马尔科夫链在传染病预测中的应用

合集下载

利用马尔科夫链进行疾病传播模型的构建(九)

利用马尔科夫链进行疾病传播模型的构建(九)

马尔科夫链在疾病传播模型中的应用疾病传播是一个涉及到公共卫生和医学领域的重要问题。

传染病的传播涉及到众多因素,如人群密集程度、病原体的传播方式、疾病的潜伏期等等。

为了更好地理解疾病的传播规律,科研人员通过建立数学模型来模拟疾病的传播过程,马尔科夫链便是其中一种常用的数学工具。

一、马尔科夫链的基本概念马尔科夫链是指在给定概率条件下,一个状态经过一段时间转移到另一个状态的过程。

简单来说,就是一个状态到另一个状态的转移是通过一定的概率来确定的。

而且,马尔科夫链具有“无记忆”的特性,即某一时刻的状态只与前一时刻的状态有关,而与更早的状态无关。

在疾病传播模型中,我们可以将不同的人群状态定义为不同的状态,如易感者、潜伏者、感染者和康复者等。

而状态之间的转移概率则可以根据疾病的特性和传播规律来确定。

二、利用马尔科夫链构建疾病传播模型首先,我们需要确定疾病的传播途径和传播速度。

通过调查和研究,我们可以获得疾病的潜伏期、传染期和康复率等参数。

然后,我们可以将不同的人群状态分别对应到马尔科夫链的不同状态上,比如易感者对应到状态1,潜伏者对应到状态2,感染者对应到状态3,康复者对应到状态4。

接着,我们需要确定状态之间的转移概率。

这一步需要根据疾病的传播规律和已有的数据来确定。

比如,易感者变为潜伏者的概率可以由疾病的传染性和人群密集程度来确定,潜伏者变为感染者的概率可以由疾病的潜伏期和传染期来确定,感染者变为康复者的概率可以由疾病的康复率来确定。

最后,我们可以利用马尔科夫链的数学模型来模拟疾病的传播过程。

假设初始时刻各状态的人数分别为N1、N2、N3、N4,根据转移概率和初始状态人数,我们可以得到下一个时刻各状态的人数,然后再根据这一时刻的状态人数和转移概率,便可得到再下一个时刻各状态的人数,以此类推,直到模拟的时刻结束。

三、疾病传播模型的应用与优化利用马尔科夫链构建的疾病传播模型可以帮助我们更好地理解疾病的传播规律,预测疾病的传播趋势,评估不同干预措施的效果等。

运用马尔科夫链对我国霍乱发病率的预测

运用马尔科夫链对我国霍乱发病率的预测
1 马尔柯夫链介绍 1.1 马尔科夫链定义
过程或系统在时刻 t0 所处的状态为已知的条件下, 过程在 时 刻 t (t﹥t0) 所 处 状 态 的 条 件 分 布 与 过 程 在 时 刻 t0 之 前 所 处 的状态无关的特性称为马尔科夫性或无后效性, 简称为马氏 性。 具有马尔科夫性的随机过程称为马尔科夫过程。 通俗地 讲, 马尔科夫性就是在已知现在的条件下, “将来” 与 “过 去” 是相互独立的。 马尔科夫过程是一类广泛使用于各种领域
发病率, 其转向不明, 故应频数减去 1, 且从表 1 中可以找出
状态 1 转向状态 1、 2、 3、 4 的频数依次是 8、 1、 1、 0。 因此
P11=8 / 10, P12=1 / 10, P13=1 / 10, P14=0。 依次类推, 求出状态 2、 3、 4 分别转向各个状态的频数后, 便组成了一阶转移概率矩阵:
到 状 态 aj 的 转 移 概 率 。 转 移 概 率 不 依 赖 于 m 的 马 尔 科 夫 链 称
为时齐马尔科链。 此时, n 步转移概率矩阵可记为 Pij (n)。 当
n=1 时 , 称 为 一 步 转 移 概 率 , 简 记 为 Pij; 当 n﹥1 时 , Pij 称 为
高 阶 转 移 概 率 显 然 , 转 移 概 率 矩 阵 对 所 有 元 素 Pij (n)≥0≥0,
Abstract: [Objective] Through the Markov chain to predict the incidence of cholera in China in order to provide the basis for the health department to prevent and treat cholera. [Methods] Used the incidence of cholera of 1975-2007 data in China and to predict the incidence of cholera with Markov state transit matrix. [ Results] We found the incidence of cholera in China was in lower level than before. [Conclusion] Health department should maintain the current efforts, positively prevent and control the cholera.

