上式两边从点P到点Q沿任意路径进行积分,得
电场力 做的功
Q
P
Q E dl d ( P) (Q)
2
1 P1 2 Δl
P2
1 2 1 2 S n n
若介质分界面上无自由电荷,即S=0
1 2 1 2 n n
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
或
D1n D2n S
表明在两种媒质的分界面上存在自由面电荷分布时,电位移 矢量的法向分量是不连续的。
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
若分界面上不存在自由面电荷,即S=0,则
en (D1 D2 ) 0
或
D1n D2n
此时,在分界面上,电位移矢量的法向分量是连续的。由 边界条件: E E 和 E E ,可得场矢量在分界 1t 2t 1 1n 2 2n 面上的折射关系:
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
3.1 静电场分析 3.2 导电媒质中的恒定电场分析
3.3 恒定磁场分析 3.4 静态场的边值问题及解的惟一性原理 3.5 镜像法 3.6 分离变量法 3.7 有限差分法
• 电磁场与电磁波 •
第三章 静态电磁场及其边值问题的解
3.1 静电场分析
R
z L
( , , z)
2 ( z z ) 2 ,则
R
1 dz
L L
(r ) l 0 4 π 0
电磁场及电磁波_第三章

从而电场为:
3.1.3 导体系统的电容
电容是导体系统的一种基本属性, 它是描 述导体系统储存电荷能力的物理量。 定义两导体系统的电容为任一导体上的总 电荷与两导体之间的电位差之比, 即
电容单位是F(法拉), 此比值为常数
1. 双导体的电容计算
在电子与电气工程中常用的传输线,例如 平行板线、平行双线、同轴线都属于双导 体系统。通常,这类传输线的纵向尺寸远 大于横向尺寸。因而可作为平行平面电场 (二维场来研究),只需要计算传输线单 位长度的电容。 其计算步骤如下:
√ 所有电位系数
, 且具有对称性, 即
(2)电容系数
对电位系数的矩阵方程求逆,可得:
或表示为:
式中, 称为电容系数或感应系数。下
标相同的系数
称为自电容系数或自
感应系数,下标不同的系数
称
为互电容系数或互感应系数。
电容系数具有以下特点:
√ 在数值上等于第j个导体的电位为一个 单位而其余导体接地时, 第i个导体上的电 量, 即
可见, 点P、Q之间电位差的物理意义是把 一个单位正电荷从点P沿任意路径移动到点 Q的过程中, 电场力所做的功, 根据静电场 的无旋性, 这个功是路径无关的。因而电 位差是唯一的。。
为了使电场中每一点电位具有确定的值, 必须选定场中某一固定点作为电位参考点, 即规定该固定点的电位为零。 例如,若选定Q点为零,则
电场强度为: • 内外导体间的电压为:
可得同轴线单位长度的绝缘电阻为:
方法之二:
已经知道同轴线单位长度的电容为: 因此,同轴线单位长度的漏电导为:
例二: 计算半球形接地器的接地电阻 解: 通常要求电子、电气设备与大地有良 好的连接,将金属物体埋入地内,并将需 接地的设备与该物体连接就构成接地器。
第三章静态电磁场及其边值问题