如何使用马尔可夫模型进行传染病传播模拟(六)

如何使用马尔可夫模型进行传染病传播模拟(六)

传染病传播模拟一直是流行病学研究的重要内容之一。

其中,马尔可夫模型被广泛应用于传染病传播的模拟和预测,其简单而有效的特性使其成为研究传染病传播的重要工具。

本文将介绍如何使用马尔可夫模型进行传染病传播模拟,并探讨其在实际中的应用。

1. 马尔可夫模型简介马尔可夫模型是一种随机过程模型,其基本假设是未来状态只依赖于当前状态,与过去状态无关。

这种假设使得马尔可夫模型在描述具有短期依赖性的系统时具有很好的效果。

在传染病传播模拟中,人口的感染状态可以被看作是一个马尔可夫过程,即未来的感染状态只依赖于当前的感染状态。

这使得马尔可夫模型成为了研究传染病传播的理想选择。

2. 传染病传播模型传染病传播模型通常分为个体模型和群体模型两种。

个体模型侧重于研究单个个体的感染状态和传播过程,通常使用微分方程或Agent-based模型进行描述。

群体模型则更注重于整个人群的感染状态和传播过程,常常使用差分方程或概率模型进行描述。

马尔可夫模型可以被视为群体模型的一种,通过概率转移矩阵描述了不同感染状态之间的转移概率,从而模拟了整个人群的感染传播过程。

3. 马尔可夫链在传染病传播模拟中,感染状态通常可以被划分为健康、潜伏期、感染期和免疫四类。

马尔可夫链则可以描述这些状态之间的转移概率。

假设当前时刻人群中健康人的比例为S,潜伏期感染者的比例为E,感染期感染者的比例为I,免疫者的比例为R,则可以用状态转移图表示不同状态之间的转移关系。

通过构建状态转移矩阵,可以描述不同状态之间的转移概率,从而进行传染病的传播模拟。

4. 应用案例马尔可夫模型在传染病传播模拟中有着广泛的应用。

以新冠疫情为例,研究人员可以利用马尔可夫模型来模拟病毒的传播过程,预测疫情的发展趋势和人群的感染风险。

通过对不同防控策略下的传播模拟,政府和公共卫生部门可以制定更加科学和有效的防控措施,从而降低疫情的传播风险。

此外,马尔可夫模型还可以用于评估疫苗接种策略的效果,帮助决策者制定最佳的疫苗接种计划。

如何使用马尔可夫模型进行传染病传播模拟

如何使用马尔可夫模型进行传染病传播模拟

马尔可夫模型是一种描述随机过程的数学模型,它以马尔可夫性质为基础,即未来状态的概率只依赖于当前状态,而与过去状态无关。

马尔可夫模型在各个领域都有广泛的应用,包括金融、生态学、自然语言处理等。

在传染病传播模拟中,马尔可夫模型同样具有重要的应用价值。

首先,我们来了解一下马尔可夫链在传染病传播模拟中的基本原理。

马尔可夫链是一种随机过程,它由一系列的状态和状态转移概率组成。

在传染病传播中,我们可以将人群分为健康者、患病者和康复者等多个状态,然后根据感染率、康复率等参数,构建状态转移概率矩阵。

通过不断迭代计算,我们可以模拟出传染病在人群中的传播过程。

其次,马尔可夫模型的优点之一是能够考虑到状态之间的相互影响。

在传染病传播中,健康者与患病者之间存在着相互感染的可能,而患病者也可能康复。

马尔可夫模型可以很好地描述这种状态之间的转移关系,从而更加真实地模拟出传染病在人群中的传播情况。

另外,马尔可夫模型还可以通过参数的调整来模拟不同的传染病传播情景。

例如,我们可以通过改变感染率、康复率等参数,来模拟出不同传染病在人群中的传播速度和规模。

这为疾病控制和预防提供了重要的参考依据,帮助决策者制定更加科学合理的防控策略。

除此之外,马尔可夫模型还能够结合实际数据进行参数估计,从而提高模拟的准确性。

通过收集不同传染病在人群中的传播数据,我们可以利用最大似然估计等方法,来估计感染率、康复率等参数,然后将这些参数代入马尔可夫模型进行模拟,得到更加贴合实际情况的传播过程。

此外,马尔可夫模型还可以结合其他模型进行传染病传播模拟。

例如,可以将马尔可夫模型与网络模型相结合,考虑人群中个体之间的联系和交互,从而更加全面地模拟传染病在人群中的传播过程。

通过不断地改进和完善模型,我们可以更加准确地预测传染病的传播趋势,为疾病防控提供科学依据。

总的来说,马尔可夫模型在传染病传播模拟中具有重要的应用价值。

通过构建状态转移概率矩阵,考虑状态之间的相互影响,调整参数进行模拟,结合实际数据进行参数估计,以及与其他模型相结合等方式,我们可以更加真实地模拟出传染病在人群中的传播过程,为疾病控制和预防提供科学依据。

如何使用马尔可夫模型进行传染病传播模拟(五)

如何使用马尔可夫模型进行传染病传播模拟(五)

传染病传播一直是人们关注的焦点,特别是在当前全球面临新型冠状病毒疫情的背景下,对于传染病的传播规律和控制策略更加引起人们的关注。

马尔可夫模型作为一种描述系统状态转移的数学模型,被广泛应用于传染病的传播模拟和预测。

本文将从马尔可夫模型的原理和应用入手,探讨如何使用马尔可夫模型进行传染病传播模拟。

一、马尔可夫模型的原理马尔可夫模型是一种描述随机过程的数学模型,其基本假设是当前时刻的状态只与前一时刻的状态有关,与更早的状态无关。

这就意味着马尔可夫模型具有无记忆性,其状态转移只取决于当前时刻的状态。

在传染病传播模拟中,可以将人群的健康状态视为马尔可夫链中的状态,根据不同的传染病特点和传播途径构建相应的状态转移矩阵,从而描述传染病在人群中的传播过程。

二、基本的传染病传播模型传染病传播模型通常可以分为 SIR 模型、SEIR 模型等基本类型。

以 SIR模型为例,将人群分为易感者(Susceptible)、感染者(Infectious)、康复者(Recovered)三类,根据传染病的基本传播过程构建状态转移图,可以得到相应的状态转移方程。