2 2
y
有题设边界条件: x 0处,1 0 0; 1 x b处,1 b 2 b . x a处, 2 a 0 2 x 1 x 3 x
o
b
a
x
2.
s 0 b a s 0b 解得:C1 , D1 0 D2 . 0a 0 b a b 1 x s 0 x ; 2 x s 0 a x 0a 0a s 0 b a s 0b d1 x d 2 x E1 x 1 x e x ex ; E2 x 2 x e x ex dx 0a dx 0a
电位满足的拉普拉斯方程
2 2 2 在直角坐标系中 2 2 2 x y z 补充例题 半径为a 的带电导体球,其电位为U(无穷远处电位为零),试计 算球外空间的电位。 C1 C2 2 r 解:◇ 球外空间的电位满足拉氏方程 0
2
由题意可知电位及电场具有球对称性 r 在球坐标系下
◇ 于是位于 r r ' 处的点电荷q 的体密度为 q r r ' ◇ 单位点电荷产生的电位满足的泊松方程 2 r r ' / 0
满足的方程:2G r , r ' r r ' 1 无界空间中的解:G r , r ' r , r ' 0 ◇ 定义格林函数 G r, r ' 0 r, r ' 4 r r ' 格林函数的对称性:G r , r ' G r ', r 意义:电荷量为 0的点电荷的电位。
间的x b处有一面密度为 s 0的均匀电荷分布。求导 体板间的电位和电场。 解:电位函数满足的一 维拉普拉斯方程为 d 1 x d 2 x 0 0 x b ; 0 bxa 2 2 dx dx 方程的解为:1 x C1 x D1 ; 2 x C2 x D2
y
有题设边界条件: x 0处,1 0 0; 1 x b处,1 b 2 b . x a处, 2 a 0 2 x 1 x 3 x
o
b
a
x
2.
s 0 b a s 0b 解得:C1 , D1 0 D2 . 0a 0 b a b 1 x s 0 x ; 2 x s 0 a x 0a 0a s 0 b a s 0b d1 x d 2 x E1 x 1 x e x ex ; E2 x 2 x e x ex dx 0a dx 0a
电位满足的拉普拉斯方程
2 2 2 在直角坐标系中 2 2 2 x y z 补充例题 半径为a 的带电导体球,其电位为U(无穷远处电位为零),试计 算球外空间的电位。 C1 C2 2 r 解:◇ 球外空间的电位满足拉氏方程 0
2
由题意可知电位及电场具有球对称性 r 在球坐标系下
◇ 于是位于 r r ' 处的点电荷q 的体密度为 q r r ' ◇ 单位点电荷产生的电位满足的泊松方程 2 r r ' / 0
满足的方程:2G r , r ' r r ' 1 无界空间中的解:G r , r ' r , r ' 0 ◇ 定义格林函数 G r, r ' 0 r, r ' 4 r r ' 格林函数的对称性:G r , r ' G r ', r 意义:电荷量为 0的点电荷的电位。
间的x b处有一面密度为 s 0的均匀电荷分布。求导 体板间的电位和电场。 解:电位函数满足的一 维拉普拉斯方程为 d 1 x d 2 x 0 0 x b ; 0 bxa 2 2 dx dx 方程的解为:1 x C1 x D1 ; 2 x C2 x D2
地磁场与电磁波第三章静态场及其边值问题的解

05
地磁场与电磁波的关系
地磁场对电磁波的影响
折射与反射
地磁场影响电磁波的传播方向,当电磁波进入地磁场 时,会发生折射和反射现象。
偏振现象
地磁场对电磁波的偏振方向也有影响,导致电磁波的 电场和磁场分量在传播过程中发生旋转。
相速度变化
地磁场还会改变电磁波的相速度,导致电磁波的传播 速度发生变化。
电磁波在地磁场中的应用
总结词
电磁波以光速在空间中传播
详细描述
电磁波在空间中以光速传播,不受介质影响。电磁波的传播速度与频率无关,只与介质有关。在真空中,电磁波 的传播速度为光速。在介质中,电磁波的传播速度会小于光速。
电磁波的应用
总结词
电磁波在通信、探测、医疗等领域有广泛应用
详细描述
电磁波的应用非常广泛。在通信领域,无线电波用于手机、电视、广播等信号传输。在探测领域,雷 达利用电磁波进行目标探测和定位。在医疗领域,微波和射频用于治疗和诊断疾病。此外,电磁波还 在科学研究、军事等领域有广泛应用。
04
静态场及其边值问题
静态场的定义
总结词
静态场是指空间中不随时间变化的电 场和磁场分布。
详细描述
静态场的特点是电场和磁场在空间中 保持恒定,不随时间发生变化。这种 场在空间中形成稳定的分布,不会产 生电磁波。
边值问题的提
总结词
边值问题是指求解微分方程时需要满足的边界条件。
详细描述
在求解电磁波传播的微分方程时,需要满足一定的边界条件,这 些条件规定了电场和磁场在边界处的取值和变化规律。通过设定 合适的边界条件,可以限制解的取值范围,并确保解的物理意义 。
磁感应成像
利用地磁场对电磁波的影响,可以发展出磁感应成像技术, 用于探测地下金属物体。
第3章 静态电磁场及其边值问题的解剖析