在马尔可夫模型中,状态转移矩阵描述了不同健康状态之间的转移概率,而这一概率可以根据传染病的基本特征和实际数据进行估计和调整。

三、传染病传播模拟的马尔可夫链将传染病传播过程建模为马尔可夫链,可以利用马尔可夫链的性质对传染病的传播规律进行分析和预测。

通过迭代状态转移矩阵,可以模拟出传染病在人群中的传播路径,进而评估不同的控制策略对传染病传播的影响。

此外,还可以利用马尔可夫链的平稳分布性质,对传染病的最终流行趋势进行预测和分析。

四、马尔可夫模型在传染病控制中的应用基于马尔可夫模型,可以开展一系列传染病控制策略的研究和评估。

例如,可以借助模拟技术,评估不同的隔离、检疫和疫苗接种策略对传染病传播的影响,为决策者提供科学依据。

此外,还可以利用马尔可夫链的灵活性,模拟不同健康状态之间的转移规律,为传染病的早期预警和监测提供支持。

随机过程中的马尔可夫链及传染病模型应用

随机过程中的马尔可夫链及传染病模型应用

随机过程中的马尔可夫链及传染病模型应用随机过程是研究一系列随机事件演变的数学模型,其中马尔可夫链是最常见的一种随机过程。

马尔可夫链的特点是状态转移只依赖于当前状态,与过去的状态无关。

在实际应用中,马尔可夫链被广泛应用于传染病模型,用于描述疫情传播的过程。

一、马尔可夫链的定义和性质马尔可夫链是一个离散的随机过程,它由一组状态和状态之间的转移概率组成。

设有N个状态,其转移概率矩阵为P=(p(ij)),其中p(ij)表示从状态i转移到状态j的概率。

马尔可夫链具有以下性质:1. 唯一性:对于给定的初始状态,马尔可夫链的未来状态是确定的。

2. 状态无记忆性:在给定当前状态的情况下,未来的状态与过去的状态无关。

3. 正则性:对于任意初始状态,经过一定步数后马尔可夫链进入平稳状态(即稳定分布)。

二、传染病模型中的马尔可夫链应用传染病模型是研究传染病在人群中传播的数学模型,其中马尔可夫链被广泛应用于描述疫情传播的过程。

典型的传染病模型包括SIR模型、SEIR模型等。

1. SIR模型SIR模型是常见的传染病模型,其中S表示易感者(Susceptible)、I表示感染者(Infectious)、R表示康复者(Recovered)。

该模型假设人群的感染和康复过程符合马尔可夫链的性质,即一个人的状态转移只依赖于当前的状态。

2. SEIR模型SEIR模型是在SIR模型的基础上引入了暴露者(Exposed)的状态,即人群接触到病原体后但还没有发病的状态。

该模型同样满足马尔可夫链的性质,可以更准确地描述传染病的传播过程。

三、马尔可夫链在传染病模型中的意义传染病模型中使用马尔可夫链可以帮助研究者理解和预测疫情的传播趋势,并采取有针对性的措施来控制和阻断疫情的蔓延。

基于马尔可夫链的传染病模型可以用于以下方面:1. 疫情预测:通过对马尔可夫链建模,可以预测感染者的数量和传播路径,帮助决策者及时采取控制措施,降低疫情风险。

2. 计算阻断策略:基于马尔可夫链的传染病模型可以计算不同的阻断策略对疫情传播的影响,为决策者提供决策依据。

马尔可夫链模型及其在预测模型中的应用

马尔可夫链模型及其在预测模型中的应用

马尔可夫链模型及其在预测模型中的应用马尔可夫链模型是一个重要的数学模型,在各种预测问题中都有广泛应用。

该模型描述的是一个随机过程,在每一个时间步骤上,其状态可以从当前状态转移到另一个状态,并且转移的概率只与当前状态有关,而与历史状态无关。

这种性质被称为“马尔可夫性”。

本文将介绍马尔可夫链模型的基本原理和应用,以及相关的统计方法和算法。

马尔可夫链模型的构造方法通常是通过定义状态空间和状态之间的转移概率来完成的。

状态空间是指可能的状态集合,而状态之间的转移概率则是指在一个时间步骤上从一个状态转移到另一个状态的概率。

这些转移概率通常被表示为一个矩阵,称为转移矩阵。

转移矩阵的元素表示从一个状态转移到另一个状态的概率。

马尔可夫链模型的重要性在于它对于许多实际问题的数学描述,因为很多现象都符合马尔可夫过程的特点,即时间上的无后效性,即系统的当前状态仅仅依赖于它的上一个状态。

比如,一个天气预测问题,天气系统的状态可以描述为“晴、雨、阴”,在每一个时间步骤上,系统可能会转移到另一个状态,转移概率可以根据历史天气数据进行估计。

马尔可夫链模型可以用于各种预测问题,如下一个状态的预测、状态序列的预测以及时间序列的预测。

对于下一个状态的预测问题,我们可以使用当前状态的转移矩阵来计算目标状态的概率分布。

对于状态序列的预测,我们可以利用当前状态的转移概率估计下一个状态的状态分布,并重复该过程,直到预测的序列达到一定的长度为止。

对于时间序列的预测,我们可以将时间序列转化为状态序列,并将时间作为状态的一个特征进行建模,在此基础上进行预测。

马尔可夫链模型也可以用于分析时间序列数据的特性。

例如,可以使用马尔可夫过程来检测时间序列数据中的周期性、趋势和季节性等特征。

这些特征可以反映时间序列数据的长期和短期变化情况,为精确的预测提供了基础。

对于马尔可夫链模型的参数估计问题,通常使用统计学习方法来完成。

常见的方法包括极大似然估计、贝叶斯估计以及最大后验估计等。

如何使用马尔可夫模型进行传染病传播模拟(七)

如何使用马尔可夫模型进行传染病传播模拟(七)

随着世界范围内新冠疫情的肆虐,人们对于传染病的传播和控制愈发重视。

在这种情况下,使用马尔可夫模型进行传染病传播模拟成为了一种重要的工具。

本文将对马尔可夫模型的原理和应用进行介绍,并探讨如何利用这一模型进行传染病传播的模拟。

马尔可夫模型是一种描述随机过程的数学模型,其基本思想是未来的状态只取决于当前的状态,而与过去的状态无关。

这种性质称为“马尔可夫性”。

在传染病传播的模拟中,我们可以将人群的健康状态划分为多个状态,比如易感者、感染者和康复者等。

通过观察这些状态之间的转移关系,就可以利用马尔可夫模型来描述传染病的传播过程。

首先,我们需要定义一个状态空间,即所有可能的健康状态。

在传染病传播的模拟中,通常将人群分为易感者、感染者和康复者三类。

然后,我们需要确定状态之间的转移概率。

这些转移概率可以通过传染病的基本参数来确定,比如感染率、康复率和死亡率等。

通过这些参数,我们就可以建立起一个描述传染病传播的马尔可夫链。

接下来,我们可以利用马尔可夫链来进行传染病传播的模拟。

假设我们有一个初始状态分布向量,即描述人群健康状态的概率分布。

通过状态转移矩阵和初始状态分布向量,我们就可以计算出下一个时间点的状态分布。

重复这个过程,就可以模拟出传染病在人群中的传播过程。

通过观察模拟结果,我们可以得出一些关于传染病传播规律的结论,比如疫情的爆发时间、峰值感染率和传播范围等。

除了进行传染病传播的模拟外,马尔可夫模型还可以用来评估不同的防控策略。

通过改变状态转移矩阵中的参数,比如接触率、隔离率和疫苗覆盖率等,我们可以模拟出不同防控策略下的传播过程。

通过比较不同策略下的模拟结果,我们可以评估这些策略的有效性和可行性,从而为实际防控工作提供科学依据。

总的来说,使用马尔可夫模型进行传染病传播模拟是一种有效的方法。

通过构建马尔可夫链,我们可以描述传染病在人群中的传播过程,并评估不同防控策略的效果。

这种模拟方法不仅可以帮助我们更好地理解传染病的传播规律,还可以为传染病的防控工作提供科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马尔科夫链在传染病预测中的应用
作者:付长贺, 邓甦, FU Chang-he, DENG Su
作者单位:沈阳师范大学数学与系统科学学院,辽宁,沈阳,110034
刊名:
沈阳师范大学学报(自然科学版)
英文刊名:JOURNAL OF SHENYANG NORMAL UNIVERSITY(NATURAL SCIENCE EDITION)
年,卷(期):2009,27(1)
被引用次数:2次
1.施海龙.曲波.郭海强干旱地区呼吸道传染病气象因素及发病预测[期刊论文]-中国公共卫生 2006(04)
2.巴剑波.方旭东.徐雄利马尔科夫链在海军疟疾疫情预测中的应用[期刊论文]-解放军预防医学杂志 2001(02)
3.何江宏.陈启明基于Markov链的最优化预测模型及其应用研究[期刊论文]-合肥学院学报(自然科学版) 2006(01)
4.杨玉华传染病模型的研究及应用[期刊论文]-数学的实践与认识 2007(14)
5.邓甦.付长贺四种贝叶斯分类器及其比较[期刊论文]-沈阳师范大学学报(自然科学版) 2008(01)
6.余雷.薛惠锋.李刚传染病传播模型研究[期刊论文]-计算机仿真 2007(04)
7.王春平.王志锋.单杰随机时间序列分析法在传染病预测中的应用[期刊论文]-中国医院统计 2006(03)
8.吴家兵.叶临湘.尤尔科时间序列模型在传染病发病率预测中的应用[期刊论文]-中国卫生统计 2006(03)
1.期刊论文孟胜利.徐葛林.程满荣.舒祥.雷勇良.朱风才.周敦金.王定明.明贺田.吴杰.严家新.杨晓明中国狂犬病病毒遗传多样性分析-中国生物制品学杂志2010,23(5)
目的 分析中国狂犬病病毒(RV)的遗传多样性,为我国狂犬病的预防提供理论依据.方法 采用RT-PCR技术扩增26株RV N基因,并进行测序,与GenBank登录的序列进行比对,构建进化树,分析RV的基因分型和分组情况以及时间和空间的动态进化.结果 中国RV分为2个大的进化分支(8组),分支Ⅰ包括1~4组,分支Ⅱ包括5~8组,组内核苷酸同源性≥93.2%,氨基酸同源性≥94.3%;组间核苷酸差异性≥8.0%,氨基酸差异性≥1.7%;运用贝叶斯中的马尔科夫链的蒙特卡洛方法,估计中国RV N基因核苷酸的平均碱基替代率为1.408 9×10-4取代/位点·年,共同祖先出现在公元968年.结论 中国狂犬病病毒株均属于基因1型狂犬病病毒,存在跨地域、跨宿主传播;我国分支Ⅰ狂犬病病毒株与泰国、越南、菲律宾、印度尼西亚、马来西亚等东南亚国家分离的狂犬病病毒株起源相同;分支Ⅱ的毒株在全球分布.
2.会议论文孟胜利.严家新.徐葛林.程满荣.吴杰.雷勇良.朱风才.周敦金.王定明.杨晓明中国狂犬病毒遗传多样性研究2009
在1969-2008年间,我们从全国各地共分离到60株街毒株,其中从犬脑中分离到41株,鼬獾中分离5株, 人脑中分离到4株,鹿脑中1株,我们对这61株狂犬病毒株的N基因的进行了序列测定,初步分析后选取26株代 表株与GenBank得到42株中国毒株N基因序列共计68株序列进行全面的进化分析。