2r ρr
ε
(Poisson方程)
(2)
该式即为静电位满足的微分方程— Poisson方程。Poisson 方程和上述方程组等价,故它也唯一确定了静电场。
在无电荷分布区域
2 r 0
(Laplace方程)
求解Poisson方程或Laplace方程时,解电位中的积分常 数需要应用电位的边界条件确定:
第三章 静态电磁场及其 边值问题的解
3.1 静电场分析
1. 基本方程
微
D ρ
分
形
或
积 分
SD dS V ρdV
形
式 E 0
式 l E dl 0
这组方程揭示静电场的基本性质:有散、无旋、保守性
2. 边界条件
eˆn E1 E2 0 或
E1t E2t
eˆn D1 D2 S
1 r2
d dr
r2
d
dr
0
r
c1 r
c2
c
c1、c2待定积分常数。
边界条件:
求解区域的边界是r=a
和r=的两闭合球面
① r a, U
② r , 0
利用条件 1得 c1 aU 利用条件 2得 c2 0
故解 r aU
r
5. 导体系统的电容
电容是导体系统的一种基本属性,它是 描述导体系统储存电荷能力的物理量。任何导体和导体之 间以及导体和大地之间都存在电容。
-E0
r
eˆz
rE0
E0r cosθ
在柱坐标系中,取x轴与电场方向一致,则
P
-E0
r
eˆx E0
eˆρ ρ eˆzz
E0 cos
o
E0
在坐
点
ε
(Poisson方程)
(2)
该式即为静电位满足的微分方程— Poisson方程。Poisson 方程和上述方程组等价,故它也唯一确定了静电场。
在无电荷分布区域
2 r 0
(Laplace方程)
求解Poisson方程或Laplace方程时,解电位中的积分常 数需要应用电位的边界条件确定:
第三章 静态电磁场及其 边值问题的解
3.1 静电场分析
1. 基本方程
微
D ρ
分
形
或
积 分
SD dS V ρdV
形
式 E 0
式 l E dl 0
这组方程揭示静电场的基本性质:有散、无旋、保守性
2. 边界条件
eˆn E1 E2 0 或
E1t E2t
eˆn D1 D2 S
1 r2
d dr
r2
d
dr
0
r
c1 r
c2
c
c1、c2待定积分常数。
边界条件:
求解区域的边界是r=a
和r=的两闭合球面
① r a, U
② r , 0
利用条件 1得 c1 aU 利用条件 2得 c2 0
故解 r aU
r
5. 导体系统的电容
电容是导体系统的一种基本属性,它是 描述导体系统储存电荷能力的物理量。任何导体和导体之 间以及导体和大地之间都存在电容。
-E0
r
eˆz
rE0
E0r cosθ
在柱坐标系中,取x轴与电场方向一致,则
P
-E0
r
eˆx E0
eˆρ ρ eˆzz
E0 cos
o
E0
在坐
点
第三章 静态场及其边值问题的解