以探讨中国狂犬病毒株的基 因分型和分组情况、时间和空间的动态进化。

结果表明:我们发现目前分离的中国毒株都属于基因1型狂犬病毒,可以分为2个大的进化分支共计8个组,分支I包括1-4组,分支Ⅱ包括5-8组,组内核苷酸同源性≥93.2%,氨基 酸同源性94.3%;组间核苷酸差异性至少是8.0%,氨基酸差异至少是1.7%;选择压力分析表明中国狂犬病毒处 于较强的净化选择约束下,狂犬病毒N蛋白中的核苷酸突变主要是同义突变;运用贝叶斯中的马尔科夫链的蒙特 卡洛方法估计中国狂犬病毒N基因核苷酸的平均喊基替代率为1.4089×10-4取代/位点/年,共同祖先出现在公元 1040年前;同一毒株或者核苷酸同源性很高的毒株在不同地点、不同宿主中出现表明中国狂犬病毒株存在跨地域、 跨宿主传播;我国狂犬病高发区流行的毒株(分
3.学位论文王家赠接触振子系统与接触粒子系统中的几类合作行为2008
本文主要研究非线性系统中的一些时空动力学与合作行为,分为连续系统和离散系统两个部分.
在第一部分中,我们研究时间连续、空间分立的接触振子系统的一些动力学行为.以 Josephson节方程作为基本振子,也就是经典力学中的单摆方程.依照循序渐进的原则,分别研究了:周期驱动下的振子、两个耦合振子、一维耦合多振子链.揭示了新的非线性动力学和合作行为.
在直流驱动的Josephson振子上加入周期驱动,形成两个相互竞争的频率.频率的竞争导致各种同步解.分别大阻尼和小阻尼两种情况,我们介绍了Poincaré映射在相平面上的不变曲线以及它的性质;利用Arnold舌头显示了参数空间上的分支特征.在小阻尼情况下,研究了混沌产生的特点.
对于两个具有不同自然频率的Josephson振子,在线性扩散耦合和正弦耦合两种情况下,研究了这些系统的不同状态之间的相变特征.同时在正弦耦合的系统中发现了混沌解的存在.
在一维耦合多振子链模型,取周期边界条件.在一定条件下,系统中会产生一类特殊的解.只要一点非常小的驱动力,整条链中的粒子就会同步地转动.这种解被命名为“超-旋转”态.我们揭示了这种解产生的机制.
在第二部分中,我们研究了复杂网络上的传染病动力学.主要使用了易感者一感染者一移除者(Susceptible-infected-removed;记为SIR,下同)模型.对于这种类型的传染病在任意网络上的传播,首先在亚宏观水平建立了一个马尔科夫链模型,得到了一些性质.到目前为止,我们对几类特殊结构的网络进行了解析处理.对于大量与实际更加接近的网络,我们还是用宏观的方法,建立了不同的平均场率方程模型,并分析传播的阈值条件.
对于任意网络上的SIR型传播,我们首先建立了一个时间齐次的马氏链模型,利用转移概率矩阵证明了马氏链的收敛性.利用这个模型,可以对几种特殊的网络结构进行解析求解.
实际问题中,各个节点传播疾病的能力往往是不一致的,所以不同的接触过程,它们传播疾病的概率是不一样的.体现在网络上,就是通过连线的传播率不是定常系数,而是有一个分布.在第六章中,我们研究了这个因素对于传播带来的影响.
节点和节点之间的连接并不总是完全随机的,有的带有一定的选择性。

形成了相关性网络。

关于相关性网络上的传播问题,已经有了一些理论结果.但是我们觉得有些地方值得进一步的商榷与提高.在第七章中,我们给出了求解SIR模型的新方法.基于连接矩阵,我们定义了计算相关性的方法.
在第八章中建立了有向网络上的传播模型,并进行了求解.得到了有向网络上传播阈值的约束条件.最后讨论了在有向网络上如何进行连接相关性度量的问题.
第九章是对本文中所做研究的总结与展望.
本文链接:/Periodical_sysfxyxb-zr200901008.aspx
授权使用:中国人民公安大学(gadx),授权号:1afac585-8ac4-4844-b3f4-9e9e015c496b
下载时间:2011年3月6日。

相关文档
最新文档