式中的比例系数 称为媒质电导率,单位:S/m(西门子/米)。
38
3.2.1 恒定电场的基本方程和边界条件 1. 基本方程
在恒定电场中,电荷的空间分布不随t变化,故有
根据电流连续性方程
得
• 恒定电场的基本方程为 微分形式:
若媒质是均匀的,则 • 恒定电场的电位函数
由
积分形式:
2. 恒定电场的边界条件 • 场矢量的边界条件
5. 电位的微分方程 在均匀介质中,有
在无源区域,
15
标量泊松方程
拉普拉斯方程
16
6. 静电位的边界条件 设P1和P2是介质分界面两侧紧贴界面的相邻两点,其电位分
别为1和2。当两点间距离⊿l→0时
由
和
媒质1 1 媒质2 2
1 P1 2 P2
l
• 若介质分界面上无自由电荷,即 • 导体表面上电位的边界条件: 常数,
当
时,
b oa
孤立导体球的电容
26
例 3.1.5 如图所示的平行双线传输线,导线半径为a,两导线 的轴线距离为D,且D >> a,求传输线单位长度的电容。
解 设两导线单位长度带电量分别为 和 。由于
,
故可近似地认为电荷分别均匀分布在两
y
导线的表面上。应用高斯定理和叠加原
理,可得到两导线之间的平面上任一点
媒质1 E1 1
媒质2 E2
2
2
( 2 1)
媒质1
1
0
媒质2 E2
en
E1 2
(1 0)
恒定电场同时存在于导体内部和外部,在导体表面上的电场 既有法向分量又有切向分量,电场并不垂直于导体表面,因 而导体表面不是等位面;
电磁场电磁波静态场及其边值问题的解

Cq
两个带等量异号电荷(q)的
1 U
E
2 0
导体组成的电容器,其电容为
q
q
C q q
U 1 2
电容的大小只与导体系统的几何尺寸、形状和及周围电介质
的特性参数有关,而与导体的带电量和电位无关。
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
11
3.1.4 静电场的能量 静电场最基本的特征是对电荷有作用力,这表明静电场具有 能量。
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
1
• 静态电磁场:场量不随时间变化,包括: 静电场、恒定电场和恒定磁场
• 时变情况下,电场和磁场相互关联,构成统一的电磁场
• 静态情况下,电场和磁场由各自的源激发,且相互独立
本章内容
3.1 静电场分析 3.2 导电媒质中的恒定电场分析 3.3 恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理 3.5 镜像法 3.6 分离变量法
1 P1 2 P2
Δl
2
2
n
1
1
n
S
• 若介质分界面上无自由电荷,即S 0
2
2
n
1
1
n
•
导体表面上电位的边界条件: 常数,
n
S
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
10
电容 电容是导体系统的一种基本属性,是描述导体系统 储存电荷能
力的物理量。
孤立导体的电容
孤立导体的电容定义为所带电量q与其电位 的比值,即
上式两边从点P到点Q沿任意路径进行积分,得
电场力做 的功
Q
Q
P E dl P d (P) (Q)
关于电位差的说明
第三章 静态场及其边值问题的解PPT课件

0
en (E1 E2) 0
S
或
,0则
D1n E1t
D2 E 2t
n
安徽工程科技学院电气系 周鹏
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
6
场矢量的折射关系
ta1 nE 1/tE 1n1/D 1n1 ta2 n E 2/tE 2n 2/D 2n 2
导体表面的边界条件
介质1
线电荷的电位: (r)4π 1ClR (r)dlC
点电荷的电位: (r) q C 4πR
安徽工程科技学院电气系 周鹏
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
10
3. 电位差
将 E 两端点乘 dl,则有
E d l d l (d x d y d z ) d
x y y
(r ) q 4 π c d 0 r2 o s 4 π p e 0 r r2 4 π p 0 r r3
p qd表示电偶极矩,方向由负电荷指向正电荷。
安徽工程科技学院电气系 周鹏
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
13
5. 电位的微分方程
在均匀介质 n(D 1D 和2 1)S 2
D
媒质1 1 媒质2 2
1 P1 2 P2
Δl
2n21n1 S
en 1
E1
1
介质2
E2
2
2
在静电平衡的情况下,导体内部的电场为0,则导体表面的边
界条件为
en
D
S
en E 0
或
D E
n t
0
S
安徽工程科技学院电气系 周鹏
电磁场与电磁波 第3章 静态电磁场及其边值问题的解